USA Observation of Spectral and Timing Evolution During the 2000 Outburst of XTE J1550-564
“高分五号”卫星大气主要温室气体监测仪(特邀)
第48卷第3期Vol.48No.3红外与激光工程Infrared and Laser Engineering2019年3月Mar.2019“高分五号”卫星大气主要温室气体监测仪(特邀)熊伟12(1.中国科学院安徽光学精密机械研究所,安徽合肥230031:2.中国科学院通用光学定标与表征技术重点实验,安徽合肥230031)摘要:“高分五号”卫星于2018年5月9日成功发射,是我国第一颗高光谱观测卫星,大气主要温室气体监测仪是其中一台有效载荷,采用空间外差光谱技术进行高光谱分光,是国际上首台基于该体制的星载温室气体遥感设备。
阐述了载荷的基本工作原理,包括分光原理、工作模式及通道设置等内容。
载荷的光学系统主要由五部分组成,核心单元为一体化胶合干涉仪,为避免光谱混叠对窄带滤光片的指标参数要求较高。
为提高在轨数据定量化水平,载荷设计了基于漫反射板系统的定标装置,可满足光谱及辐射定标要求。
最后,梳理了载荷数据处理的基本流程,并对首批观测数据进行了光谱复原,成功获取了1级数据产品,为下一步温室气体反演应用奠定了基础。
关键词:高分五号;温室气体;高光谱;空间外差光谱技术;傅里叶变换中图分类号:0434.3文献标志码:A DOI:10.3788/IRLA201948.0303002Greenhouse gases Monitoring Instrument(GMI)on GF-5satellite(invited)Xiong Wei1,2(1.Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei230031,China;2.Key Laboratory of Optical Calibration and Characterization of Chinese Academy of Sciences,Hefei230031,China)Abstract:GF-5satellite was successfully launched on May9,2018.It is the first hyperspectral observation satellite in China.The Greenhouse gas Monitoring Instrument is one of the pay l oads.It is the first satellite-borne greenhouse gas remote sensing equipment in the world to use spatial heterodyne spectroscopy technology for hyperspectral spectroscopy.The basic working principle of the payload was described,including the principle of light splitting,working mode and band setting.The optical system of the payload consisted of five parts.The core unit was a bonded interferometer.In order to avoid spectral aliasing,the parameters of narrowband filters were required to be high.In order to improve the on-orbit data quantification level,a calibration device based on diffuse reflector system was designed,which can meet the requirements of spectral and radiation calibration.Finally,the basic process of payload data processing was sorted out,and the first batch of observed data was restored by spectrum.The first-level data products are successfully obtained,which lays a foundation for the next application of greenhouse gas inversion.Key words:GF-5satellite;greenhouse gases;hyperspectral;spatial heterodyne spectroscopy technology;Fourier transform收稿日期:2019-02-10;修订日期:2019-02-20基金项目:国家高分重大科技专项;民用航天预研项目(D040102)作者简介:熊伟(1975-),男,研究员,博士,主要从事超光谱遥感探测技术方面的研究。
深入理解高斯白噪声(AWGN)信道
高斯信道百科名片高斯信道(Gaussian channel,通信专业术语)是一个射频通信信道,其包含了各种频率的特定噪声频谱密度的的特征,从而导致了信道中错误的任意分布。
目录信道与高斯信道1.信道(information channels,通信专业术语)是信号的传输媒质,可分为有线信道和无线信道两类。
有线信道包括明线、对称电缆、同轴电缆及光缆等。
无线信道有地波传播、短波电离层反射、超短波或微波视距中继、人造卫星中继以及各种散射信道等。
如果我们把信道的范围扩大,它还可以包括有关的变换装置,比如:发送设备、接收设备、馈线与天线、调制器、解调器等,我们称这种扩大的信道为广义信道,而称前者为狭义信道。
2.信道:信息传输的媒质或渠道。
在电信或光通信(光也是一种电磁波)场合,信道可以分为两大类:一类是电磁波的空间传播渠道,如短波信道、超短波信道、微波信道、光波信道等;另一类是电磁波的导引传播渠道。
如明线信道、电缆信道、波导信道、光纤信道等。
前一类信道是具有各种传播特性的自由空间,所以习惯上称为无线信道;后一类信道是具有各种传输能力的导引体,习惯上就称为有线信道。
信道的作用是把携有信息的信号(电的或光的)从它的输入端传递到输出端,因此,它的最重要特征参数是信息传递能力(也叫信息通过能力)。
在典型的情况(即所谓高斯信道)下,信道的信息通过能力与信道的通过频带宽度、信道的工作时间、信道的噪声功率密度(或信道中的信号功率与噪声功率之比)有关:频带越宽,工作时间越长,信号与噪声功率比越大,则信道的通过能力越强移动通信高斯信道理论模型高期信道,最简单的信道,常指加权高斯白噪声(AWGN)信道。
这种噪声假设为在整个信道带宽下功率谱密度(PDF)为常数,并且振幅符合高斯概率分布。
高期信道对于评价系统性能的上界具有重要意义,对于实验中定量或定性地评价某种调制方案、误码率(BER)性能等有重要作用。
加性高斯白噪声(Additive White Gaussian Noise,AWGN)在通信领域中指的是一种幅度服从高斯分布,各频谱分量在频谱域上服从均匀分布(即白噪声)的噪声信号。
(整理)光电名词中英索引
光电名词中英索引光电名词中英索引-AA M light振幅调制光,调幅光A-frameA形架a.c. circuit交流电路a.c. discharge交流放电a.f. oscillator声频振荡器A/D conversion仿真-数字转换A/D Converter模拟数字讯号转换器abac算图,列线图abampere电磁系电流单位abaxial轴外的,离轴的Abb'e Condenser阿贝聚光器Abb'e constant阿贝常数Abb'e Illumination阿贝照明Abb'e Porro阿贝坡若Abb'e Prism阿贝棱镜Abb'e Refractometer阿贝折射计Abb'e Sine Condition阿贝正弦条件Abbe apertometer阿贝〔数值〕孔径计Abbe condenser阿贝聚光镜Abbe constant阿贝常数Abbe double-diffractionprinciple阿贝双衍射原理Abbe eyepiece阿贝目镜Abbe illuminator阿贝照明器Abbe invariant阿贝不变量Abbe number阿贝数,色散系数Abbe photometric law阿贝光度定律Abbe prism阿贝棱镜Abbe refractometer阿贝折射计Abbe resolution criterion阿贝分办率判断Abbe treatment阿贝处理Abbe's formula阿贝公式Abbe's number阿贝数Abbe's principle阿贝原理Abbe's sine condition阿贝正弦条件Abbe's sine rule阿贝正弦定则Abbe's theory of image formation阿贝成像理论Abbe-Konig prism阿贝-柯尼希棱镜Abbe-type vertical metroscope 阿贝型立式测长义aberrated lens system有像差透镜系统aberrated optics有像差光学系统aberrating medium致〔像〕差媒质Aberration像差aberration balancing像差平衡aberration blur circle像差模糊图aberration constant光行差常数,光行差恒量aberration correction像差校正aberration curve像差曲线aberration figure像差斑,像差图形aberration function像差函数aberration haze像差光雾aberration ofreconstructed wave重建波〔的〕像差aberration residuals残余像差Aberration Sensor像差感应器aberration-free system无像差系统aberrationless无像差的ablation(1)冲蚀,烧蚀,消融(2)切除ablative flashlamp消融闪光灯,烧蚀闪光灯ablative recording〔光〕冲蚀记录Ablative Wall Flashlamp闪光壁灯,剥壁闪光灯Abney level阿布尼水平器Abney mounting for concave grating阿布饰凹面光栅装置abnormal反常,异常abnormal dispersion glass反常色散玻离abnormal glow discharge 反常辉光放电abnormal refraction反常折射above-critical state超临界〔状〕态above-threshold operation method超阈值运转法(激光器)abradant磨料abrade磨蚀,擦伤abrased glass磨砂玻离,毛玻璃abrasion磨蚀Abrasion Maarks磨耗纹abrasion resistance磨蚀阻力Abrasive磨料abrasive disk(1)研磨盘(2)砂轮abrasive fog磨擦灰雾abrasive grit磨料粒度abrasive hardness研磨硬度,耐磨硬度abrasive material研磨材料abrasive powder研磨粉abrasive slurry of corundum金钢砂磨剂abrasive wear磨蚀,磨损abrideged monochromator 滤色单色仪AbridgedSpectrophotometer筒缩分光光度计abrupt突变、陡变abrupt contrast border突变衬比界,陡变友差界abrupt junction突变结,阶跃结abruption(1)隔断(2)断裂abscissa横坐标absentee layer虚设层absest(=asbestos或asbestus)石棉absolute atmosphere绝对大气压absolute black body绝对黑体absolute brightness绝对亮度absolute calibration绝对校准Absolute Coordinate绝对坐标absolute detector response检测器绝对响应〔值〕absolute deviation绝对偏差absolute error绝对误差absolute index ofrefraction绝对折射率absolute luminance threshold(1)绝对〔光〕亮度阈(2)绝对发光率阈Absolute LuminanceThresshold绝对照明底限absolute measurement绝对测量absolute optical frequency绝对光频测量absolute optimal function绝对最佳函数absolute parallax绝对相位Absolute Purity Thresshold 绝对纯度底限Absolute RefractiveIndex绝对折射率absolute sensitivity绝对灵敏度Absolute Signal Delay绝对信号延时absolute stability(1)绝对稳定性(2)绝对稳定度absolute temperature绝对温度Absolute Temperature Scale 绝对温标Absolute Threshold绝对界限absolute unite绝对单位absolute value绝对值Absolute Vector绝对矢量absolute zero绝对零度absorb(1)吸收(2)减震absorbability可吸收性absorbable可吸收〔的〕Absorbable implant (scleral buckling method)可吸收之植入物(巩膜扣环法) Absorbance吸收率absorbance index(1)吸收性(2)吸收率吸光率,吸光本领absorbed layer被吸收层absorbed power被吸收率absorbent(1)吸收质(2)吸收体absorber(1)吸收器(2)吸收体(3)减震器absorbing apodisation screen吸收切趾屏absorbing crystal吸收晶体absorbing inclusion吸收掺杂absorbing medium吸收媒质absorbing phase strip吸收相位遮板absorbing power吸收本领absorbing sheet吸收片absorbing unidimensional apodisator吸收单维切趾器Absorbing Wedge吸收光劈Absorptance吸收比absorptiometer(1)液体吸收气计(2)吸收比色计absorptiometry吸收测量学Absorption吸收absorption hologram吸收全息图Absorption Attenuator选择性吸收Absorption Band吸收光带absorption capacity吸收本领Absorption Cell吸收匣absorption characteristic 吸收特性Absorption Ciefficient吸收系数absorption coefficient吸收系数absorption colour吸收色absorption control吸收控制Absorption Curve吸收曲线Absorption Discontinuity 间歇吸收absorption dynamometer 吸收功率计absorption edge吸收限absorption effect吸收效应absorption factor吸收因子Absorption Frequency Meter吸收性频率计Absorption Index吸收指数Absorption Indication吸收指示剂Absorption Lens吸收透镜absorption level(1)吸收能级(2)吸收率absorption limit吸收限Absorption Line吸收谱线Absorption Loss吸收损失absorption mean free path吸引平均自由〔路〕程absorption notch吸收凹陷Absorption of Radiation吸收调制Absorption Peak辐射吸收absorption rate吸收率Absorption Selective吸收光谱学Absorption Spectroscopy吸收锋absorption spectrum吸收〔光〕谱absorption wave-meter吸收式波长计absorption-dip(1)吸收〔引起的〕倾斜(2)吸收〔引起的〕凹陷absorption-free materiall无吸收材料absorptive吸收的absorptive lens吸收透镜absorptive power吸收本领absorptive-type modulator吸收型调制器Absorptivety吸收率Absorptivie Attenuator吸收衰减器absorptivity(1)吸收性,吸收能力(2)吸收率abstract code抽像代码abundance(1)丰度(2)分布量abunits(e.m.u.)〔c.g.s〕电磁系单位abut (abutment)(1)支座,支架(2)邻接abvolt〔c.g.s〕电磁系电势单位,绝对伏特(108伏特) AC-powered magnet交流电力式磁铁AC-powered photostimulator交流式光刺激器AC-powered slitlamp biomicroscope交流电力式细隙灯acceleratedphosphorescence加速发磷光accelerating electrode加速电极accelerating lens加速〔电子〕透镜accelerating potential加速〔电〕势差,加速〔电〕位差Accelerating Voltage加速电压Acceleration Space加速空间accelerator(1)加速器(2)〔显影〕促进剂accelerograph自动加速度记录仪Accentuated Contrast加动对反差accentuation(1)加重(2)频率校正(3)对比accentuator(1)加重器(2)频率效正电路Acceptance Angle接受角Acceptance Angle Plotter接受角绘图器Acceptance Cone接受锥体acceptance gauge验收规Acceptance Pattern接受图Acceptor受体acceptor density受主浓度acceptor impurity受主杂质acceptor impurity level受主杂质能级acceptor level受主〔能〕级acceptor site受主〔能〕级access(1)入口通路(2)取数(3)存取(泛指取数或存数) Access Coupler出入偶合器access time存取时间,取数时间access width存取位数accessory零任,附件,附属设备accidental degeneracy随机简并度accidental error偶然误差Accommodation调节,适应Accommodation Limits调节极限accommodometer眼调节计Accomulator蓄信器accumulation(1)累积,积蓄(2)存储accumulation point聚集点accumulative error累积误差accumulator(1)存储器(2)蓄电池(3)累积器accumulator register累加寄存器accuracy(1)准确(2)准确度accuracy grade准确度等级accuracy of test glass玻璃样板准确度acetate base醋纤片基acetate cellulose butyrate 醋酸纤维丁酯Acetate Film醋酸膜acetic醋的acetic acid醋酸acetone丙酮acetonitrile乙青acetophenone photoreduction乙洗苯苯光致还原acetyl cellulose乙洗纤维素acetylene(1)乙炔,电石气(2)双亚乙基achloropsia绿色盲achromat消色差透镜,消色差镜头achromate色盲Achromatic消色差的achromatic coating消色差镀膜Achromatic Color消色色彩achromatic colour无彩色achromatic condenser消色差聚光镜achromatic coronagraph消色差日冕仪achromatic doublet消色差双合透镜achromatic fringe消色差条纹achromatic image消色差块achromatic lens消色差透镜Achromatic Lens, Achromat消色差透镜achromatic light白光,消色差光,无彩〔色〕光achromatic microobjective消色差显微物镜achromatic objective消色差物镜Achromatic Point消色点achromatic prism消色差棱镜achromatic quarter waveplate 消色差四分之一波片achromatic telescope消色差望远镜achromatic triplet消色差三合〔透〕镜achromatic wedge消色差光劈,消色差光楔Achromatism消色差性achromatizarion消色差achromatized〔已〕消色差〔的〕achromatopsia全色盲acicular针状的acicular crystal针状晶体acid酸、酸性的acid developmentacid proof耐酸的acid wash酸洗的acid-free无酸的acidic solution酸溶液acidity(1)酸性(2)酸度acme thread梯型螺纹Acolight音灯acoustic beam deflector 声束偏转器acoustic branch声频支acoustic coupler声音藕合器;音效藕合器Acoustic Delay Line声延迟线acoustic diffraction grating声衍射栅acoustic dispersion声频散acoustic emission wave 声发射波acoustic field声场acoustic hologram声全息图acoustic holographic system声全息系统acoustic holography声全息术acoustic image声像acoustic imaging声成像Acoustic ImpedanceAcoustic Interferometer 声干涉仪acoustic microscopy声显微术Acoustic Radiation Pressure声发射压力acoustic signal声频信号Acoustic Surface Wave 声表面波acoustic surfacewave(ASW)声面波acoustic to optical image converter声光像转换器Acoustic Wave Filter声波滤器acoustic wave propagation声波传播Acoustical Conduction 声导acoustical hologram声波全像体Acoustical Holography 声波全像术Acoustical Units声学单位acoustics(1)声学(2)音质Acousto Photorefractive Effect声光折射效应acousto-optic声光的acousto-optic beam positioning声光束定位acousto-opticBragg-diffraction声光布喇格衍射acousto-optic cavity声光腔acousto-optic cell声光调制器,声光盒Acousto-Optic Deflection声光偏转,声光偏差Acousto-Optic Deflector声光致偏器Acousto-OpticDiffraction声光绕射acousto-optic effect声光效应acousto-optic filter声光滤波器acousto-optic interaction声光相互作用acousto-optic laser声光激光器acousto-optic light deflector 声光偏转器acousto-optic materiall声光材料acousto-opticmode-locker frequency doubler声光锁模倍频器Acousto-Optic Modulation声光调制acousto-optic modulator声光调制器acousto-optic Q-switching声光Q开关acousto-optic scanner声光扫瞄器Acousto-Optic Shutters声光快门acousto-optically tunedlaser声光调谐激光器acousto-photorefractive effect 声光折射效应Acoustooptic Effect声光效应acoustooptics声光学acquiring(1)探测(2)照准(3)瞄准acquisition(1)探测,发现(2)捕获、拦截(3)目标显示acquisition equipment捕获装置actice illumination(1)有源照明(2)主动照明Actinic光化(性)的actinic absorption光化吸收actinic achromatism光化消色差〔性〕Actinic Focus光化焦点Actinic Glass光化玻璃Actinic Radiation光化辐射actinicity(1)光化性(2)光化度actinides铜类元素Actinism光化学actinium(Ac)锕actinochemistry露光化学actinography(1)光能测定仪(2)辐射仪actinology(1)光化学(2)射线化学Actinometer露光计actinometry光能测定术,曝光测定术、光作用测定术actinomorphic辐射对称的actinotherapy射线疗法,放射疗法action(1)作用(2)主动力(3)作用量action photography动态摄影action radius作用半径,有效距离action spectrum作用光谱activate(1)激活、活化(2)起动,触发activated carbon活性碳activated carrier(1)激活载流子(2)激活载体activated silicate glass激活的硅酸盐玻璃activated state激活态,活化态activated switch起动开关activating agent激化剂,活化剂activation(1)激活、活化(2)激发activation center激活中心activation energy激活能activation fiber(1)激栝纤维(2)主动纤维activation of filament灯丝的激活activation of homing进入自动寻的制导状态,接通归航装置Activator活化计activator atom激活原子active(1)主动(2)有效的(3)有源的(4)激活的active area有效面积;有效显示区域active atom激活原子active autofocusing有效自聚集active caity激活腔active carbon活性碳active current有功电流Active Device有源器件active element有源组件active fibre激活〔光学〕纤维active figure control有效图像控制active imaging system主动成像系统active impurity活性杂质Active Infrared System活动红外线系统active infrared tracking system 主动式红外跟踪系统active interferometer有源干涉仪active ion激活离子Active Layer放射层active level激活能级active material激活材料,放射材料Active Medium活性介质active mode-locking主动锁模active network有源网络Active Optical Fiber激活光纤Active Optics主动光件active oxygen活性氧active power有功功率active pulse interferometer主动脉冲干涉仪Active Region放射区active resonator有源共振器active-device有源器件actively mode-locked Nd glass laser主动锁模钕玻离激光器Activity放射性活度,活性activity coefficient激活系数acton(An)锕射气actual image point实际像点actual temperature真实温度actuate作用,开动actuating motor伺服电动机actuating signal作用信号actuation(1)激励(2)起动,传动actuator(1)执行机构、执行组件(2)传运机构(3)激励器acuity锐度,敏度acuity for defocus散焦锐度Acuity, Visual视觉敏锐度Acutance锐度acute angle锐角Acute Bisectrix敏锐二等分角acute exposure短时间强照射acute irradiation急性辐射acuteness锐度adamantine spar刚玉adaptability适应性,适用性Adaptation视觉调整adapter(1)转接器(2)接合器(3)适配器adapter lens接合器透镜adapter sleeve紧定套,接头套〔筒〕,连接套管adaption自适应,配合,匹配adaption brightness自适应亮度adaption level自适应能级adaptive control自适应控制adaptive filter自适应滤光片adaptive laser resonator自适应激光共振器adaptive optical system自适应光学系统Adaptive Optics调适形光件Adaptometer视觉调整计Adaptometer (biophotometer)眼适应时间计adaxial向轴的,近轴的add加,附加addend(1)加数(2)附加物addendum(1)齿顶,齿顶高(2)附录addendum angle(1)齿顶角(伞齿轮的) addendum circle齿顶圆adder(1)加法器,相加器(2)加法电路adder-subtractor加减器addition(1)加,加法(2)附加,补充addition of diffraction patterns衍射图形迭加addition of modes模迭加addition of optical fields光学场迭加addition of wavefronts波阵面迭加,波前迭加additional mirror附加镜additional wave相加波,附加波additive添加物添加剂additive channel可加信道Additive Color Mixing光彩混合Additive Color Process增色处理additive colour加色additive complementary colors〔加色混色的〕补色additive filter附加滤光片additive mixture of colours加色混合additive noise相加噪声additive primaries加色混合的原色additive process加色法additivity相加性,迭加性Additivity of Luminance亮度迭加Address资料储位address hologram地址全息图address read wire地址读出线address write wire地址写入线Addressability安排数据储位的能力Addressability Measure可寻址量度addressable可寻址的addressable memory可寻址存储器Addressable Point可寻址点addressable register可寻址寄存器,可编址寄存器addressing寻址adele赋值矢量adherenceadhesion(1)附着,粘附(2)附着力,粘附力adhesive(1)附着的(2)粘附度adhesive power附着力Adhesives附着剂adiabatic绝热的adiabatic approximation绝热近似〔法〕adiabatic demagnetization 绝热热磁adiabatic ionizationenergy绝热电离能量Adiabatic Laser Colorimetry 绝对雷射色度学adiabatic polarization procedure绝热极化处理Adiabatic Process绝热过程adiabatics绝热曲线adiactinic绝射的,不透光的adiathermanous绝热的,不透红外线的adjacency邻接adjacency effect邻〔接〕效应adjacent agle邻角adjacent resonance相邻信道共振adjacent wave邻波adjoint伴〔随〕可调节的,可调整的,可校准的adjustable angle square活动角尺adjustable bearing可调轴承adjustable bench level可调台式水平仪adjustable cup mount可调杯形座adjustable guide bar可调导杆adjustable lever调节杆adjustable micrometer可调千分尺adjustable slit可调〔狭〕缝adjustable wrench活络板头adjuster(1)调节器(2)调准装置adjusting bracket调节架adjusting screw调节螺丝adjustment调准,配准adjustment range调整范围Adjustment, Interpupillary目眼中心距调整admeasure测量,测定admeasuring apparatus测像仪admission放入,接纳,进气admittance(1)光纳(2)导纳admittance matching(1)光纳匹配(2)导纳匹配admixture(1)掺质,混合(2)混合物ADP二氢磷酸氨adsorbability吸附能力adsorbed film吸附膜adsorbed layer吸附层adsorbent吸附剂adsorption吸附〔作用〕,表面吸收adsorption chromatography吸附色谱〔法〕adsorption effect吸附效应adsorption isotherm吸附等温线adsorption spectrometer 吸附分光计adulterated(1)掺杂的,掺假的(2)低劣的advance in path光程提前量advanced camera高级照相机Advanced Research Projects Agency远景研究计划局部(美国) advancer〔相位〕超前补偿器advancing front前沿advancing wave前进波advertiser信号装置,信号器Advisory Committee of the Radioactivity放射性咨询委员会AE camera自动曝光照相机aeolight〔充气冷阴极〕辉光管aeolotropic crystal各向异性晶体aeolotropism各向异性aeration充气,吹风aerial(1)空气的,气体的(2)空中的,航空的aerial array天线阵Aerial Camera航空照相机Aerial Film航空照相胶卷Aerial Mapping航空写像aerial object航空目标,空中物体Aerial Photogrammetry航空照相测量术aerial photographic survey航空照相测量Aerial Photography航空照相Aerial Photoreconnaissance航空照相勘察aerial radioactivity measurement航空放射性测量Aerial Reconnaissance航空勘察Aerial Survey航空测量aerial tuning天线调谐aeriscope超电摄像管,超光电移像管aero-camera航空照相机航空测量图,航空测图仪Aerocartography航测地图aerochronometer航空精密计时仪aerodynamic flow气动流aerodynamic heat transfer 气动热传递aerodynamic〔al〕气体动力〔学〕的,气动的aerograph(1)无线电报机(2)航空气像仪aerographic film航空摄影胶片aerohypsometer高空测高计aeromagnetic survey航空磁测量aeronautics航空学aeronomy高层大气物理学aerophotogrammetric mapping instrument航测制图仪器aerophotogrammetric survey 航空摄影测量aerophotogrammetry航摄测量术aerophotograph航空摄影aerophotographic camera航空摄影机aerophotography航〔空〕摄〔影〕学,航空照相术aerophysical survey航空物理测量aeroplane飞机航测制图仪aeroscope尘埃计,空中观测〔细菌灰尘收检〕器aerosimplex简单投影测图仪Aerosol气悬体,液悬胶体aerosol droplet悬浮微粒aerosol inhomogeneity 气悬体不均匀性aerosol measurement 气悬体测量aerosol particle analysis 气悬微粒分析aerosol scattering气悬散射aerosol single scattering 气悬体单散射aerosol size distribution 气悬体大小分布aerospace航空空间,宇宙空间aerospace industry航空空间工业,航天工业aerosphere〔生理〕大气层aerosurvey航空测量aerosurveying航〔空〕摄〔影〕测量术aerotar航摄镜头aerothermodynamics空气热力学aerothermoelasticity空气热弹性理论Aerotriangulation航空三角测量aerotron三极管aerovelox小型投影测图仪aeschynite易解石aether(1)以太(2)醚aether drift以太漂移AFC system自动频率控制系统affine collineation仿射共线affine transformation仿射变换affinity(1)类似(2)亲合势(3)仿射性affix(1)添加(2)添加物(3)附标Afocal无焦点竹afocal attachment lens附加望远镜头afocal doublet无焦双透镜afocal imaging system无焦成像系统afocal lens无焦透镜afocal zoom telescope连续变倍望远镜after-current余电流after-effect后效After-Image留像after-schock余震afterburner后然室,补燃器Afterglow余辉afterglow period余辉期afterimage余留成像Afterimage flasher影像后闪光器afterpulsing跟随脉冲aftertreatment后处理against moisture防潮against vibration防震against-the-rule astigmatism反常像散agar琼脂agate玛瑙age-hardening时效硬化ageing时效,老化、陈化ageing oven老化炉agent济Agfacolor阿克发彩色(商名) agglomerating烧结aggregate(1)组合〔的〕,集合〔的〕(2)机组aggregate polarization集合偏振,集偏振化agile missile灵巧导弹aging时效,老化,陈化aging of electroluminescence 电致发光老化aging rate老化率(1)搅拌,搅动(2)激发,激励(3)骚动agitator搅拌器aglow灼热〔的〕,发红〔的〕Ahrens polarizing prism阿伦斯偏振棱镜aid设备,仪器aiming瞄准Aiming Circle方位标定仪aiming device瞄准装置aiming point〔测量〕觇点,瞄准点aiming telescope瞄准望远镜air admittance valve进气阀air agitation空气扰动Air Bearing空气承轴air blast(1)气喷净法(2)喷气(3)喷气器air breathing laser (ABL)吸气式激光器,气动光器air bubble气泡air chuck气动卡盘air cleaner空气调节器air damping空气阻尼Air Dose辐射剂量air filter空过滤器air gapair gauge气动量规air knife coating气刀涂胶法air level〔气泡〕水平仪air light(1)〔空气中〕散射光(2)航空信号埃air micrometer气动测微计air photogrammetricsurvey航〔空〕摄〔影〕测量air pollution measurement with lidar 激光〔雷达〕测大气污染air pollution monitoring空气污染临测air pressure gauge气压计air purge空气纯化air reconnaissance camera航空侦察照相机air seal气封air support bag空气承囊(气胎)air transportable sonar机械声纳air vent通风管,通风孔,排气口air 〔borne〕surveying航空测量,航测air-bag support system空气囊支撑系统air-conditioning system空〔气〕调〔节〕装置air-cored空心的,无铁心的air-defence sightingtelescope防空观测望远镜air-filled thermocouple充气温差电偶air-glass reflection空-玻璃界面反射air-glass surface空气-玻璃界面air-in送气,充气air-locked不透气的,气密的air-map航空图,空中摄影地图air-operated controller气动控制气air-out出气,排气air-pad bag空气垫囊air-proof不透气的,密封的air-pump气泵air-scattered空气散射air-spaced double anastigmat (Celor)双分离对称消像散镜头(赛罗镜头)Air-Spaced Doublet中空双合透镜air-survey camera航测照相机air-to-air identification空对空识别air-to-air intercept空对空拦截air-to-air laser ranging空对空激光测距air-to-ground laser rangefinder空对地激光测距离air-to-ground laser ranging 空对地激光测距Air-to-Ground Phototransmission空对地照片传递系统airborne机载的,航空的airborne electromagnetic survey 航空电磁勘探airborne gaseous laser机载气体激光器airborne gravity survey航空重力测量airborne ir imaging机载红外成像airborne irtransmissometer机载红外透射仪airborne laser radar机载激光雷达airborne laser rangefinder机载激光测距仪airborne laser ranger机载激光测距仪airborne laser tracker(ALT)机载激光跟踪器airborne oceanographic lidar system机载海洋激光雷达系统airborne radioactivitysurvey航空放射性测量airborne remote sensing system机载遥感系统airborne television system机载电影系统airbrake空气制动器,减速板airbrush气笔,喷枪aircraft landing lamp飞机着落信标灯Airglow夜光,气辉airglow emissionairglow intensity大气辉光强度airing(1)通气(2)充气(3)起泡沫airload气动负载airphoto(1)航空摄影(2)航摄相片airscoop进气口,进气道airspace(1)空城(2)空隙airtightness气密〔封〕性airway(1)航路(2)通气孔airy(1)空气的(2)通风的Airy Differential Equation 爱礼微分方程式Airy diffraction disc爱里衍射斑Airy diffraction integral 爱里衍射积分Airy diffraction pattern爱里衍射图样Airy disc爱里〔衍射〕Airy Disk爱礼圆盘图Airy disk radius爱里斑半径Airy point爱里〔支援〕点Airy system爱里系统Airy type objective爱里型物镜aisle通道,走廊Al-clad用铝作覆盖层的alabamine (At)艾alarm(1)警报(2)警报器alarm lamp信号灯Albada finder阿尔巴达寻像器,阿尔巴达瞄准器Albedo反照率albedo radiation(1)反照率辐射(2)辐射反射率albedometer反照率计alcohol酒精,乙醇aldehyde乙醛alexanderson altimeter反射高度计,回波测高计Alexandrite翠绿宝石algebra of matrices〔矩〕阵代数algebraic complement代数余子式algebraic expression代数〔表达〕式Algerithm演算algorithm算法algorithmic language算法语言aliaing version重迭变形alias-type transformation图像固定坐标移动之变换Aliasing假像aliasing error(1)混淆误差(2)重迭误差alibi-type transformation坐标固定图像移动之变换旋标装置,准照仪alidade protractor照准仪量角器alienation coefficient不相关系数,相疏系数align(1)列成一行(2)瞄准目标(3)对准,校直(4)定位,定中心Aligned-Cup Method钟罩互夹定心法aligner准直器,校准器Aligning较轴作业Aligning Chuck镜片对心座Aligning Components of PrismAssemblies棱镜定位法aligning interferometer校直干涉仪alignment(1)校直(2)对准(3)排列alignment axicon校直轴锥镜alignment bracket校直轴支架Alignment Bundle校准纤维束alignment by sight目测准直法alignment chart列线图alignment diagram列线图,算图alignment dock校直坞alignment error校直误差,调准误差Alignment Laser校直雷射,校准用雷射alignment of crystal晶体排列alignment spherealignment target对准目标Alignment Telescope校直望远镜,校准用望远镜alignment-telescope bracket校直望远镜托架alive(1)活的(2)通电流的,加电压的alive circuit带电线路alkali〔强〕咸alkali earth metal咸土金属alkali halide卤化咸alkali metal咸金属alkali-antimonides咸金属锑化物alkali-containing glass含咸玻璃alkali-dimer咸二聚物alkali-halide crystal卤化咸晶体alkali-rich glass (crown)纯咸玻璃(冕牌玻璃) alkaline(1)咸性(2)咸的alkaline earth fluoride咸土氟化物alkaline earth metal咸土金属alkaline high energy battery咸性高能电池组alkaline metal咸金属alkaline treatment咸产处理(1)咸性(2)咸度alkyl iodide烷基碘All Optical Communication全光通信all-dielectric multilayers多层全介电膜all-metal全金属all-pass filter全通滤波器all-purpose computer通用计算器all-purpose instrument通用仪器all-purpose telescope通用望远镜all-supersonic纯超声速的all-transistor camera全晶体管照相机all-weather(1)全天候的(2)耐风雨的allegiance(1)结合,耦合(2)通信,联系(3)键allied Fourier integral同源传里叶积分alligation合法,混合法allochroic变色的,非本色的allochromatic义质色的allochromatic colour义质色allochromatic crystal(1)义质光导性晶体(2)义质色晶体allochromaticphotoconductor义质色光电导体allochromatism掺质色性Allochrometic杂质色的Allogyric Birefringence 异旋双折射allomorph同质异晶allomorphism同质异晶体allotment配置,分配、分配额allotriomorphic crystal 不整形晶体allotrope同素异形性allotropic transformation 同素异形变化allotropism同素异形性allotropy同素异形allotter分配器allowable deviation容许偏差,许用偏差allowable error容许误差allowable exposure容许照射,容许曝光allowable stress容许胁强,容许应力allowable transition容许跃迁allowance(1)容限,公差(2)加工余量allowed band容许带,公差带allowed spectrum容许谱allowed spectrum shape 容许能谱形状alloy合金alloy steel合金钢,特殊钢alloy-junction合金结Alloy-Junction Photocell具合金接头之光电池alloy-junction transistor合金结晶体管allyl diglycol carbonate烯丙基双甘油碳酸盐alnico铝镍钴aloxite (Al2O3)(1)熔融氧化铝(人造刚玉磨料)(2)铝砂alpax铝硅合金alpha meterα射线〔强度〕测量计alpha rayα射线alpha-crystalα晶体alpha-ray spectrographα射线摄谱仪alpha-ray spectrometerα射线光谱仪alpha-ray spectrumα射线谱alphabet laser多掺激光器alphanumeric字母体字的Alphanumeric Reader文数字阅读机alphatronα电离真空计,α粒子电离压力计alsimag铝硅镁合金(一种高频绝缘材料)alt-alt telescope mounting卧轴–卧轴型望远镜安装结构alt-azimuth(1)地平经纬仪(2)地平〔式〕装置alt-azimuth telescopemounting卧轴–竖轴型望远镜安装结构Altazimuth望远镜头调整器alternate matrix交错〔矩〕阵alternate partial polarizerfilter交变部分偏振滤光器alternate-line scanning隔行扫瞄alternately dark and bright rings 明暗相间的环alternating current (a.c.)交流电alternating currentamplifier交流放大器alternating current generator交流发电机alternating currentmachine交流机alternating current motor交流发电机alternating current transformer 交流变压器alternating current tube交流〔电子〕管alternating displacement交变位移alternating electromotive force 交变电动势alternating light method两光交换法alternating motion往复运动alternating quantity(1)变量,交变量(2)交错量alternating voltage交流电压alternating-gradientfocusing principle交变陡度聚焦原理alternating-gradient lens交变陡度透镜alternating-gradient magnetic focusing交变陡度磁聚焦alternation交替,变换,交流alternator交流发电机altimeter高度计,测高仪altitude(1)地平纬度(2)高度,海拔altitude circle(1)竖直度盘(2)地平经圈altitude gauge测高计Altman modification阿特曼改进型〔目录〕altrashort pulse超短脉冲alum明矾alum glass明矾晶alumel镍铝锰合金(高温热电偶材料) alumina铝土,矾土alumina borosilicate glass硼硅酸铝玻璃aluminium (AL)铝aluminium alloy铝合金aluminium antimonide锑化铝aluminium arsenide砷化铝aluminium backing铝垫片,铝底座aluminium coating铝膜aluminium foil lamp铝箔灯aluminium mirror coating铝反射膜aluminium oxide氧化铝(Al2O3)aluminium oxide crucible氧化铝坩埚aluminium paint铝涂料,铝涂层,铝〔银灰〕漆aluminium-coated Pyrex镀铝荧光屏aluminium-oxygen group铝氧族Aluminized Cathode-RayTube镀铝阴极射线管aluminized mirror镀铝镜Aluminizing铝化alundum三氧化二铝(Al2O3),刚铝砂(磨料),铝氧粉Alzac method电解光辉法(制造铝反射镜的)Alzac reflector铝制金属反射镜Alzak aluminium铝制金属友射镜AM Dector调富检波Am-cw laser ranging连续波调幅激光测距Am-Pm conversion调幅–调相变换Am-Pm discriminator调幅–调相鉴频器amagat阿马伽(0℃,1大气压下的气体的密度单位。
数字无线通信系统中的调制(英文)
AgilentDigital Modulation in Communications Systems—An IntroductionApplication Note 1298This application note introduces the concepts of digital modulation used in many communications systems today. Emphasis is placed on explaining the tradeoffs that are made to optimize efficiencies in system design.Most communications systems fall into one of three categories: bandwidth efficient, power efficient, or cost efficient. Bandwidth efficiency describes the ability of a modulation scheme to accommodate data within a limited bandwidth. Power efficiency describes the ability of the system to reliably send information at the lowest practical power level.In most systems, there is a high priority on band-width efficiency. The parameter to be optimized depends on the demands of the particular system, as can be seen in the following two examples.For designers of digital terrestrial microwave radios, their highest priority is good bandwidth efficiency with low bit-error-rate. They have plenty of power available and are not concerned with power efficiency. They are not especially con-cerned with receiver cost or complexity because they do not have to build large numbers of them. On the other hand, designers of hand-held cellular phones put a high priority on power efficiency because these phones need to run on a battery. Cost is also a high priority because cellular phones must be low-cost to encourage more users. Accord-ingly, these systems sacrifice some bandwidth efficiency to get power and cost efficiency. Every time one of these efficiency parameters (bandwidth, power, or cost) is increased, another one decreases, becomes more complex, or does not perform well in a poor environment. Cost is a dom-inant system priority. Low-cost radios will always be in demand. In the past, it was possible to make a radio low-cost by sacrificing power and band-width efficiency. This is no longer possible. The radio spectrum is very valuable and operators who do not use the spectrum efficiently could lose their existing licenses or lose out in the competition for new ones. These are the tradeoffs that must be considered in digital RF communications design. This application note covers•the reasons for the move to digital modulation;•how information is modulated onto in-phase (I) and quadrature (Q) signals;•different types of digital modulation;•filtering techniques to conserve bandwidth; •ways of looking at digitally modulated signals;•multiplexing techniques used to share the transmission channel;•how a digital transmitter and receiver work;•measurements on digital RF communications systems;•an overview table with key specifications for the major digital communications systems; and •a glossary of terms used in digital RF communi-cations.These concepts form the building blocks of any communications system. If you understand the building blocks, then you will be able to under-stand how any communications system, present or future, works.Introduction25 5 677 7 8 8 9 10 10 1112 12 12 13 14 14 15 15 16 17 18 19 20 21 22 22 23 23 24 25 26 27 28 29 29 30 311. Why Digital Modulation?1.1 Trading off simplicity and bandwidth1.2 Industry trends2. Using I/Q Modulation (Amplitude and Phase Control) to Convey Information2.1 Transmitting information2.2 Signal characteristics that can be modified2.3 Polar display—magnitude and phase representedtogether2.4 Signal changes or modifications in polar form2.5 I/Q formats2.6 I and Q in a radio transmitter2.7 I and Q in a radio receiver2.8 Why use I and Q?3. Digital Modulation Types and Relative Efficiencies3.1 Applications3.1.1 Bit rate and symbol rate3.1.2 Spectrum (bandwidth) requirements3.1.3 Symbol clock3.2 Phase Shift Keying (PSK)3.3 Frequency Shift Keying3.4 Minimum Shift Keying (MSK)3.5 Quadrature Amplitude Modulation (QAM)3.6 Theoretical bandwidth efficiency limits3.7 Spectral efficiency examples in practical radios3.8 I/Q offset modulation3.9 Differential modulation3.10 Constant amplitude modulation4. Filtering4.1 Nyquist or raised cosine filter4.2 Transmitter-receiver matched filters4.3 Gaussian filter4.4 Filter bandwidth parameter alpha4.5 Filter bandwidth effects4.6 Chebyshev equiripple FIR (finite impulse response) filter4.7 Spectral efficiency versus power consumption5. Different Ways of Looking at a Digitally Modulated Signal Time and Frequency Domain View5.1 Power and frequency view5.2 Constellation diagrams5.3 Eye diagrams5.4 Trellis diagramsTable of Contents332 32 32 33 33 34 3435 35 3637 37 37 38 38 39 39 39 40 41 41 42 434344466. Sharing the Channel6.1 Multiplexing—frequency6.2 Multiplexing—time6.3 Multiplexing—code6.4 Multiplexing—geography6.5 Combining multiplexing modes6.6 Penetration versus efficiency7. How Digital Transmitters and Receivers Work7.1 A digital communications transmitter7.2 A digital communications receiver8. Measurements on Digital RF Communications Systems 8.1 Power measurements8.1.1 Adjacent Channel Power8.2 Frequency measurements8.2.1 Occupied bandwidth8.3 Timing measurements8.4 Modulation accuracy8.5 Understanding Error Vector Magnitude (EVM)8.6 Troubleshooting with error vector measurements8.7 Magnitude versus phase error8.8 I/Q phase error versus time8.9 Error Vector Magnitude versus time8.10 Error spectrum (EVM versus frequency)9. Summary10. Overview of Communications Systems11. Glossary of TermsTable of Contents (continued)4The move to digital modulation provides more information capacity, compatibility with digital data services, higher data security, better quality communications, and quicker system availability. Developers of communications systems face these constraints:•available bandwidth•permissible power•inherent noise level of the systemThe RF spectrum must be shared, yet every day there are more users for that spectrum as demand for communications services increases. Digital modulation schemes have greater capacity to con-vey large amounts of information than analog mod-ulation schemes. 1.1 Trading off simplicity and bandwidthThere is a fundamental tradeoff in communication systems. Simple hardware can be used in transmit-ters and receivers to communicate information. However, this uses a lot of spectrum which limits the number of users. Alternatively, more complex transmitters and receivers can be used to transmit the same information over less bandwidth. The transition to more and more spectrally efficient transmission techniques requires more and more complex hardware. Complex hardware is difficult to design, test, and build. This tradeoff exists whether communication is over air or wire, analog or digital.Figure 1. The Fundamental Tradeoff1. Why Digital Modulation?51.2 Industry trendsOver the past few years a major transition has occurred from simple analog Amplitude Mod-ulation (AM) and Frequency/Phase Modulation (FM/PM) to new digital modulation techniques. Examples of digital modulation include•QPSK (Quadrature Phase Shift Keying)•FSK (Frequency Shift Keying)•MSK (Minimum Shift Keying)•QAM (Quadrature Amplitude Modulation) Another layer of complexity in many new systems is multiplexing. Two principal types of multiplex-ing (or “multiple access”) are TDMA (Time Division Multiple Access) and CDMA (Code Division Multiple Access). These are two different ways to add diversity to signals allowing different signals to be separated from one another.Figure 2. Trends in the Industry62.1 Transmitting informationTo transmit a signal over the air, there are three main steps:1.A pure carrier is generated at the transmitter.2.The carrier is modulated with the informationto be transmitted. Any reliably detectablechange in signal characteristics can carryinformation.3.At the receiver the signal modifications orchanges are detected and demodulated.2.2 Signal characteristics that can be modified There are only three characteristics of a signal that can be changed over time: amplitude, phase, or fre-quency. However, phase and frequency are just dif-ferent ways to view or measure the same signal change. In AM, the amplitude of a high-frequency carrier signal is varied in proportion to the instantaneous amplitude of the modulating message signal.Frequency Modulation (FM) is the most popular analog modulation technique used in mobile com-munications systems. In FM, the amplitude of the modulating carrier is kept constant while its fre-quency is varied by the modulating message signal.Amplitude and phase can be modulated simultane-ously and separately, but this is difficult to gener-ate, and especially difficult to detect. Instead, in practical systems the signal is separated into another set of independent components: I(In-phase) and Q(Quadrature). These components are orthogonal and do not interfere with each other.Figure 3. Transmitting Information (Analog or Digital)Figure 4. Signal Characteristics to Modify2. Using I/Q Modulation to Convey Information72.3 Polar display—magnitude and phase repre-sented togetherA simple way to view amplitude and phase is with the polar diagram. The carrier becomes a frequency and phase reference and the signal is interpreted relative to the carrier. The signal can be expressed in polar form as a magnitude and a phase. The phase is relative to a reference signal, the carrier in most communication systems. The magnitude is either an absolute or relative value. Both are used in digital communication systems. Polar diagrams are the basis of many displays used in digital com-munications, although it is common to describe the signal vector by its rectangular coordinates of I (In-phase) and Q(Quadrature).2.4 Signal changes or modifications inpolar formFigure 6 shows different forms of modulation in polar form. Magnitude is represented as the dis-tance from the center and phase is represented as the angle.Amplitude modulation (AM) changes only the magnitude of the signal. Phase modulation (PM) changes only the phase of the signal. Amplitude and phase modulation can be used together. Frequency modulation (FM) looks similar to phase modulation, though frequency is the controlled parameter, rather than relative phase.Figure 6. Signal Changes or Modifications8One example of the difficulties in RF design can be illustrated with simple amplitude modulation. Generating AM with no associated angular modula-tion should result in a straight line on a polar display. This line should run from the origin to some peak radius or amplitude value. In practice, however, the line is not straight. The amplitude modulation itself often can cause a small amount of unwanted phase modulation. The result is a curved line. It could also be a loop if there is any hysteresis in the system transfer function. Some amount of this distortion is inevitable in any sys-tem where modulation causes amplitude changes. Therefore, the degree of effective amplitude modu-lation in a system will affect some distortion parameters.2.5 I/Q formatsIn digital communications, modulation is often expressed in terms of I and Q. This is a rectangular representation of the polar diagram. On a polar diagram, the I axis lies on the zero degree phase reference, and the Q axis is rotated by 90 degrees. The signal vector’s projection onto the I axis is its “I” component and the projection onto the Q axisis its “Q” component.Figure 7. “I-Q” Format92.6 I and Q in a radio transmitterI/Q diagrams are particularly useful because they mirror the way most digital communications sig-nals are created using an I/Q modulator. In the transmitter, I and Q signals are mixed with the same local oscillator (LO). A 90 degree phase shifter is placed in one of the LO paths. Signals that are separated by 90 degrees are also known as being orthogonal to each other or in quadrature. Signals that are in quadrature do not interfere with each other. They are two independent compo-nents of the signal. When recombined, they are summed to a composite output signal. There are two independent signals in I and Q that can be sent and received with simple circuits. This simpli-fies the design of digital radios. The main advan-tage of I/Q modulation is the symmetric ease of combining independent signal components into a single composite signal and later splitting such a composite signal into its independent component parts. 2.7 I and Q in a radio receiverThe composite signal with magnitude and phase (or I and Q) information arrives at the receiver input. The input signal is mixed with the local oscillator signal at the carrier frequency in two forms. One is at an arbitrary zero phase. The other has a 90 degree phase shift. The composite input signal (in terms of magnitude and phase) is thus broken into an in-phase, I, and a quadrature, Q, component. These two components of the signal are independent and orthogonal. One can be changed without affecting the other. Normally, information cannot be plotted in a polar format and reinterpreted as rectangular values without doing a polar-to-rectangular conversion. This con-version is exactly what is done by the in-phase and quadrature mixing processes in a digital radio. A local oscillator, phase shifter, and two mixers can perform the conversion accurately and efficiently.Figure 8. I and Q in a Practical Radio Transmitter Figure 9. I and Q in a Radio Receiver102.8 Why use I and Q?Digital modulation is easy to accomplish with I/Q modulators. Most digital modulation maps the data to a number of discrete points on the I/Q plane. These are known as constellation points. As the sig-nal moves from one point to another, simultaneous amplitude and phase modulation usually results. To accomplish this with an amplitude modulator and a phase modulator is difficult and complex. It is also impossible with a conventional phase modu-lator. The signal may, in principle, circle the origin in one direction forever, necessitating infinite phase shifting capability. Alternatively, simultaneous AM and Phase Modulation is easy with an I/Q modulator. The I and Q control signals are bounded, but infi-nite phase wrap is possible by properly phasing the I and Q signals.This section covers the main digital modulation formats, their main applications, relative spectral efficiencies, and some variations of the main modulation types as used in practical systems. Fortunately, there are a limited number of modula-tion types which form the building blocks of any system.3.1 ApplicationsThe table below covers the applications for differ-ent modulation formats in both wireless communi-cations and video. Although this note focuses on wireless communica-tions, video applications have also been included in the table for completeness and because of their similarity to other wireless communications.3.1.1 Bit rate and symbol rateTo understand and compare different modulation format efficiencies, it is important to first under-stand the difference between bit rate and symbol rate. The signal bandwidth for the communications channel needed depends on the symbol rate, not on the bit rate.Symbol rate =bit ratethe number of bits transmitted with each symbol 3. Digital Modulation Types and Relative EfficienciesBit rate is the frequency of a system bit stream. Take, for example, a radio with an 8 bit sampler, sampling at 10 kHz for voice. The bit rate, the basic bit stream rate in the radio, would be eight bits multiplied by 10K samples per second, or 80 Kbits per second. (For the moment we will ignore the extra bits required for synchronization, error correction, etc.)Figure 10 is an example of a state diagram of a Quadrature Phase Shift Keying (QPSK) signal. The states can be mapped to zeros and ones. This is a common mapping, but it is not the only one. Any mapping can be used.The symbol rate is the bit rate divided by the num-ber of bits that can be transmitted with each sym-bol. If one bit is transmitted per symbol, as with BPSK, then the symbol rate would be the same as the bit rate of 80 Kbits per second. If two bits are transmitted per symbol, as in QPSK, then the sym-bol rate would be half of the bit rate or 40 Kbits per second. Symbol rate is sometimes called baud rate. Note that baud rate is not the same as bit rate. These terms are often confused. If more bits can be sent with each symbol, then the same amount of data can be sent in a narrower spec-trum. This is why modulation formats that are more complex and use a higher number of states can send the same information over a narrower piece of the RF spectrum.3.1.2 Spectrum (bandwidth) requirementsAn example of how symbol rate influences spec-trum requirements can be seen in eight-state Phase Shift Keying (8PSK). It is a variation of PSK. There are eight possible states that the signal can transi-tion to at any time. The phase of the signal can take any of eight values at any symbol time. Since 23= 8, there are three bits per symbol. This means the symbol rate is one third of the bit rate. This is relatively easy to decode.Figure 10. Bit Rate and Symbol Rate Figure 11. Spectrum Requirements3.1.3 Symbol ClockThe symbol clock represents the frequency and exact timing of the transmission of the individual symbols. At the symbol clock transitions, the trans-mitted carrier is at the correct I/Q(or magnitude/ phase) value to represent a specific symbol (a specific point in the constellation).3.2 Phase Shift KeyingOne of the simplest forms of digital modulation is binary or Bi-Phase Shift Keying (BPSK). One appli-cation where this is used is for deep space teleme-try. The phase of a constant amplitude carrier sig-nal moves between zero and 180 degrees. On an I and Q diagram, the I state has two different values. There are two possible locations in the state dia-gram, so a binary one or zero can be sent. The symbol rate is one bit per symbol.A more common type of phase modulation is Quadrature Phase Shift Keying (QPSK). It is used extensively in applications including CDMA (Code Division Multiple Access) cellular service, wireless local loop, Iridium (a voice/data satellite system) and DVB-S (Digital Video Broadcasting — Satellite). Quadrature means that the signal shifts between phase states which are separated by 90 degrees. The signal shifts in increments of 90 degrees from 45 to 135, –45, or –135 degrees. These points are chosen as they can be easily implemented using an I/Q modulator. Only two I values and two Q values are needed and this gives two bits per symbol. There are four states because 22= 4. It is therefore a more bandwidth-efficient type of modulation than BPSK, potentially twice as efficient.Figure 12. Phase Shift Keying3.3 Frequency Shift KeyingFrequency modulation and phase modulation are closely related. A static frequency shift of +1 Hz means that the phase is constantly advancing at the rate of 360 degrees per second (2 πrad/sec), relative to the phase of the unshifted signal.FSK (Frequency Shift Keying) is used in many applications including cordless and paging sys-tems. Some of the cordless systems include DECT (Digital Enhanced Cordless Telephone) and CT2 (Cordless Telephone 2).In FSK, the frequency of the carrier is changed as a function of the modulating signal (data) being transmitted. Amplitude remains unchanged. In binary FSK (BFSK or 2FSK), a “1” is represented by one frequency and a “0” is represented by another frequency.3.4 Minimum Shift KeyingSince a frequency shift produces an advancing or retarding phase, frequency shifts can be detected by sampling phase at each symbol period. Phase shifts of (2N + 1) π/2radians are easily detected with an I/Q demodulator. At even numbered sym-bols, the polarity of the I channel conveys the transmitted data, while at odd numbered symbols the polarity of the Q channel conveys the data. This orthogonality between I and Q simplifies detection algorithms and hence reduces power con-sumption in a mobile receiver. The minimum fre-quency shift which yields orthogonality of I and Q is that which results in a phase shift of ±π/2radi-ans per symbol (90 degrees per symbol). FSK with this deviation is called MSK (Minimum Shift Keying). The deviation must be accurate in order to generate repeatable 90 degree phase shifts. MSK is used in the GSM (Global System for Mobile Communications) cellular standard. A phase shift of +90 degrees represents a data bit equal to “1,”while –90 degrees represents a “0.” The peak-to-peak frequency shift of an MSK signal is equal to one-half of the bit rate.FSK and MSK produce constant envelope carrier signals, which have no amplitude variations. This is a desirable characteristic for improving the power efficiency of transmitters. Amplitude varia-tions can exercise nonlinearities in an amplifier’s amplitude-transfer function, generating spectral regrowth, a component of adjacent channel power. Therefore, more efficient amplifiers (which tend to be less linear) can be used with constant-envelope signals, reducing power consumption.Figure 13. Frequency Shift KeyingMSK has a narrower spectrum than wider devia-tion forms of FSK. The width of the spectrum is also influenced by the waveforms causing the fre-quency shift. If those waveforms have fast transi-tions or a high slew rate, then the spectrumof the transmitter will be broad. In practice, the waveforms are filtered with a Gaussian filter, resulting in a narrow spectrum. In addition, the Gaussian filter has no time-domain overshoot, which would broaden the spectrum by increasing the peak deviation. MSK with a Gaussian filter is termed GMSK (Gaussian MSK).3.5 Quadrature Amplitude ModulationAnother member of the digital modulation family is Quadrature Amplitude Modulation (QAM). QAM is used in applications including microwave digital radio, DVB-C (Digital Video Broadcasting—Cable), and modems.In 16-state Quadrature Amplitude Modulation (16QAM), there are four I values and four Q values. This results in a total of 16 possible states for the signal. It can transition from any state to any other state at every symbol time. Since 16 = 24, four bits per symbol can be sent. This consists of two bits for I and two bits for Q. The symbol rate is one fourth of the bit rate. So this modulation format produces a more spectrally efficient transmission. It is more efficient than BPSK, QPSK, or 8PSK. Note that QPSK is the same as 4QAM.Another variation is 32QAM. In this case there are six I values and six Q values resulting in a total of 36 possible states (6x6=36). This is too many states for a power of two (the closest power of two is 32). So the four corner symbol states, which take the most power to transmit, are omitted. This reduces the amount of peak power the transmitter has to generate. Since 25= 32, there are five bits per sym-bol and the symbol rate is one fifth of the bit rate. The current practical limits are approximately256QAM, though work is underway to extend the limits to 512 or 1024 QAM. A 256QAM system uses 16 I-values and 16 Q-values, giving 256 possible states. Since 28= 256, each symbol can represent eight bits. A 256QAM signal that can send eight bits per symbol is very spectrally efficient. However, the symbols are very close together and are thus more subject to errors due to noise and distortion. Such a signal may have to be transmit-ted with extra power (to effectively spread the symbols out more) and this reduces power efficiency as compared to simpler schemes.Figure 14. Quadrature Amplitude ModulationCompare the bandwidth efficiency when using256QAM versus BPSK modulation in the radio example in section 3.1.1 (which uses an eight-bit sampler sampling at 10 kHz for voice). BPSK uses80 Ksymbols-per-second sending 1 bit per symbol.A system using 256QAM sends eight bits per sym-bol so the symbol rate would be 10 Ksymbols per second. A 256QAM system enables the same amount of information to be sent as BPSK using only one eighth of the bandwidth. It is eight times more bandwidth efficient. However, there is a tradeoff. The radio becomes more complex and is more susceptible to errors caused by noise and dis-tortion. Error rates of higher-order QAM systems such as this degrade more rapidly than QPSK as noise or interference is introduced. A measureof this degradation would be a higher Bit Error Rate (BER).In any digital modulation system, if the input sig-nal is distorted or severely attenuated the receiver will eventually lose symbol lock completely. If the receiver can no longer recover the symbol clock, it cannot demodulate the signal or recover any infor-mation. With less degradation, the symbol clock can be recovered, but it is noisy, and the symbol locations themselves are noisy. In some cases, a symbol will fall far enough away from its intended position that it will cross over to an adjacent posi-tion. The I and Q level detectors used in the demodulator would misinterpret such a symbol as being in the wrong location, causing bit errors. QPSK is not as efficient, but the states are much farther apart and the system can tolerate a lot more noise before suffering symbol errors. QPSK has no intermediate states between the four corner-symbol locations, so there is less opportunity for the demodulator to misinterpret symbols. QPSK requires less transmitter power than QAM to achieve the same bit error rate.3.6 Theoretical bandwidth efficiency limits Bandwidth efficiency describes how efficiently the allocated bandwidth is utilized or the ability of a modulation scheme to accommodate data, within a limited bandwidth. The table below shows the theoretical bandwidth efficiency limits for the main modulation types. Note that these figures cannot actually be achieved in practical radios since they require perfect modulators, demodula-tors, filter, and transmission paths.If the radio had a perfect (rectangular in the fre-quency domain) filter, then the occupied band-width could be made equal to the symbol rate.Techniques for maximizing spectral efficiency include the following:•Relate the data rate to the frequency shift (as in GSM).•Use premodulation filtering to reduce the occupied bandwidth. Raised cosine filters,as used in NADC, PDC, and PHS, give thebest spectral efficiency.•Restrict the types of transitions.Modulation Theoretical bandwidthformat efficiencylimitsMSK 1bit/second/HzBPSK 1bit/second/HzQPSK 2bits/second/Hz8PSK 3bits/second/Hz16 QAM 4 bits/second/Hz32 QAM 5 bits/second/Hz64 QAM 6 bits/second/Hz256 QAM 8 bits/second/HzEffects of going through the originTake, for example, a QPSK signal where the normalized value changes from 1, 1 to –1, –1. When changing simulta-neously from I and Q values of +1 to I and Q values of –1, the signal trajectory goes through the origin (the I/Q value of 0,0). The origin represents 0 carrier magnitude. A value of 0 magnitude indicates that the carrier amplitude is 0 for a moment.Not all transitions in QPSK result in a trajectory that goes through the origin. If I changes value but Q does not (or vice-versa) the carrier amplitude changes a little, but it does not go through zero. Therefore some symbol transi-tions will result in a small amplitude variation, while others will result in a very large amplitude variation. The clock-recovery circuit in the receiver must deal with this ampli-tude variation uncertainty if it uses amplitude variations to align the receiver clock with the transmitter clock. Spectral regrowth does not automatically result from these trajectories that pass through or near the origin. If the amplifier and associated circuits are perfectly linear, the spectrum (spectral occupancy or occupied bandwidth) will be unchanged. The problem lies in nonlinearities in the circuits.A signal which changes amplitude over a very large range will exercise these nonlinearities to the fullest extent. These nonlinearities will cause distortion products. In con-tinuously modulated systems they will cause “spectral regrowth” or wider modulation sidebands (a phenomenon related to intermodulation distortion). Another term which is sometimes used in this context is “spectral splatter.”However this is a term that is more correctly used in asso-ciation with the increase in the bandwidth of a signal caused by pulsing on and off.3.7 Spectral efficiency examples inpractical radiosThe following examples indicate spectral efficien-cies that are achieved in some practical radio systems.The TDMA version of the North American Digital Cellular (NADC) system, achieves a 48 Kbits-per-second data rate over a 30 kHz bandwidth or 1.6 bits per second per Hz. It is a π/4 DQPSK based system and transmits two bits per symbol. The theoretical efficiency would be two bits per second per Hz and in practice it is 1.6 bits per second per Hz.Another example is a microwave digital radio using 16QAM. This kind of signal is more susceptible to noise and distortion than something simpler such as QPSK. This type of signal is usually sent over a direct line-of-sight microwave link or over a wire where there is very little noise and interference. In this microwave-digital-radio example the bit rate is 140 Mbits per second over a very wide bandwidth of 52.5 MHz. The spectral efficiency is 2.7 bits per second per Hz. To implement this, it takes a very clear line-of-sight transmission path and a precise and optimized high-power transceiver.。
天文学专业词汇英汉对照
absolute energy distribution 绝对能量分布abundance effect 丰度效应angular diameter—redshift relation 角径—红移关系asteroid astrometry 小行星天体测量bursting pulsar (GRO J1744-28 )暴态脉冲星Caliban 天卫十七canonical Big Bang 典型大爆炸Cepheid binary 造父双星CH anomaly CH 反常chromospheric plage 色球谱斑circumnuclear star-forming ring 核周产星环circumstellar astrophysics 星周天体物理CN anomaly CN 反常colliding-wind binary 星风互撞双星collisional de-excitation 碰撞去激发collisional ionization 碰撞电离collision line broadening 碰撞谱线致宽Compton loss 康普顿耗损continuous opacity 连续不透明度coronagraphic camera 日冕照相机coronal active region 日冕活动区cosmic-ray exposure age 宇宙线曝射法年龄count—magnitude relation 计数—星等关系Cousins color system 卡曾斯颜色系统dating method 纪年法DDO color system DDO 颜色系统deep sky object 深空天体deep sky phenomena 深空天象dense star cluster 稠密星团diagnostics 诊断法dissociative recombination 离解复合Doppler line broadening 多普勒谱线致宽epicyclic orbit 本轮轨道extragalactic background 河外背景extragalactic background radiation 河外背景辐射flare particle emission 耀斑粒子发射flare physics 耀斑物理Fm star Fm 星focal plane spectrometer 焦面分光计focusing X-ray telescope 聚焦X 射线望远镜Friedmann time 弗里德曼时间galactic chimney 星系通道Galactic chimney 银河系通道gas relention age 气体变异法年龄Gauss line profile 高斯谱线轮廓GCR (Galactic cosmic rays )银河系宇宙线Geneva color system 日内瓦颜色系统global oscilletion 全球振荡GW-Vir instability strip 室女GW 不稳定带Highly Advanced Laboratory for 〈HALCA〉通讯和天文高新空间Communications and Astronomy 实验室(HALCA )Hipparcos catalogue 依巴谷星表Hobby-Eberly Telescope (HET )〈HET〉大型拼镶镜面望远镜Hoyle—Narlikar cosmology 霍伊尔—纳里卡宇宙学Hubble Deep Field (HDF )哈勃深空区human space flight 载人空间飞行、人上天imaging spectrograph 成象摄谱仪infrared camera 红外照相机infrared luminosity 红外光度infrared polarimetry 红外偏振测量in-situ acceleration 原位加速intercept age 截距法年龄inverse Compton limit 逆康普顿极限isochron age 等龄线法年龄Johnson color system 约翰逊颜色系统K giant variable (KGV )K 型巨变星kinetic equilibrium 运动学平衡large-scale beam 大尺度射束large-scale jet 大尺度喷流limb polarization 临边偏振line-profile variable 谱线轮廓变星long term fluctuation 长期起伏Lorentz line profile 洛伦兹谱线轮廓magnetic arm 磁臂Mars globe 火星仪massive black hole 大质量黑洞mean extinction coefficient 平均消光系数mean luminosity density 平均光度密度microwave storm 微波噪暴Milli-Meter Array (MMA )〈MMA〉毫米波射电望远镜阵molecular maser 分子微波激射、分子脉泽moving atmosphere 动态大气neutrino loss rate 中微子耗损率non-linear astronomy 非线性天文non-standard model 非标准模型passband width 带宽P Cygni type star 天鹅P 型星Perseus chimney 英仙通道planetary companion 似行星伴天体plateau phase 平台阶段primordial abundance 原始丰度protobinary system 原双星proto-brown dwarf 原褐矮星quiescent galaxy 宁静星系radiation transport 辐射转移radio-intermediate quasar 中介射电类星体random peculiar motion 随机本动relative energy distribution 相对能量分布RGU color system RGU 颜色系统ringed barred galaxy 有环棒旋星系ringed barred spiral galaxy 有环棒旋星系rise phase 上升阶段Rossi X-ray Timing Explorer (RXTE )〈RXTE〉X 射线时变探测器RQPNMLK color system RQPNMLK 颜色系统Scheuer—Readhead hypothesis 朔伊尔—里德黑德假说Serpens molecular cloud 巨蛇分子云soft X-ray transient (SXT )软X 射线暂现源solar dynamo 太阳发电机solar global parameter 太阳整体参数solar neighbourhood 太阳附近空间spectral catalogue 光谱表spectral duplicity 光谱成双性star-formation process 产星过程star-forming phase 产星阶段Stroemgren color system 颜色系统Sub-Millimeter Array (SMA )〈SMA〉亚毫米波射电望远镜阵superassociation 超级星协supermassive black hole 特大质量黑洞supersoft X-ray source 超软X 射线源super-star cluster 超级星团Sycorax 天卫十七symbiotic recurrent nova 共生再发新星synchrotron loss 同步加速耗损time dilation 时间扩展tired-light model 光线老化宇宙模型tremendous outburst amplitude 巨爆幅tremendous outburst amplitude dwarf 巨爆幅矮新星nova (TOAD )Tycho catalogue 第谷星表UBV color system UBV 颜色系统UBVRI color system UBVRI 颜色系统ultraviolet luminosity 紫外光度unrestricted orbit 无限制性轨道uvby color system uvby 颜色系统VBLUW color system VBLUW 颜色系统V enus globe 金星仪Vilnius color system 维尔纽斯颜色系统Virgo galaxy cluster 室女星系团VLBA (Very Long Baseline Array )〈VLBA〉甚长基线射电望远镜阵V oigt line profile 佛克特谱线轮廓VRI color system VRI 颜色系统Walraven color system 沃尔拉文颜色系统waning crescent 残月waning gibbous 亏凸月waxing crescent 娥眉月waxing gibbous 盈凸月WBVR color system WBVR 颜色系统Wood color system 伍德颜色系统zodiacal light photometry 黄道光测光11-year solar cycle 11 年太阳周αCygni variable 天津四型变星δDoradus variable 剑鱼δ型变星Vainu Bappu Observatory 巴普天文台variable-velocity star 视向速度变星vectorial astrometry 矢量天体测量vector-point diagram 矢点图V ega 〈维佳〉行星际探测器V ega phenomenon 织女星现象velocity variable 视向速度变星V enera 〈金星〉号行星际探测器very strong-lined giant, VSL giant 甚强线巨星very strong-lined star, VSL star 甚强线星video astronomy 录象天文viewfinder 寻星镜Viking 〈海盗〉号火星探测器virial coefficient 位力系数virial equilibrium 位力平衡virial radius 位力半径virial temperature 位力温度virtual phase CCD 虚相CCDvisible arm 可见臂visible component 可见子星visual star 光学星VLT, Very Large Telescope 甚大望远镜void 巨洞V ondrak method 冯德拉克方法V oyager 〈旅行者〉号行星际探测器VSOP, VLBI Space Observatory 空间甚长基线干涉测量Programme 天文台计划wave-front sensor 波前传感器weak-line T Tauri star 弱线金牛T 型星Wesselink mass 韦塞林克质量WET, Whole Earth Telescope 全球望远镜WHT, William Herschel Telescope 〈赫歇尔〉望远镜wide-angle eyepiece 广角目镜wide binary galaxy 远距双重星系wide visual binary 远距目视双星Wild Duck cluster (M 11 )野鸭星团Wind 〈风〉太阳风和地球外空磁层探测器WIRE, Wide-field Infrared Explorer 〈WIRE〉广角红外探测器WIYN Telescope, Wisconsin-Indiana- 〈WIYN〉望远镜Yale-NOAO TelescopeWR nebula, Wolf-Rayet nebula WR 星云Wyoming Infrared Telescope 怀俄明红外望远镜xenobiology 外空生物学XMM, X-ray Mirror Mission X 射线成象望远镜X-ray corona X 射线冕X-ray eclipse X 射线食X-ray halo X 射线晕XTE, X-ray Timing Explorer X 射线计时探测器yellow straggler 黄离散星Yohkoh 〈阳光〉太阳探测器young stellar object (YSO )年轻恒星体ZAHB, zero-age horizontal branch 零龄水平支Zanstra temperature 赞斯特拉温度ZZ Ceti star 鲸鱼ZZ 型星γ-ray burster (GRB )γ射线暴源γ-ray line γ谱线γ-ray line astronomy γ谱线天文γ-ray line emission γ谱线发射ζAurigae binary 御夫ζ型双星ζAurigae variable 御夫ζ型变星TAMS, terminal-age main sequence 终龄主序Taurus molecular cloud (TMC )金牛分子云TDT, terrestrial dynamical time 地球力学时television guider 电视导星器television-type detector 电视型探测器Tenma 〈天马〉X 射线天文卫星terrestrial reference system 地球参考系tetrad 四元基thermal background 热背景辐射thermal background radiation 热背景辐射thermal pulse 热脉冲thermonuclear runaway 热核暴涨thick-disk population 厚盘族thinned CCD 薄型CCDthird light 第三光源time-signal station 时号台timing age 计时年龄tomograph 三维结构图toner 调色剂torquetum 赤基黄道仪TRACE, Transition Region and Coronal 〈TRACE〉太阳过渡区和日冕Explorer 探测器tracker 跟踪器transfer efficiency 转移效率transition region line 过渡区谱线trans-Nepturnian object 海外天体Trapezium cluster 猎户四边形星团triad 三元基tri-dimensional spectroscopy 三维分光triquetum 三角仪tuning-fork diagram 音叉图turnoff age 拐点年龄turnoff mass 拐点质量two-dimensional photometry 二维测光two-dimensional spectroscopy 二维分光UKIRT, UK Infrared Telescope Facility 联合王国红外望远镜UKST, UK Schmidt Telescope 联合王国施密特望远镜ultracompact H Ⅱregion 超致密电离氢区ultradeep-field observation 特深天区观测ultraluminous galaxy 超高光度星系ultrametal-poor star 特贫金属星Ulysses 〈尤利西斯〉太阳探测器unseen component 未见子星upper tangent arc 上正切晕弧unnumbered asteroid 未编号小行星Uranian ring 天王星环Ursa Major group 大熊星群Ursa Minorids 小熊流星群Sagittarius dwarf 人马矮星系Sagittarius dwarf galaxy 人马矮星系Sagittarius galaxy 人马星系Saha equation 沙哈方程Sakigake 〈先驱〉空间探测器Saturn-crossing asteroid 越土小行星Saturnian ringlet 土星细环Saturnshine 土星反照scroll 卷滚Sculptor group 玉夫星系群Sculptor Supercluster 玉夫超星系团Sculptor void 玉夫巨洞secondary crater 次级陨击坑secondary resonance 次共振secular evolution 长期演化secular resonance 长期共振seeing management 视宁度控管segregation 层化selenogony 月球起源学separatrice 分界sequential estimation 序贯估计sequential processing 序贯处理serendipitous X-ray source 偶遇X 射线源serendipitous γ-ray source 偶遇γ射线源Serrurier truss 赛路里桁架shell galaxy 壳星系shepherd satellite 牧羊犬卫星shock temperature 激波温度silicon target vidicon 硅靶光导摄象管single-arc method 单弧法SIRTF, Space Infrared Telescope 空间红外望远镜Facilityslitless spectroscopy 无缝分光slit spectroscopy 有缝分光slow pulsar 慢转脉冲星SMM, Solar Maximum MIssion 太阳极大使者SMT, Submillimeter Telescope 亚毫米波望远镜SOFIA, Stratospheric Observatory for 〈索菲雅〉机载红外望远镜Infrared Astronomysoft γ-ray burst repeater 软γ暴复现源soft γrepeater (SGR )软γ射线复现源SOHO, Solar and Heliospheric 〈索贺〉太阳和太阳风层探测器Observatorysolar circle 太阳圈solar oscillation 太阳振荡solar pulsation 太阳脉动solar-radiation pressure 太阳辐射压solar-terrestrial environment 日地环境solitary 孤子性soliton star 孤子星South Galactic Cap 南银冠South Galactic Pole 南银极space density profile 空间密度轮廓space geodesy 空间大地测量space geodynamics 空间地球动力学Spacelab 空间实验室spatial mass segregation 空间质量分层speckle masking 斑点掩模speckle photometry 斑点测光speckle spectroscopy 斑点分光spectral comparator 比长仪spectrophotometric distance 分光光度距离spectrophotometric standard 分光光度标准星spectroscopic period 分光周期specular density 定向密度spherical dwarf 椭球矮星系spin evolution 自旋演化spin period 自旋周期spin phase 自旋相位spiral 旋涡星系spiral arm tracer 示臂天体Spoerer minimum 斯珀勒极小spotted star 富黑子恒星SST, Spectroscopic Survey Telescope 分光巡天望远镜standard radial-velocity star 视向速度标准星standard rotational-velocity star 自转速度标准星standard velocity star 视向速度标准星starburst 星暴starburst galaxy 星暴星系starburst nucleus 星暴star complex 恒星复合体star-formation activity 产星活动star-formation burst 产星暴star-formation efficiency (SFE )产星效率star-formation rate 产星率star-formation region 产星区star-forming region 产星区starpatch 星斑static property 静态特性statistical orbit-determination 统计定轨理论theorysteep-spectrum radio quasar 陡谱射电类星体stellar environment 恒星环境stellar halo 恒星晕stellar jet 恒星喷流stellar speedometer 恒星视向速度仪stellar seismology 星震学Stokes polarimetry 斯托克斯偏振测量strange attractor 奇异吸引体strange star 奇异星sub-arcsec radio astronomy 亚角秒射电天文学Subaru Telescope 昴星望远镜subcluster 次团subclustering 次成团subdwarf B star B 型亚矮星subdwarf O star O 型亚矮星subgiant branch 亚巨星支submilliarcsecond optical astrometry 亚毫角秒光波天体测量submillimeter astronomy 亚毫米波天文submillimeter observatory 亚毫米波天文台submillimeter photometry 亚毫米波测光submillimeter space astronomy 亚毫米波空间天文submillimeter telescope 亚毫米波望远镜submillisecond optical pulsar 亚毫秒光学脉冲星submillisecond pulsar 亚毫秒脉冲星submillisecond radio pulsar 亚毫秒射电脉冲星substellar object 亚恒星天体subsynchronism 亚同步subsynchronous rotation 亚同步自转Sunflower galaxy (M 63 )葵花星系sungrazer comet 掠日彗星supercluster 超星团; 超星系团supergalactic streamer 超星系流状结构supergiant molecular cloud (SGMC )超巨分子云superhump 长驼峰superhumper 长驼峰星supermaximum 长极大supernova rate 超新星频数、超新星出现率supernova shock 超新星激波superoutburst 长爆发superwind galaxy 超级风星系supporting system 支承系统surface activity 表面活动surface-brightness profile 面亮度轮廓surface-channel CCD 表面型CCDSU Ursae Majoris star 大熊SU 型星SW AS, Submillimeter Wave Astronomy 亚毫米波天文卫星Satallitesymbiotic binary 共生双星symbiotic Mira 共生刍藁symbiotic nova 共生新星synthetic-aperture radar 综合孔径雷达systemic velocity 质心速度radial pulsator 径向脉动星radial-velocity orbit 分光解radial-velocity reference star 视向速度参考星radial-velocity standard star 视向速度标准星radial-velocity survey 视向速度巡天radio arm 射电臂radio counterpart 射电对应体radio loud quasar 强射电类星体radio observation 射电观测radio picture 射电图radio pollution 射电污染radio supernova 射电超新星rapid burster 快暴源rapidly oscillating Ap star 快速振荡Ap 星readout 读出readout noise 读出噪声recycled pulsar 再生脉冲星reddened galaxy 红化星系reddened object 红化天体reddened quasar 红化类星体red horizontal branch (RHB )红水平分支red nebulous object (RNO )红色云状体Red Rectangle nebula 红矩形星云redshift survey 红移巡天red straggler 红离散星reflex motion 反映运动regression period 退行周期regular cluster 规则星团; 规则星系团relaxation effect 弛豫效应reset 清零resonance overlap theory 共振重叠理论return-beam tube 回束摄象管richness parameter 富度参数Ring nebula (M 57、NGC 6720 )环状星云ring-plane crossing 环面穿越Rosalind 天卫十三ROSAT, Roentgensatellit 〈ROSAT〉天文卫星Rosette Molecular Cloud (RMC )玫瑰分子云Rossby number 罗斯贝数rotating variable 自转变星rotational evolution 自转演化rotational inclination 自转轴倾角rotational modulation 自转调制rotational period 自转周期rotational phase 自转相位rotational pole 自转极rotational velocity 自转速度rotation frequency 自转频率rotation phase 自转相位rotation rate 自转速率rubber second 负闰秒rubidium-strontium dating 铷锶计年pan 摇镜头parry arc 彩晕弧partial-eclipse solution 偏食解particle astrophysics 粒子天体物理path of annularity 环食带path of totality 全食带PDS, photo-digitizing system、PDS、数字图象仪、photometric data system 测光数据仪penetrative convection 贯穿对流pentaprism test 五棱镜检验percolation 渗流periapse 近质心点periapse distance 近质心距periapsis distance 近拱距perigalactic distance 近银心距perigalacticon 近银心点perimartian 近火点period gap 周期空隙period-luminosity-colour relation 周光色关系PG 1159 star PG 1159 恒星photoflo 去渍剂photographic spectroscopy 照相分光photometric accuracy 测光精度photometric error 测光误差photometric night 测光夜photometric standard star 测光标准星photospheric abundance 光球丰度photospheric activity 光球活动photospheric line 光球谱线planetary biology 行星生物学planetary geology 行星地质学Pleiad 昴团星plerion 类蟹遗迹plerionic remnant 类蟹遗迹plerionic supernova remnant 类蟹超新星遗迹plumbicon 氧化铅光导摄象管pluton 类冥行星p-mode p 模、压力模pointimg accuracy 指向精度point spread function 点扩散函数polarimetric standard star 偏振标准星polarization standard star 偏振标准星polar-ring galaxy 极环星系Portia 天卫十二post AGB star AGB 后恒星post-core-collapse cluster 核心坍缩后星团post-coronal region 冕外区post-main-sequence star 主序后星post red-supergiant 红超巨后星post starburst galaxy 星暴后星系post T Tauri star 金牛T 后星potassium-argon dating 钾氩计年precataclysmic binary 激变前双星precataclysmic variable 激变前变星preceding limb 西边缘、前导边缘precessing-disk model 进动盘模型precession globe 岁差仪precession period 进动周期preflash 预照光pre-main-sequence spectroscopic 主序前分光双星binarypre-planetary disk 前行星盘pre-white dwarf 白矮前身星primary crater 初级陨击坑primordial binary 原始双星principle of mediocrity 折衷原则progenitor 前身星; 前身天体progenitor star 前身星projected density profile 投影密度轮廓proper-motion membership 自行成员星proper reference frame 固有参考架proper reference system 固有参考系proplyd 原行星盘proto-binary 原双星proto-cluster 原星团proto-cluster of galaxies 原星系团proto-earth 原地球proto-galactic cloud 原星系云proto-galactic object 原星系天体proto-Galaxy 原银河系proto-globular cluster 原球状星团proto-Jupiter 原木星proto-planet 原行星proto-planetary disk 原行星盘proto-planetary system 原行星系proto-shell star 原气壳星proto-sun 原太阳pseudo body-fixed system 准地固坐标系Puck 天卫十五pulsar time scale 脉冲星时标pulsation axis 脉动对称轴pulsation equation 脉动方程pulsation frequency 脉动频率pulsation phase 脉动阶段pulsation pole 脉动极pulse light curve 脉冲光变曲线pyrometry 高温测量QPO, quasi-periodic oscillation 似周期振荡quantum cosmology 量子宇宙学quantum universe 量子宇宙quasar astronomy 类星体天文quiescence 宁静态naked-eye variable star 肉眼变星naked T Tauri star 显露金牛T 型星narrow-line radio galaxy (NLRG )窄线射电星系Nasmyth spectrograph 内氏焦点摄谱仪natural reference frame 自然参考架natural refenence system 自然参考系natural seeing 自然视宁度near-contact binary 接近相接双星near-earth asteroid 近地小行星near-earth asteroid belt 近地小行星带near-earth comet 近地彗星NEO, near-earth object 近地天体neon nova 氖新星Nepturian ring 海王星环neutrino astrophysics 中微子天文NNTT, National New Technology Telescope国立新技术望远镜NOAO, National Optical Astronomical 国立光学天文台Observatoriesnocturnal 夜间定时仪nodal precession 交点进动nodal regression 交点退行non-destroy readout (NDRO )无破坏读出nonlinear infall mode 非线性下落模型nonlinear stability 非线性稳定性nonnucleated dwarf elliptical 无核矮椭圆星系nonnucleated dwarf galaxy 无核矮星系nonpotentiality 非势场性nonredundant masking 非过剩遮幅成象nonthermal radio halo 非热射电晕normal tail 正常彗尾North Galactic Cap 北银冠NOT, Nordic Optical Telescope 北欧光学望远镜nova rate 新星频数、新星出现率NTT, New Technology Telescope 新技术望远镜nucleated dwarf elliptical 有核矮椭圆星系nucleated dwarf galaxy 有核矮星系number density profile 数密度轮廓numbered asteroid 编号小行星oblique pulsator 斜脉动星observational cosmology 观测宇宙学observational dispersion 观测弥散度observational material 观测资料observing season 观测季occultation band 掩带O-Ne-Mg white dwarf 氧氖镁白矮星one-parameter method 单参数法on-line data handling 联机数据处理on-line filtering 联机滤波open cluster of galaxies 疏散星系团Ophelia 天卫七optical aperture-synthesis imaging 光波综合孔径成象optical arm 光学臂optical disk 光学盘optical light 可见光optical luminosity function 光学光度函数optically visible object 光学可见天体optical picture 光学图optical spectroscopy 光波分光orbital circularization 轨道圆化orbital eccentricity 轨道偏心率orbital evolution 轨道演化orbital frequency 轨道频率orbital inclination 轨道倾角orbit plane 轨道面order region 有序区organon parallacticon 星位尺Orion association 猎户星协orrery 太阳系仪orthogonal transformation 正交变换oscillation phase 振动相位outer asteroid belt 外小行星带outer-belt asteroid 外带小行星outer halo cluster 外晕族星团outside-eclipse variation 食外变光overshoot 超射OVV quasar, optically violently OVV 类星体variable quasar、optically violent variablevquasaroxygen sequence 氧序Kalman filter 卡尔曼滤波器KAO, Kuiper Air-borne Observatory 〈柯伊伯〉机载望远镜Keck ⅠTelescope 凯克Ⅰ望远镜Keck ⅡTelescope 凯克Ⅱ望远镜Kuiper belt 柯伊伯带Kuiper-belt object 柯伊伯带天体Kuiper disk 柯伊伯盘LAMOST, Large Multi-Object Fibre 大型多天体分光望远镜Spectroscopic TelescopeLaplacian plane 拉普拉斯平面late cluster 晚型星系团LBT, Large Binocular Telescope 〈LBT〉大型双筒望远镜lead oxide vidicon 氧化铅光导摄象管Leo Triplet 狮子三重星系LEST, Large Earth-based Solar 〈LEST〉大型地基太阳望远镜Telescopelevel-Ⅰcivilization Ⅰ级文明level-Ⅱcivilization Ⅱ级文明level-Ⅲcivilization Ⅲ级文明Leverrier ring 勒威耶环Liapunov characteristic number 李雅普诺夫特征数(LCN )light crown 轻冕玻璃light echo 回光light-gathering aperture 聚光孔径light pollution 光污染light sensation 光感line image sensor 线成象敏感器line locking 线锁line-ratio method 谱线比法Liner, low ionization nuclear 低电离核区emission-line regionline spread function 线扩散函数LMT, Large Millimeter Telescope 〈LMT〉大型毫米波望远镜local galaxy 局域星系local inertial frame 局域惯性架local inertial system 局域惯性系local object 局域天体local star 局域恒星look-up table (LUT )对照表low-mass X-ray binary 小质量X 射线双星low-metallicity cluster 低金属度星团;低金属度星系团low-resolution spectrograph 低分辨摄谱仪low-resolution spectroscopy 低分辨分光low - z 小红移luminosity mass 光度质量luminosity segregation 光度层化luminous blue variable 高光度蓝变星lunar atmosphere 月球大气lunar chiaroscuro 月相图Lunar Prospector 〈月球勘探者〉Ly-αforest 莱曼-α森林MACHO (massive compact halo 晕族大质量致密天体object )Magellan 〈麦哲伦〉金星探测器Magellan Telescope 〈麦哲伦〉望远镜magnetic canopy 磁蓬magnetic cataclysmic variable 磁激变变星magnetic curve 磁变曲线magnetic obliquity 磁夹角magnetic period 磁变周期magnetic phase 磁变相位magnitude range 星等范围main asteroid belt 主小行星带main-belt asteroid 主带小行星main resonance 主共振main-sequence band 主序带Mars-crossing asteroid 越火小行星Mars Pathfinder 火星探路者mass loss rate 质量损失率mass segregation 质量层化Mayall Telescope 梅奥尔望远镜Mclntosh classification 麦金托什分类McMullan camera 麦克马伦电子照相机mean motion resonance 平均运动共振membership of cluster of galaxies 星系团成员membership of star cluster 星团成员merge 并合merger 并合星系; 并合恒星merging galaxy 并合星系merging star 并合恒星mesogranulation 中米粒组织mesogranule 中米粒metallicity 金属度metallicity gradient 金属度梯度metal-poor cluster 贫金属星团metal-rich cluster 富金属星团MGS, Mars Global Surveyor 火星环球勘测者micro-arcsec astrometry 微角秒天体测量microchannel electron multiplier 微通道电子倍增管microflare 微耀斑microgravitational lens 微引力透镜microgravitational lensing 微引力透镜效应microturbulent velocity 微湍速度millimeter-wave astronomy 毫米波天文millisecond pulsar 毫秒脉冲星minimum mass 质量下限minimum variance 最小方差mixed-polarity magnetic field 极性混合磁场MMT, Multiple-Mirror Telescope 多镜面望远镜moderate-resolution spectrograph 中分辨摄谱仪moderate-resolution spectroscopy 中分辨分光modified isochrone method 改进等龄线法molecular outflow 外向分子流molecular shock 分子激波monolithic-mirror telescope 单镜面望远镜moom 行星环卫星moon-crossing asteroid 越月小行星morphological astronomy 形态天文morphology segregation 形态层化MSSSO, Mount Stromlo and Siding 斯特朗洛山和赛丁泉天文台Spring Observatorymultichannel astrometric photometer 多通道天测光度计(MAP )multi-object spectroscopy 多天体分光multiple-arc method 复弧法multiple redshift 多重红移multiple system 多重星系multi-wavelength astronomy 多波段天文multi-wavelength astrophysics 多波段天体物理Ida 艾达(小行星243号)IEH, International Extreme Ultraviolet 〈IEH〉国际极紫外飞行器HitchhikerIERS, International Earth Rotation 国际地球自转服务Serviceimage deconvolution 图象消旋image degradation 星象劣化image dissector 析象管image distoration 星象复原image photon counting system 成象光子计数系统image sharpening 星象增锐image spread 星象扩散度imaging polarimetry 成象偏振测量imaging spectrophotometry 成象分光光度测量immersed echelle 浸渍阶梯光栅impulsive solar flare 脉冲太阳耀斑infralateral arc 外侧晕弧infrared CCD 红外CCDinfrared corona 红外冕infrared helioseismology 红外日震学infrared index 红外infrared observatory 红外天文台infrared spectroscopy 红外分光initial earth 初始地球initial mass distribution 初始质量分布initial planet 初始行星initial star 初始恒星initial sun 初始太阳inner coma 内彗发inner halo cluster 内晕族星团integrability 可积性Integral Sign galaxy (UGC 3697 )积分号星系integrated diode array (IDA )集成二极管阵intensified CCD 增强CCDIntercosmos 〈国际宇宙〉天文卫星interline transfer 行间转移intermediate parent body 中间母体intermediate polar 中介偏振星international atomic time 国际原子时International Celestial Reference 国际天球参考系Frame (ICRF )intraday variation 快速变化intranetwork element 网内元intrinsic dispersion 内廪弥散度ion spot 离子斑IPCS, Image Photon Counting System 图象光子计数器IRIS, Infrared Imager / Spectrograph 红外成象器/摄谱仪IRPS, Infrared Photometer / Spectro- 红外光度计/分光计meterirregular cluster 不规则星团; 不规则星系团IRTF, NASA Infrared Telescope 〈IRTF〉美国宇航局红外Facility 望远镜IRTS, Infrared Telescope in Space 〈IRTS〉空间红外望远镜ISO, Infrared Space Observatory 〈ISO〉红外空间天文台isochrone method 等龄线法IUE, International Ultraviolet 〈IUE〉国际紫外探测器ExplorerJewel Box (NGC 4755 )宝盒星团Jovian magnetosphere 木星磁层Jovian ring 木星环Jovian ringlet 木星细环Jovian seismology 木震学jovicentric orbit 木心轨道J-type star J 型星Juliet 天卫十一Jupiter-crossing asteroid 越木小行星Galactic aggregate 银河星集Galactic astronomy 银河系天文Galactic bar 银河系棒galactic bar 星系棒galactic cannibalism 星系吞食galactic content 星系成分galactic merge 星系并合galactic pericentre 近银心点Galactocentric distance 银心距galaxy cluster 星系团Galle ring 伽勒环Galilean transformation 伽利略变换Galileo 〈伽利略〉木星探测器gas-dust complex 气尘复合体Genesis rock 创世岩Gemini Telescope 大型双子望远镜Geoalert, Geophysical Alert Broadcast 地球物理警报广播giant granulation 巨米粒组织giant granule 巨米粒giant radio pulse 巨射电脉冲Ginga 〈星系〉X 射线天文卫星Giotto 〈乔托〉空间探测器glassceramic 微晶玻璃glitch activity 自转突变活动global change 全球变化global sensitivity 全局灵敏度GMC, giant molecular cloud 巨分子云g-mode g 模、重力模gold spot 金斑病GONG, Global Oscillation Network 太阳全球振荡监测网GroupGPS, global positioning system 全球定位系统Granat 〈石榴〉号天文卫星grand design spiral 宏象旋涡星系gravitational astronomy 引力天文gravitational lensing 引力透镜效应gravitational micro-lensing 微引力透镜效应great attractor 巨引源Great Dark Spot 大暗斑Great White Spot 大白斑grism 棱栅GRO, Gamma-Ray Observatory γ射线天文台guidscope 导星镜GW Virginis star 室女GW 型星habitable planet 可居住行星Hakucho 〈天鹅〉X 射线天文卫星Hale Telescope 海尔望远镜halo dwarf 晕族矮星halo globular cluster 晕族球状星团Hanle effect 汉勒效应hard X-ray source 硬X 射线源Hay spot 哈伊斑HEAO, High-Energy Astronomical 〈HEAO〉高能天文台Observatoryheavy-element star 重元素星heiligenschein 灵光Helene 土卫十二helicity 螺度heliocentric radial velocity 日心视向速度heliomagnetosphere 日球磁层helioseismology 日震学helium abundance 氦丰度helium main-sequence 氦主序helium-strong star 强氦线星helium white dwarf 氦白矮星Helix galaxy (NGC 2685 )螺旋星系Herbig Ae star 赫比格Ae 型星Herbig Be star 赫比格Be 型星Herbig-Haro flow 赫比格-阿罗流Herbig-Haro shock wave 赫比格-阿罗激波hidden magnetic flux 隐磁流high-field pulsar 强磁场脉冲星highly polarized quasar (HPQ )高偏振类星体high-mass X-ray binary 大质量X 射线双星high-metallicity cluster 高金属度星团;高金属度星系团high-resolution spectrograph 高分辨摄谱仪high-resolution spectroscopy 高分辨分光high - z 大红移Hinotori 〈火鸟〉太阳探测器Hipparcos, High Precision Parallax 〈依巴谷〉卫星Collecting SatelliteHipparcos and Tycho Catalogues 〈依巴谷〉和〈第谷〉星表holographic grating 全息光栅Hooker Telescope 胡克望远镜host galaxy 寄主星系hot R Coronae Borealis star 高温北冕R 型星HST, Hubble Space Telescope 哈勃空间望远镜Hubble age 哈勃年龄Hubble distance 哈勃距离Hubble parameter 哈勃参数Hubble velocity 哈勃速度hump cepheid 驼峰造父变星Hyad 毕团星hybrid-chromosphere star 混合色球星hybrid star 混合大气星hydrogen-deficient star 缺氢星hydrogenous atmosphere 氢型大气hypergiant 特超巨星Eagle nebula (M 16 )鹰状星云earty cluster 早型星系团early earth 早期地球early planet 早期行星early-stage star 演化早期星early stellar evolution 恒星早期演化early sun 早期太阳earth-approaching asteroid 近地小行星earth-approaching comet 近地彗星earth-approaching object 近地天体earth-crossing asteroid 越地小行星earth-crossing comet 越地彗星earth-crossing object 越地天体earth orientation parameter 地球定向参数earth rotation parameter 地球自转参数eccentric-disk model 偏心盘模型effect of relaxation 弛豫效应Egg nebula (AFGL 2688 )蛋状星云electronographic photometry 电子照相测光elemental abundance 元素丰度elliptical 椭圆星系elliptical dwarf 椭圆矮星系emulated data 仿真数据emulation 仿真encounter-type orbit 交会型轨道enhanced network 增强网络equatorial rotational velocity 赤道自转速度equatorium 行星定位仪equipartition of kinetic energy 动能均分eruptive period 爆发周期Eskimo nebula (NGC 2392 )爱斯基摩星云estimated accuracy 估计精度estimation theory 估计理论EUVE, Extreme Ultraviolet Explorer 〈EUVE〉极紫外探测器Exclamation Mark galaxy 惊叹号星系Exosat 〈Exosat〉欧洲X 射线天文卫星extended Kalman filter 扩充卡尔曼滤波器extragalactic jet 河外喷流extragalactic radio astronomy 河外射电天文extrasolar planet 太阳系外行星extrasolar planetary system 太阳系外行星系extraterrestrial intelligence 地外智慧生物extreme helium star 极端氦星Fabry-Perot imaging spectrograph 法布里-珀罗成象摄谱仪Fabry-Perot interferometry 法布里-珀罗干涉测量Fabry-Perot spectrograph 法布里-珀罗摄谱仪face-on galaxy 正向星系face-on spiral 正向旋涡星系facility seeing 人为视宁度fall 见落陨星fast pulsar 快转脉冲星fat zero 胖零Fermi normal coordinate system 费米标准坐标系Fermi-Walker transportation 费米-沃克移动fibre spectroscopy 光纤分光field centre 场中心field galaxy 场星系field pulsar 场脉冲星filter photography 滤光片照相观测filter wheel 滤光片转盘find 发见陨星finder chart 证认图finderscope 寻星镜first-ascent giant branch 初升巨星支first giant branch 初升巨星支flare puff 耀斑喷焰flat field 平场flat field correction 平场改正flat fielding 平场处理flat-spectrum radio quasar 平谱射电类星体flux standard 流量标准星flux-tube dynamics 磁流管动力学f-mode f 模、基本模following limb 东边缘、后随边缘foreground galaxy 前景星系foreground galaxy cluster 前景星系团formal accuracy 形式精度Foucaultgram 傅科检验图样Foucault knife-edge test 傅科刀口检验fourth cosmic velocity 第四宇宙速度frame transfer 帧转移Fresnel lens 菲涅尔透镜fuzz 展云CAMC, Carlsberg Automatic Meridian 卡尔斯伯格自动子午环Circlecannibalism 吞食cannibalized galaxy 被吞星系cannibalizing galaxy 吞食星系。
血氧仪参考设计
User’s Guide and Test Report TIDA-00311 1 Miniaturized Pulse Oximeter Reference DesignHealthTechABSTRACT The scope of this document is to provide a miniaturized pulse oximeter reference design for high end clinical application. This reference design features AFE4403, TI’s high performance Analog Front End for pulse oximeters, an ultra-low power microcontroller and a highly optimizedintegrated dual light emitting diodes (LED) and photodiode optical sensor. This reference design simplifies and accelerates the pulse oximeter system design while still ensuring the highestquality clinical measurements.Document History VersionDate Author Notes 1.0June 2014 Praveen Aroul First releaseTIDA-003112Contents1Design Summary (4)1.1Design Goal (4)1.2Top Level Architecture (4)2Theory of operation (4)3Circuit Description (8)4Hardware Overview (8)4.1AFE4403 Overview (9)4.1.1Receiver Front end (9)4.1.2Transmit Section (11)4.1.3Clocking and Timing Signal Generation (12)4.1.4Diagnostic mode (14)4.2Optical Sensor (14)4.3Microcontroller (15)5Miniaturized SpO2 reference design Modules (15)5.1DCM03–AFE4403 module pin-outs (16)5.2DCM03–AFE4403–MCU module pin-outs (17)6Verification and Measured Performance (19)6.1Testing conditions (19)6.2Estimation of SpO2 percentage (20)Appendix A. Design Resources (21)Appendix B. Acronyms (22)Appendix C. References (23)FiguresFigure 1: Top Level Architecture(1) (4)Figure 2: Oxygenated versus de-oxygenated blood light absorption of IR and Red (5)Figure 3: Variations in light attenuation by tissue illustrating the rhythmic effect of arterial pulsation (6)Figure 4: Normalization of R and IR wavelengths to remove the effects of variation in the incident light intensity or detector sensitivity (7)Figure 5: Empirical relationship between arterial SaO2 and normalized (R/IR) ratio (8)Figure 6: Functional Block Diagram of AFE4403 (9)Figure 7: TIA block diagram of AFE4403 (10)Figure 8: LED Transmit – H-Bridge Drive (13)Figure 9: LED Transmit – Push-Pull LED Drive (14)Figure 10: DCM03 Optical sensor (15)Figure 11: DCM03-AFE4403 reference module (15)Figure 12: DCM03-AFE4403-MCU reference module (16)Figure 13: Pin positions on the DCM03-AFE4403 module (17)Figure 14: Pin positions on the DCM03-AFE4403-MCU module (18)Figure 15: PPG waveform from the DCM03-AFE4403 reference module (19)TIDA-003113TablesDocument History (1)DCM03-AFE4403 module pin-outs (16)DCM03-AFE4403-MCU module pin-outs (17)TIDA-0031141 Design SummaryTI Reference Designs are mixed-signal solutions created by TI’s experts. Verified designs offer the theory, complete PCB schematic & layout, bill of materials and measured performance of the overall system.1.1 Design GoalThe goal is to provide reference design for building a miniaturized pulse oximeter system.1.2 Top Level ArchitectureThe block diagram shown in Figure 1 gives a top level architecture of the reference design. There are two variations of the reference design modules. The first reference design contains the LED and photodiode optical sensor and the Analog Front End (AFE). The second reference design contains the LED and photodiode optical sensor, Analog Front End (AFE) and the MCU.Figure 1: Top Level Architecture (1)(1)Note: The second reference design contains the MSP430 device.2 Theory of operationThe principle of pulse oximetry revolves around the fact that the arterial component of blood is pulsatile in nature (time varying). So when a LED light is made incident on the human body (for example at a finger), the amount of light that passes through after the attenuation from various components like tissue, artery and veins also has a pulsatile component riding over a constant component. The aim of pulse oximetry is to measure the percentage of oxygenated hemoglobin (HbO 2) to the total hemoglobin (Hb) (oxygenated plus deoxygenated) in the arterial blood – this is referred to as SpO 2. Oxygenated hemoglobin in the blood is distinctively red, whereas deoxygenated hemoglobin in the blood has a characteristic dark blue coloration. The opticalproperty of blood in the visible (i.e. between 400 and 700nm) and near-infrared (i.e. between 700 and 1000nm) spectral regions depends strongly on the amount of O 2 carried by blood.TIDA-003115The method exploits the fact that Hb has a higher optical absorption coefficient in the red region of the spectrum around 660nm compared with HbO 2, as illustrated in Figure 2. On the other hand, in the near-infrared region of the spectrum around 940nm, the optical absorption by Hb is lower compared to HbO 2.At the isobestic wavelength (i.e. 805nm), where the two curves cross over, the absorbance of light is independent of oxygenation level.Figure 3: Oxygenated versus de-oxygenated blood light absorption of IR and Red By doing light measurements at two wavelengths (usually Red and IR) that have dissimilar absorption coefficients to oxygenated and deoxygenated hemoglobin, all the constant components can be cancelled out and the SpO 2 can be calculated in a ratiometric manner. The optical system for SPO2 measurement consists of LEDs that shine the light and aphotodiode that receives the light. There are two types of optical arrangements – transmissive and reflective. In the transmissive case, the photodiode and the LED are placed on opposite sides of the human body part (most commonly the finger), with the photodiode collecting the residual light after absorption from the various components of the body part. In the reflective case, the photodiode and the LED are on the same side and the photodiode collects the light reflected from various depths underneath the skin. Both variations of this reference design is based on the reflective case.The photodiode converts the incident light into an electrical signal proportional to the intensity of the light and the AFE44xx signal chain can be used to condition the signal and digitize it. The signal is referred to as the Photoplethysmogram (PPG) signal and contains the periodicity of the pulse rate. SpO 2 measurements involve using two wavelengths – most commonly Red and IR. The AFE44xx family of devices therefore supports independent control over 2 LEDs.As shown in Figure 3, the magnitude of the PPG signal depends on the amount of blood ejected from the heart with each systolic cycle, the optical absorption of blood, absorption by skin and various tissue components, and the specific wavelengths used to illuminate the vascular tissuebed.TIDA-003116During systole, when the arterial pulsation is at its peak, the volume of blood in the tissueincreases. This additional blood absorbs more light, thus reducing the light intensity which is either transmitted or backscattered.During diastole, less blood is present in the vascular bed, thus increasing the amount of light transmitted or backscattered.The pulsatile part of the PPG signal is considered as the “AC” component, and the non- pulsatile part, resulting mainly from the venous blood, skin and tissue, is referred to as the “DC”component. A deviation in the LED brightness or detector sensitivity can change the intensity of the light detected by the sensor. This dependence on transmitted or backscattered light intensity can be compensated by using a normalization technique where the AC component is divided by the DC component, as given in the equation (1) below:R IR=⎝⎜⎛AC R DC R AC IR DC IR�⎠⎟⎞(1)Thus, the time invariant absorbance due to venous blood or surrounding tissues does not have any effect on the measurement. This normalization is carried out for both the red (R) and the infrared (IR) wavelengths, as shown in Figure 4. The normalized R/IR “ratio of ratios” can then be related empirically to SpO2, as shown in Figure 5. When the ratio is 1, the SpO2 value is about 85%.Figure 4: Variations in light attenuation by tissue illustrating the rhythmic effect of arterialpulsationTIDA-003117Figure 5: Normalization of R and IR wavelengths to remove the effects of variation in theincident light intensity or detector sensitivityMost pulse oximeters measure absorbance at two different wavelengths and are calibrated using data collected from CO-oximeters by empirically looking up a value for SpO 2, giving an estimation of SaO 2 using the empirical relationship given by the Equation (2)SaO 2% = A − B ∙ (R /IR ) (2)where R /IR is based on a normalization where the pulsatile (AC) component is divided by the corresponding non-pulsatile (DC) component for each wavelength, and A and B are linear regression coefficients which are related to the specific absorptions coefficients of Hb and HbO 2. The constants A and B are derived empirically during in-vivo calibration by correlating the ratio calculated by the pulse oximeter against SaO 2 from arterial blood samples by an in vitro oximeter for a large group of subjects. Pulse oximeters read the SaO 2 of the blood accurately enough for clinical use under normal circumstances because they use a calibration curve based on empirical data shown in Figure 5.TIDA-003118Figure 6: Empirical relationship between arterial SaO2 and normalized (R/IR) ratio3 Circuit DescriptionPulse oximeters measure arterial blood oxygen saturation by sensing absorption properties of deoxygenated and oxygenated hemoglobin using various wavelengths of light. A basic meter is comprised of a sensing probe attached to a patient's earlobe, toe, finger or other body locations, depending upon the sensing method (reflection or transmission), and a data acquisition system for the calculation and eventually display of oxygen saturation level, heart rate and/or blood flow.This reference design discusses the methodology to build a miniaturized pulse oximeter system.The design employs reflectance mode photoplethysmography (PPG).High Performance pulse oximetry measurements are achieved by using the AFE4403, a fully Integrated Analog Front End that consists of a low noise receiver channel with an integratedanalog-to-Digital converter, an LED transmit section, diagnostics for sensor and LED faultdetection. Additional components include:•Ultra-low power microcontroller (MCU)•LED and photodiode optical sensor4 Hardware OverviewThe following section describes the reference design by providing detailed information about the Analog Front End and the additional components that complete this reference design.TIDA-0031194.1 AFE4403 OverviewThe AFE4403 is a complete analog front-end (AFE) solution targeted for pulse oximeterapplications. The device consists of a low-noise receiver channel, an LED transmit section, and diagnostics for sensor and LED fault detection. To ease clocking requirements and provide the low-jitter clock to the AFE, an oscillator is also integrated that functions from an external crystal. The device communicates to an external microcontroller or host processor using an SPIinterface. Figure 6 provides a detailed block diagram for the AFE4403. The blocks are described in more detail in the following section.Figure 7: Functional Block Diagram of AFE44034.1.1 Receiver Front endThe device is ideally suited as a front-end for a PPG (photoplethysmography) application. In such an application, the light from the LED is reflected (or transmitted) from (or through) the various components inside the body (such as blood, tissue, and so forth) and are received by the photodiode. The signal received by the photodiode has three distinct components:1. A pulsatile or AC component that arises as a result of the changes in blood volume through the arteries.2. A constant DC signal that is reflected or transmitted from the time invariant components in the path of light. This constant DC component is referred to as the pleth signal.3.Ambient light entering the photodiode.TIDA-0031110The AC component is usually a small fraction of the pleth component, with the ratio referred to as the perfusion index (PI). Thus, the allowed signal chain gain is usually determined by the amplitude of the DC component.The receiver consists of a differential current-to-voltage (I-V) transimpedance amplifier (TIA) that converts the input photodiode current into an appropriate voltage. The feedback resistor of the amplifier (Rf) is programmable to support a wide range of photodiode currents. Available RF values include: 1 MΩ, 500 kΩ, 250 kΩ, 100 kΩ, 50 kΩ, 25 kΩ, and 10 kΩ.The model of the photodiode and the connection to the TIA is shown below:Figure 8: TIA block diagram of AFE4403I in is the signal current generated by the photodiode in response to the incident light and C in is the zero bias capacitance of the photodiode.The current to voltage gain in the TIA is given by:V TIA(diff)=V TIA+−V TIA−= 2∗I in∗R f(3) For example, for a photodiode current of I in= 1 μA and a TIA gain setting of R f = 100 kΩ, the differential output of the TIA is equal to 200 mV. The TIA has an operating range of ±1 V, and the ADC has an input full-scale range of ±1.2 V (the extra margin is to prevent the ADC from saturating while operating the TIA at the fullest output range). Furthermore, because the PPG signal is one-sided, only one half of the full-scale is used. TI recommends operating the device at a DC level that is not more than 50% to 60% of the ADC full-scale. The margin allows for sudden changes in the signal level that might saturate the signal chain if operating too close tofull-scale.The Rf amplifier and the feedback capacitor (Cf) form a low-pass filter for the input signalcurrent. Always ensure that the low-pass filter RC time constant has sufficiently high bandwidth (as shown by Equation 4 below) because the input current consists of pulses. For this reason, the feedback capacitor is also programmable. Available Cf values include: 5 pF, 10 pF, 25 pF,50 pF, 100 pF, and 250 pF. Any combination of these capacitors can also be used.R f∗C f≤Rx Sample Time10(4)The output voltage of the I-V amplifier includes the pleth component (the desired signal) and a component resulting from the ambient light leakage. The I-V amplifier is followed by the second stage, which consists of a current digital-to-analog converter (DAC) that sources the cancellation current and an amplifier that gains up the pleth component alone. The amplifier has fiveprogrammable gain settings: 0 dB, 3.5 dB, 6 dB, 9.5 dB, and 12 dB. The gained-up pleth signal is then low-pass filtered (500-Hz bandwidth) and buffered before driving a 22-bit ADC. Thecurrent DAC has a can cellation current range of 10 μA with 10 steps (1 μA each). The DACvalue can be digitally specified with the SPI interface. Using ambient compensation with theambient DAC allows the DC-biased signal to be centered to near mid-point of the amplifier (±0.9 V). Using the gain of the second stage allows for more of the available ADC dynamic range to be used.The output of the ambient cancellation amplifier is separated into LED2 and LED1 channels.When LED2 is on, the amplifier output is filtered and sampled on capacitor C LED2. Similarly, the LED1 signal is sampled on the C LED1 capacitor when LED1 is on. In between the LED2 andLED1 pulses, the idle amplifier output is sampled to estimate the ambient signal on capacitorsC LED2_amb and C LED1_amb.The sampling duration is termed the receiver (Rx) sample time and is programmable for each signal, independently. The sampling can start after the I-V amplifier output is stable (to account for LED and cable settling times). The Rx sample time is used for all dynamic range calculations;the minimum time recommended is 50 μs. While the AFE4403 can support pulse widths lower than 50 µs, having too low of a pulse width could result in a degraded signal and noise from the photodiode.A single 22-bit ADC converts the sampled LED2, LED1, and ambient signals sequentially. Eachconversion provides a single digital code at the ADC output. The conversions are meant to be staggered so that the LED2 conversion starts after the end of the LED2 sample phase, and so on.Note that four data streams are available at the ADC output (LED2, LED1, ambient LED2, and ambient LED1) at the same rate as the pulse repetition frequency. The ADC is followed by adigital ambient subtraction block that additionally outputs the (LED2 – ambient LED2) and (LED1 – ambient LED1) data values.4.1.2 Transmit SectionThe transmit section integrates the LED driver and the LED current control section with 8-bitresolution.The RED and IR LED reference currents can be independently set. The current source (ILED) locally regulates and ensures that the actual LED current tracks the specified reference. Thetransmitter section uses an internal 0.25-V reference voltage for operation. This referencevoltage is available on the TX_REF pin and must be decoupled to ground with a 2.2-μFcapacitor. The TX_REF voltage is derived from the TX_CTRL_SUP. The TX_REF voltage can be programmed from 0.25 V to 1 V. A lower TX_REF voltage allows a lower voltage to besupported on LED_DRV_SUP. However, the transmitter dynamic range falls in proportion to the voltage on TX_REF. Thus, a TX_REF setting of 0.5 V gives a 6-dB lower transmitter dynamic range as compared to a 1-V setting on TX_REF, and a 6-dB higher transmitter dynamic range as compared to a 0.25-V setting on TX_REF.Note that reducing the value of the band-gap reference capacitor on the BG pin reduces the time required for the device to wake-up and settle. However, this reduction in time is a trade-offbetween wake-up time and noise performance. For example, reducing the value of thecapacitors on the BG and TX_REF pins from 2.2 µF to 0.1µF reduces the wake-up time (from complete power-down) from 1 sec to 100 ms, but results in a few decibels of degradation in the transmitter dynamic range.The minimum LED_DRV_SUP voltage required for operation depends on:•Voltage drop across the LED (VLED),•Voltage drop across the external cable, connector, and any other component in series with the LED (V CABLE), and•Transmitter reference voltage.Two LED driver schemes are supported:•An H-bridge drive for a two-terminal back-to-back LED package. See Figure 8.• A push-pull drive for a three-terminal LED package. See Figure9.4.1.3 Clocking and Timing Signal GenerationThe crystal oscillator generates a master clock signal using an external crystal. In the defaultmode, a divide-by-2 block converts the 8-MHz clock to 4 MHz, which is used by the AFE tooperate the timer modules, ADC, and diagnostics. The 4-MHz clock is buffered and output from the AFE in order to clock an external microcontroller.To enable flexible clocking, the AFE4403 has a clock divider with programmable division ratios.While the default division ratio is divide-by-2, the clock divider can be programmed to selectbetween ratios of 1, 2, 4, 6, 8, or 12. The division ratio should be selected based on the external clock input frequency such that the divided clock has a frequency close to 4 MHz. Whenoperating with an external clock input, the divider is reset based on the RESET signal risingedge.The device supports both external clock mode as well as an internal clock mode with the external crystal. In the external clock mode, an external clock is input on the XIN pin and the device internally generates the internal clock (used by the timing engine and the ADC) by a programmable division ratio. After division, the internal clock should be within the range of 4 MHz to 6 MHz. In internal clock mode, an external crystal (connected between XIN and XOUT) is used to generate the clock.Figure 9: LED Transmit – H-Bridge DriveThe AFE4403 has a timer module that can program the various rising and falling timing edges for the 11 signals.The module uses a single 16-bit counter (running off of the 4-MHz clock) to set the time-base. All timing signals are set with reference to the pulse repetition period (PRP). Therefore, a dedicated compare register compares the 16-bit counter value with the reference value specified in the PRF register. Every time that the 16-bit counter value is equal to the reference value in the PRF register, the counter is reset to 0.For the timing signals, the start and stop edge positions are programmable with respect to the PRF period. Each signal uses a separate timer compare module that compares the counter value with preprogrammed reference values for the start and stop edges. All reference values can be set using the SPI interface. After the counter value has exceeded the stop reference value, the output signal is set. When the counter value equals the stop reference value, the output signal is reset.Figure 10: LED Transmit – Push-Pull LED Drive4.1.4 Diagnostic modeThe device includes diagnostics to detect open or short conditions of the LED and photosensor, LED current profile feedback, and cable on or off detection. The diagnostics module, whenenabled, checks for nine types of faults sequentially. The results of all faults are latched in 11 separate flags. The status of all flags can also be read using the SPI interface.4.2 Optical SensorTo measure the peripheral oxygen saturation, an optical sensor (DCM03) (see Figure 10) which has an integrated Red, IR LEDs and photodiode built in to a single module was used. Themodule has been developed by APMKorea [1]. The module works on the principle of reflective photometry. In reflectance photometry, the LEDs and photodiode are placed on the same plane as the human body part and the photodiode collects the light reflected from various depthsunderneath the skin. The sensor has been designed with optimum separation distance between the LEDs and the photodiode to achieve good quality photoplethysmogram signal.Figure 11: DCM03 Optical sensor4.3 MicrocontrollerIn this reference design (both variations), the microcontroller is used to configure the AFE4403 and process the AFE4403 information. The microcontroller MSP430F5528 is from the TexasInstruments MSP430 family of ultra-low power microcontrollers. The microcontroller architecture, combined with extensive low power modes, is optimized to achieve extended battery life inportable applications.5 Miniaturized SpO2 reference design ModulesThere are two variations of the SpO2 reference design modules. The first reference designcontains the LED and photodiode optical sensor, Analog Front End (AFE) for acquiring andconditioning the PPG signal. The second reference design contains the LED and photodiodesensor, Analog Front End (AFE) for acquiring and conditioning the PPG signal and the MCU for processing the information from the AFE.Figure 11 shows the first reference design module with the AFE and the optical sensor. Thereference design module is small and compact and has the following dimensions 0.393”(9.98mm) x 0.411” (10.44mm).Figure 12: DCM03-AFE4403 reference moduleFigure 12 shows the second reference design module with the AFE, MCU and the opticalsensor. The reference design module is small and compact and has the following dimensions0.609” (15.47mm) x 0.413” (10.49mm).Figure 13: DCM03-AFE4403-MCU reference module5.1 DCM03–AFE4403 module pin-outsThe table below shows the signal names on the DCM03- AFE4403 module pin-outs. Figure 13 shows the pin positions on the DCM03-AFE4403 module.DCM03-AFE4403 module pin-outsPin Number Signal Names1 AFE_VCC2 GND3 AFE_SPI_SOMI4 AFE_SPI_SIMO5 AFE_SPI_CLK6 AFE_DIAG_END7 AFE_XIN8 GND9 AFE_PDNZ10 AFE_ADC_RDY11 AFE_SPI_STE12 AFE_RESETZ13 LED_DRV_GND14 LED_DRV_SUPFigure 14: Pin positions on the DCM03-AFE4403 module5.2 DCM03–AFE4403–MCU module pin-outsThe table below shows the signal names on the DCM03- AFE4403-MCU module pin-outs.Figure 14 shows the pin positions on the DCM03-AFE4403-MCU module.DCM03-AFE4403-MCU module pin-outsPin Number Signal Names1 AFE_VCC2 GND3 No Connect (NC)4 No Connect5 No Connect6 EXT_SPI_STE7 EXT_SPI_SOMI8 EXT_SPI_SIMO9 EXT_SPI_CLK10 GND11 No Connect12 No Connect13 LED_DRV_GND14 LED_DRV_SUP15 JTAG_TDO16 JTAG_TMS17 JTAG_RST18 JTAG_TDI19 JTAG_TCK20 JTAG_TEST21 DVCC22 GNDFigure 15: Pin positions on the DCM03-AFE4403-MCU module6 Verification and Measured PerformanceThis section describes the measurement results of the DCM03-AFE4403 reference module.6.1 Testing conditionsAFE44x0SP02EVM was used to test the DCM03-AFE4403 reference module. The reference module was hard-wired to the MSP430 serial Peripheral Interface (SPI) on the evaluationmodule.Below were the testing conditions:In the reference module, AFE_VCC was set to 3V. LED_DRV_SUP was set to 3.3V.LED_DRV_GND and GND were shorted together. LED current was set to 5mA.Figure 15 shows the PPG waveform captured from the DCM03-AFE4403 reference module.Figure 16: PPG waveform from the DCM03-AFE4403 reference module6.2 Estimation of SpO2 percentageThis section outlines the calculation of SpO2 using PPG signals. The SpO2 estimation relies on the relationship between the baseline value (referred as DC component) to the fluctuation in the signal (referred to as AC component). SpO2 calculation is based on computing the “ratio ofratios” or Pulse Modulation ratio R which is defined as the ratio of AC/DC of red and IR LEDs as mentioned in Section 2.The PPG signal is normally contaminated with noise which could come from various sources like the power supply noise, motion artifact etc. An essential component as part of the datapreprocessing is filtering out the unwanted signal of interest. Since the DC component resides in frequencies below 0.5Hz, a low pass filter with a cutoff frequency of 5Hz can be used for theSpO2 estimation. This filtering stage is left for the user to implement.Here is an example of how to estimate SpO2 percentage based on the sample PPG data from Figure 15.The ratio of ratios R for the sample PPG data is computed below,R=(AC DC)Red(AC DC)IR=4mV(323mV)25mV(920mV)=0.455 (5)The R value is the only variable in the SpO2 estimation. The standard model for computing is defined as follows:SpO2 %=110−R∗25(6)This model is often used in the literature in the context of the medical devices. However, it relies on the calibration curves [2] that are used to make sure that this linear approximation provides a reasonable result.For the sample PPG data, % SpO2 is computed as below,SpO2 %=110−0.455∗25=98.6 %(7)TIDA-0031121Appendix A. Design ResourcesDesign Archive (ZIP File)All design files AFE4403Product Folder AFE4403EVMTools FolderTIDA-0031122Appendix B. AcronymsADC Analog-to-Digital ConverterAFE Analog Front EndDAC Digital-to-Analog ConverterHb HaemoglobinHbO2Oxygenated HaemoglobinLED Light Emitting DiodeMCU Microcontroller UnitPCB Printed Circuit BoardPPG PhotoplethysmographyRX ReceiverSPI Serial Peripheral InterfaceTI Texas InstrumentsTIA Transimpedance AmplifierTIDA-0031123Appendix C. References1./bio-device/reflectance_oximeter4.pdf 2. “A technology overview of the Nellcor OxiMax pulse oximery system,” Nellcor PuritanBennet Inc., 2003IMPORTANT NOTICE FOR TI REFERENCE DESIGNSTexas Instruments Incorporated("TI")reference designs are solely intended to assist designers(“Buyers”)who are developing systems that incorporate TI semiconductor products(also referred to herein as“components”).Buyer understands and agrees that Buyer remains responsible for using its independent analysis,evaluation and judgment in designing Buyer’s systems and products.TI reference designs have been created using standard laboratory conditions and engineering practices.TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.TI may make corrections,enhancements,improvements and other changes to its reference designs.Buyers are authorized to use TI reference designs with the TI component(s)identified in each particular reference design and to modify the reference design in the development of their end products.HOWEVER,NO OTHER LICENSE,EXPRESS OR IMPLIED,BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT,AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT,IS GRANTED HEREIN,including but not limited to any patent right,copyright,mask work right, or other intellectual property right relating to any combination,machine,or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services,or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.TI REFERENCE DESIGNS ARE PROVIDED"AS IS".TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS,EXPRESS,IMPLIED OR STATUTORY,INCLUDING ACCURACY OR COMPLETENESS.TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY,FITNESS FOR A PARTICULAR PURPOSE,QUIET ENJOYMENT,QUIET POSSESSION,AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF.TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN.IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,SPECIAL,INCIDENTAL,CONSEQUENTIAL OR INDIRECT DAMAGES,HOWEVER CAUSED,ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.TI reserves the right to make corrections,enhancements,improvements and other changes to its semiconductor products and services per JESD46,latest issue,and to discontinue any product or service per JESD48,latest issue.Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its components to the specifications applicable at the time of sale,in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products.Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty.Except where mandated by applicable law,testing of all parameters of each component is not necessarily performed.TI assumes no liability for applications assistance or the design of Buyers’products.Buyers are responsible for their products and applications using TI components.To minimize the risks associated with Buyers’products and applications,Buyers should provide adequate design and operating safeguards.Reproduction of significant portions of TI information in TI data books,data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Buyer acknowledges and agrees that it is solely responsible for compliance with all legal,regulatory and safety-related requirements concerning its products,and any use of TI components in its applications,notwithstanding any applications-related information or support that may be provided by TI.Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures,monitor failures and their consequences,lessen the likelihood of dangerous failures and take appropriate remedial actions.Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.In some cases,TI components may be promoted specifically to facilitate safety-related applications.With such components,TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.Nonetheless,such components are subject to these terms.No TI components are authorized for use in FDA Class III(or similar life-critical medical equipment)unless authorized officers of the parties have executed an agreement specifically governing such use.Only those TI components that TI has specifically designated as military grade or“enhanced plastic”are designed and intended for use in military/aerospace applications or environments.Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk,and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI has specifically designated certain components as meeting ISO/TS16949requirements,mainly for automotive use.In any case of use of non-designated products,TI will not be responsible for any failure to meet ISO/TS16949.Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2014,Texas Instruments Incorporated。
太赫兹时域光谱技术用于老化炸药检测
第31卷,第5期 光谱学与光谱分析Vol .31,No .5,pp1305-13082011年5月 Spectro sco py and Spectr al Analy sisM ay ,2011 太赫兹时域光谱技术用于老化炸药检测孟 坤,李泽仁,刘 乔中国工程物理研究院流体物理研究所,四川绵阳 621900摘 要 库存炸药老化情况的检测对炸药的性能、安全性和稳定性研究意义重大。
现有的老化炸药检测手段,如扫描显微技术,傅里叶变换红外光谱技术,气相色谱-质谱技术等,或者不能分辨炸药老化与否,或者只能从表观上进行分析,不能反映炸药分子结构的变化。
首先应用密度泛函理论(DF T ),计算了炸药老化前后分子吸收频谱变化,从计算结果可以看出炸药分子老化前后的吸收光谱在老化前后变化明显;然后分析了太赫兹时域光谱(T Hz -T DS )系统及其分辨率和测量频谱范围,结合已有实验结果以及太赫兹波本身的特点,从可行性、准确性和实用性三方面对太赫兹时域光谱技术应用于炸药老化检测进行了论证,从而提出了应用太赫兹时域光谱技术进行炸药老化检测的新方法。
关键词 太赫兹;时域光谱;炸药老化中图分类号:O 433 文献标识码:A D OI :10.3964/j .issn .1000-0593(2011)05-1305-04 收稿日期:2010-06-29,修订日期:2010-09-29 基金项目:中国工程物理研究院科学技术发展基金项目(2008B0403038)资助作者简介:孟 坤,1984年生,中国工程物理研究院流体物理研究所硕士研究生 e -mail :mengk unsdu @yahoo .com .cn引 言 炸药的老化会影响到炸药的性能、安全性和稳定性[1-4],对库存炸药的老化情况的检测具有重要意义,一直是世界各国军方关注的重要问题。
炸药老化对一些炸药的机械性能以及爆炸性能有着显著的影响,如图1所示GI -920炸药老化过程中爆速和爆压的变化[1]。
音译汉翻译
1 The transistor is what started the evolution of the modern computer industry in motion.晶体管开启了现代电脑工业的革命2 The storage cell only requires one capacitor and one transistor, whereas a flip-flop connected in an array requires 6 transistors.存储单元仅需要一个电容和晶体管,并而不像触发器整列那样需要6个晶体管3 There hase been a never ending series of new op amps released each year since then, and their performance and reliability has improved to the point where present day op amps can be used for analog applications by anybody.从此以后每年都有新系列的运放发布,他们的性能和可靠性得到了提升,如今任何人都能用运放来设计模拟电路。
4 This is capable of very high speed conversion and thus can accommodate high sampling rates, but in its basic form is very power hungry.它具有高速转换能力,从而能适应高速采样速率,但它的基本形式非常耗电。
5 During the “on” period , energy is being stored within the core material of the inductor in the form of flux.在”on”阶段,能量以涌浪形式存储在电感的核芯材料里面6 The design goal of frequency synthesizers is to replace multiple oscillators in a system, and hence reduce board space and cost.频率合成器的设计目标是取代系统中多个振荡器,从而减小板卡面积和成本。
高光谱高空间分辨率遥感观测、处理与应用
㊀2023年7月A c t aG e o d a e t i c ae tC a r t o g r a p h i c aS i n i c a J u l y,2023㊀㊀第52卷㊀第7期测㊀绘㊀学㊀报V o l.52,N o.7引文格式:钟燕飞,王心宇,胡鑫,等.高光谱高空间分辨率遥感观测㊁处理与应用[J].测绘学报,2023,52(7):1212G1226.D O I:10.11947/j.A G C S.2023.20220715.Z H O N G Y a n f e i,WA N G X i n y u,HU X i n,e t a l.H y p e r s p e c t r a lw i t hh i g hGs p a t i a l r e s o l u t i o nr e m o t es e n s i n g f r o m o b s e r v a t i o n, p r o c e s s i n g t oa p p l i c a t i o n s[J].A c t a G e o d a e t i c ae tC a r t o g r a p h i c aS i n i c a,2023,52(7):1212G1226.D O I:10.11947/j.A G C S.2023.20220715.高光谱高空间分辨率遥感观测㊁处理与应用钟燕飞1,王心宇2,胡㊀鑫1,3,王少宇4,万瑜廷1,唐㊀舸2,张良培11.武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079;2.武汉大学遥感信息工程学院,湖北武汉430079;3.广州市城市规划勘测设计研究院,广东广州510060;4.首尔大学农业与生命科学学院,首尔151742H y p e r s p e c t r a lw i t hh i g hGs p a t i a l r e s o l u t i o nr e m o t es e n s i n g f r o m o b s e r v a t i o n, p r o c e s s i n g t oa p p l i c a t i o n sZ H O N GY a n f e i1,W A N G X i n y u2,H UX i n1,3,W A N GS h a o y u4,W A NY u t i n g1,T A N GG e2,Z H A N GL i a n g p e i11.S t a t eK e y L a b o r a t o r y o f I n f o r m a t i o nE n g i n e e r i n g i nS u r v e y i n g,M a p p i n g a n dR e m o t eS e n s i n g,W u h a nU n i v e r s i t y, W u h a n430079,C h i n a;2.S c h o o l o f R e m o t eS e n s i n g a n d I n f o r m a t i o nE n g i n e e r i n g,W u h a nU n i v e r s i t y,W u h a n430079, C h i n a;3.G u a n g z h o uU r b a nP l a n n i n g a n dD e s i g nS u r v e y R e s e a r c h I n s t i t u t e,G u a n g z h o u510060,C h i n a;4.C o l l e g e o fA g r i c u l t u r ea n dL i f eS c i e n c e s,S e o u l N a t i o n a l U n i v e r s i t y,S e o u l151742,S o u t hK o r e aA b s t r a c t:H y p e r s p e c t r a l r e m o t e s e n s i n g h a s a l w a y s b e e n a r e s e a r c h h o t s p o t i n t h e f i e l d o f r e m o t e s e n s i n g.H o w e v e r,l i m i t e db y i m a g i n g a p e r t u r ea n de n e r g y,i t i sd i f f i c u l t t oo b t a i n t h e i m a g e r y w i t hh y p e r s p e c t r a l a n d h i g h s p a t i a l r e s o l u t i o na t t h e s a m e t i m e,w h i c h g r e a t l y l i m i t s t h ea p p l i c a t i o no f h y p e r s p e c t r a l r e m o t e s e n s i n g i n f i n eGs c a l e t a s k s.I n r e c e n t y e a r s,w i t h t h e d e v e l o p m e n t o f h y p e r s p e c t r a l i m a g i n g t e c h n o l o g y a n d n e w o b s e r v a t i o n p l a t f o r m sr e p r e s e n t e d b y u n m a n n e d a e r i a lv e h i c l e s,h y p e r s p e c t r a la n d h i g hGs p a t i a l r e s o l u t i o n(H2,w i t hb o t hn a n o m e t e r s p e c t r a l r e s o l u t i o na n ds u b m e t e r s p a t i a l r e s o l u t i o n)h a sd e v e l o p e d r a p i d l y,p r o m o t i n g t h e a p p l i c a t i o n o f h y p e r s p e c t r a l r e m o t e s e n s i n g t e c h n o l o g y,b u t a t t h e s a m e t i m e,i t h a s a l s ob r o u g h t m o r e p r o b l e m s.T h ee x t r e m e l y h i g hs p a t i a la n ds p e c t r a l r e s o l u t i o n m a k e st h ed a t a m o r e m a s s i v e a n d h i g hGd i m e n s i o n a l,i n c r e a s e s t h e s p a t i a l h e t e r o g e n e i t y a n d s p e c t r a l v a r i a b i l i t y o f h y p e r s p e c t r a l d a t a,a n db r i n g s g r e a t e rc h a l l e n g e st oi n t e l l i g e n t i m a g ei n f o r m a t i o n p r o c e s s i n g.T h e r e f o r e,t h i sa r t i c l e r e v i e w s t h ea p p l i c a t i o n a n d d e v e l o p m e n t s t a t u s o f H2r e m o t e s e n s i n g i m a g e f r o m t h r e e a s p e c t s:H2r e m o t e s e n s i n g i m a g eb e n c h m a r k d a t a s e t,H2r e m o t e s e n s i n g i m a g e i n t e l l i g e n t i n f o r m a t i o n p r o c e s s i n g a n d t y p i c a l a p p l i c a t i o n o f H2r e m o t e s e n s i n g i m a g e.K e y w o r d s:h y p e r s p e c t r a la n d h i g hGs p a t i a lr e s o l u t i o nr e m o t es e n s i n g;H2r e m o t es e n s i n g b e n c h m a r k d a t a s e t;i n t e l l i g e n t p r o c e s s i n g a n da p p l i c a t i o n o f H2r e m o t e s e n s i n g i m a g eF o u n d a t i o n s u p p o r t:T h eN a t i o n a l K e y R e s e a r c h a n dD e v e l o p m e n t P r o g r a mo f C h i n a(N o s.2022Y F B3903404;2022Y F B3903502);T h eN a t i o n a l N a t u r a l S c i e n c eF o u n d a t i o n o f C h i n a(N o s.42071350;42101327)摘㊀要:高光谱遥感技术是遥感领域的研究热点之一.然而,由于成像口径与能量等限制因素,难以同时获得高光谱和高空间分辨率的图像,这极大限制了高光谱遥感在精细尺度任务中的应用.近年来,随着高光谱成像技术及无人机为代表的新型观测平台的发展,高光谱高空间(双高,同时具备纳米级光谱分辨率与亚米级空间分辨率)遥感技术发展迅猛,推动了高光谱遥感技术的应用,但同时也带来了更多问题.极高的空间与光谱分辨率使得数据更加海量高维,加剧了高光谱数据的空间异质性和光谱变异性,为影像智能信息处理带来更大的挑战.为此,本文将从双高遥感影像基准数据集㊁双高遥感影像智能信息处理㊁双高遥感影像典型应用3个方面论述双高遥感应用与发展现状.Copyright©博看网. All Rights Reserved.第7期钟燕飞,等:高光谱高空间分辨率遥感观测㊁处理与应用关键词:高光谱高空间遥感;双高遥感基准数据集;双高遥感智能处理与应用中图分类号:T P 751ʒP 237㊀㊀㊀㊀文献标识码:A ㊀㊀㊀㊀文章编号:1001G1595(2023)07G1212G15基金项目:国家重点研发计划(2022Y F B 3903404;2022Y F B 3903502);国家自然科学基金(42071350;42101327)㊀㊀看得广㊁辨得清㊁识得多 是光学遥感不断追求的目标.高光谱成像技术作为20世纪遥感技术最重要的突破之一,具备 光谱连续㊁图谱合一 的特性,可同步获取地物空间维与光谱维的信息.相比于可见光影像 所见即所得 的特点,高光谱影像中每个像元包含了数百个窄而连续波段组成光谱向量,可实现超视觉属性的精细识别,在矿物识别㊁军事侦察㊁城市监测㊁精准农业等众多领域展现出巨大应用价值[1],已经成为人类研究地表生态环境与认识理解地球的重要信息来源.近年来,高光谱遥感技术发展迅猛,美国㊁德国㊁中国㊁意大利㊁印度等国相继发射了搭载高光谱载荷的对地观测卫星,但受限于卫星口径㊁能量㊁体积㊁重量等诸多因素限制,高光谱遥感卫星的空间分辨率普遍较低(数米至数百米)[2G3].然而,在精细化对地观测应用中,迫切需要同步获取高空间与高光谱分辨率数据,以实现农作物冠层尺度分析㊁林业中单木信息识别㊁军事中伪装目标识别等应用.从观测角度来说,航空遥感(有人机和无人机等)是目前高光谱高空间(双高,同时具备纳米级光谱分辨率与亚米级空间分辨率)数据的主要来源[4].近年来,随着无人机高光谱遥感技术发展迅猛,可实现重点区域的低成本㊁高灵活的双高数据获取,已广泛应用于环境监测㊁灾害险情调查㊁林业虫害监测和精准农业等领域.同时新型光谱成像方式㊁高灵敏探测器㊁多光谱/高光谱影像融合㊁计算光谱成像等技术的发展也将为双高数据获取提供更多有效手段[5].相比于中低分辨率高光谱观测,双高观测可同时实现地物空间细节和光谱属性的全面感知,同时也为高光谱数据处理与应用提出了新挑战.双高观测中可分辨的地物单元与物质组成更加详尽,丰富的空间细节引起了极高的地物空G谱异质性, 同物异谱 现象大量存在导致地物类内方差显著增大,光谱统计分布特征更加复杂.此外,双高数据空间维与光谱维存在大量的信息冗余,数据海量高维的特点对处理方法的效率也提出了更高要求.本文主要围绕高光谱高空间遥感技术,以观测(标准数据集构建)㊁智能处理(波段选择㊁精细分类㊁目标探测)与地学应用为主线展开讨论(图1),为双高遥感研究与应用发展提供一定的理论支撑.图1㊀双高遥感影像 观测G处理G应用 理论体系F i g .1㊀H 2r e m o t e s e n s i n g f r o mo b s e r v a t i o n ,p r o c e s s i n g t o a p pl i c a t i o n s 1㊀双高遥感公开数据集本节从双高(纳米级光谱分辨率与亚米级空间分辨率)遥感数据集的角度出发,综述近几年各大研究单位发布的双高影像基准数据与样本集,归纳与总结成像平台㊁传感器㊁光谱分辨率㊁空间分辨3121Copyright ©博看网. All Rights Reserved.J u l y 2023V o l .52N o .7A G C S h t t p :ʊx b .c h i n a s m p .c o m 率㊁波段数㊁影像大小㊁地物类别㊁发布年份和发布单位等信息,分析双高观测数据特点.(1)航空双高遥感数据集,主要包括徐州H Y S P E X 数据集[6](用于徐州煤矿矿区精细分类,包含裸地㊁湖㊁树㊁农作物和煤等9类地物)㊁A e r o R I T 数据集[7](包含车辆㊁建筑㊁道路㊁水体㊁植被5类地物)㊁马蹄湾村数据集[8](包含水稻茬㊁草地㊁榆树㊁白蜡和国槐等19类地物)㊁T A I G A林业遥感数据集[9](包含3个类别与10个林分连续变量信息(树干密度㊁断面面积㊁平均树高㊁叶面积指数等))㊁L u o ji a GH S S R 数据集[10](包含稻田㊁树林㊁灌木林㊁建筑及乡路等23类地物).(2)无人机双高遥感数据集,主要包括WHU GH i 基准数据集[11](包含简单农业区域L o n gK o u ㊁城乡结合区域H a n C h u a n ㊁复杂农业区域H o n g H u 3个场景的全标注分类数据集(h t t p:ʊr s i d e a .w h u .e d u .c n /r e s o u r c e _WH U H i _s h a r i n g .h t m ),以及面向目标探测的R i v e r 数据集(h t t p :ʊr s i d e a .w h u .e d u .c n /r e s o u r c e _WH U H i r i v e r _s h a r i n g.h t m )[12])㊁U A V GH S I GC r o p 数据集[13](包含玉米㊁小米㊁大白菜㊁胡萝卜㊁叶芥末等29个地物).图2与表1展示了WH U GH i GH o n gH u 数据集的类别标注信息,包含22种地物类别(17种农作物),该数据具有细碎化土地利用特点复杂农业场景,农作物嵌套种植且种类相似.图2㊀WHU GH i GH o n gH u 数据集F i g .2㊀WHU GH i GH o n gH ud a t a s e t 表1㊀WH U GH i GH o n gH u 地物类别标记T a b .1㊀G r o u n d Gt r u t ha n n o t a t i o no fWH U GH i GH o n gH u2㊀双高遥感影像智能信息处理相比于传统高光谱卫星影像,双高遥感影像可同步获取地物精细光谱与空间信息,可分辨的地物基本单元与物质组成更详尽,同时也带来了数据海量高维㊁空G谱异质性等新挑战.首先,双高遥感观测获取的数据量巨大,空间维与光谱维存在严重信息冗余,对特征提取与算法处理效率提出了更高要求.其次,如图3所示,双高遥感影像存在严重的空G谱异质性问题.本文选取了S a l i a n s 高光谱影像和WHU GH i 双高影像进行空G谱异质性分析,采用相对空间异质指数[14]对比S a l i a n s 与WHU GH i 数据的空间异质性,选取从S a l i a n s 花椰菜和青草类别与WHU GH i 油菜类别中随机选取的1000条光谱曲线对比光谱变异性,可明显看出双高数据的空间异质性与光谱可变性更强.本文将上述现象描述为双高数据的空G谱异质性问题,即分辨率提升㊁地物细节凸显导致双高数据存在严重的 同物异谱 问题,同类地物的类内方差增大,不同地物的类间距离减小,加剧了地物精细分类与目标探测的难度.针对上述代表性问题,本章主要从双高遥感影像的波段选择㊁精细分类与目标探测角度出发,综述双高遥感影像智能信息处理方法.2.1㊀双高遥感影像波段选择不同于特征提取方法,波段选择,旨在从高维数据中筛选出能够反映地物诊断性光谱特征的波段子集,进而降低后续计算负担,提升应用精度与处理效率[15].本节主要围绕双高波段选择方法展开讨论,依据选择策略讨论基于排序㊁搜索㊁聚4121Copyright ©博看网. All Rights Reserved.第7期钟燕飞,等:高光谱高空间分辨率遥感观测㊁处理与应用类㊁稀疏㊁嵌入㊁深度学习6大类方法.图3㊀S a l i n a s 数据与WHU GH I GH o n gH u 数据光谱可变性与空间异质性对比F i g .3㊀T h e v i s u a l i z a t i o no f t h e s p e c t r a l v a r i a t i o na n d t h e s p a t i a l h e t e r o g e n e i t y o f S a l i n a s a n d WHU GH I GH o n gH u ㊀㊀(1)基于排序的方法,利用预定义的波段优先级标准对每个光谱波段的重要性进行量化,根据量化结果对波段进行排序.根据评估测度是否利用真实地物类别标签,可将其分为无监督测度与有监督测度.最大方差主成分分析(M V P C A )[16]是无监督中最典型的方法之一,其计算各波段影像的方差,并以主成分组成波段子集.有监督测度方法,如基于互信息(M I )[17]的方法通过计算各个波段影像与真实类别标签影像之间的联合直方图,获得互信息进行排序.基于排序的方法整体上复杂度较低,但由于各波段大多单独利用特定参数进行评估,仅是优势波段的简单叠加,割裂了波段之间的组合关系[18].(2)基于搜索的方法,主要思想为在给定评价函数的条件下,按照一定搜索策略迭代波段子集解,使得评价函数达到最优.由于双高影像存在着更强的谱间相关性,解空间呈现出愈发高维多峰的特征,采用高效的更新策略是关键步骤.常见的搜索策略主要包括增删搜索法与更新搜索法.典型的增删搜索法为顺序前向搜索(S F S)[19],其解集从空集开始,每次选取使目标函数最大的波段进入解集,直至达到最大选取数目.典型的更新搜索法为启发性算法,如二进制的遗传算法(G A )[20]利用0/1编码表征波段子集解,引入交叉变异算子获取新解,根据适应度函数迭代解种群与输出最佳解.基于搜索的方法整体上易于实现,但需要对波段选择问题进行有效建模.(3)基于聚类的方法,从波段特征相似性的角度出发,在全谱段进行聚类以获得不同的波段子聚类,在每个子聚类中进行筛选获得代表性的波段,构成最终的子集.快速邻域分组方法(F N G B S)[21]通过计算每个分组内各波段与初始中心波段之间的相似度,迭代获得每个细分组,通过信息熵排序,确定最终的波段子集组成.支配集提取方法(D S E B S )[22]通过局部空谱一致性算子度量波段的信息量与独立性.基于聚类的方法依赖于波谱相似性对整个高光谱影像进行分析,但如何在每个波段子类中确定代表性波段仍然值得进一步研究,并且基于聚类的方法对于初始的聚类数与位置往往非常敏感.(4)基于稀疏的方法,立足于稀疏性理论,希望将每个波段向量在合适的基字典中使用与原子相关的少数非零系数进行表达.稀疏表示方法(S pa B S )[23]通过K GS V D 获得高光谱数据的稀疏5121Copyright ©博看网. All Rights Reserved.J u l y2023V o l.52N o.7A G C S h t t p:ʊx b.c h i n a s m p.c o m表示,揭示了各个波段在形成双高影像时的重要程度.改进稀疏子空间聚类的方法(I S S C)[24]假设每个波段可以稀疏地表示为其子空间内其他波段的线性或仿射组合.基于稀疏的方法对双高影像进行了稀疏假设,并据此建模成稀疏优化问题,整体上降低了计算复杂度,但对于双高影像的稀疏假设是否全面尚未得到充分的证实.(5)基于嵌入的方法,将整个波段选择和学习模型进行融合,依据学习模型的精度反馈评估波段子集,以实现应用上最佳的波段子集选取.本文主要以分类应用为例,应用最广泛是S VM 分类器[25],递归特征消除以S VM训练阶段计算出的权重值作为排序准则,去除冗余波段.基于嵌入的方法由于波段选择过程与应用过程耦合,难以直接评估波段选择方法本身的性能,更多地取决于学习算法的表现,复杂度较高.(6)基于深度学习的方法,近年来,随着深度学习技术在高光谱遥感影像处理各领域应用的不断发展,相关研究[26]结合空间/光谱注意力机制,设计卷积神经网络(C N N),实现对高光谱影像的显著性波段选择.文献[27]提出了一种端到端的高光谱波段选择框架B SGN e t s,根据B AM和重建网络实施的不同,B SGN e t s包括全连接(F C N)与卷积网络(C N N)两种形式.基于深度学习的方法利用深层次的网络结构提取各波段间的非线性依赖关系,可有效提取显著性波段,但也带来了更加庞大的计算量.本节在WH UGH iGH o n g H u双高数据集上进行试验,选取了P C A[15]㊁I C A[15]㊁M V P C A[16]㊁M I[17]㊁S F S[19]㊁G A[20]㊁F N G B S[21]㊁D S E B S[22]㊁S p a B S[23]㊁I S S C[24]㊁B SGN e tGF C[27]㊁B SGN e tGC o n v[27]12种代表性方法,分类精度变化图和分类精度表分别如图4和表2所示.从分类精度来看,与理论分析一致,特征提取方法(P C A和I C A)在特征数较少时具备显著优势,而特征数较多时,不及其他波段选择方法,基于排序的方法得到的波段子集整体精度较低,其他方法在波段数超过30后可获得优于全波段的效果,其中,I S S C方法具备明显优势, B S_N e t_F C整体精度优于传统方法.图5展示了在设定波段数为9时选取波段的分布情况,可以发现,MV P C A和M I选取的波段聚集在较紧密的范围内,F N G B S选取的波段最为均匀, D S E B S选取波段密度正比于光谱变化坡度, S p a B S在所有谱段内获取了差异性较大的波段, I S S C均匀分布在曲线变化剧烈区域,B S_N e t_F C 在红光与近红外交界附近选取较多波段.表2㊀波段选择分类精度T a b.2㊀B a n d s e l e c t i o n c l a s s i f i c a t i o na c c u r a c y特征选择/特征提取总体精度O A K a p p a系数均值ʃ标准差最值均值ʃ标准差最值P C A[15]0.65ʃ0.0310.700.59ʃ0.0350.64I C A[15]0.65ʃ0.0310.680.58ʃ0.0350.62MV P C A[16]0.43ʃ0.0750.500.35ʃ0.0680.42M I[17]0.35ʃ0.0500.430.27ʃ0.0450.35S F S[19]0.61ʃ0.0700.650.54ʃ0.0760.64G A[20]0.64ʃ0.0640.690.57ʃ0.0680.62F N G B S[21]0.65ʃ0.0570.680.58ʃ0.0620.62D S E B S[22]0.64ʃ0.0640.690.58ʃ0.0690.63S p a B S[23]0.60ʃ0.0750.660.53ʃ0.0770.60I S S C[24]0.65ʃ0.0580.690.59ʃ0.0610.63B SGN e tGF C[27]0.67ʃ0.0390.690.60ʃ0.0420.62B SGN e tGC o n v[27]0.62ʃ0.0350.650.56ʃ0.0390.58A l l b a n d s0.670.670.600.60图4㊀不同波段选择/特征提取方法分类精度变化曲线F i g.4㊀C l a s s i f i c a t i o na c c u r a c y c u r v e s o f d i f f e r e n t b a n d s e l e c t i o nm e t h o d s 6121Copyright©博看网. All Rights Reserved.第7期钟燕飞,等:高光谱高空间分辨率遥感观测㊁处理与应用图5㊀波段选择方法选取波段对比F i g .5㊀C o m pa r i s o n o fs e l e c t e db a n d so fd i f f e r e n t b a n d s e l ec t i o nm e t h od s2.2㊀双高遥感影像精细分类高光谱影像分类旨在赋予影像中每个像元唯一的类别标签,其分类精度将直接影响后续处理和解译任务的准确性.然而,相比于中低分辨率的高光谱影像,空间分辨率的显著提升使得双高遥感影像中同物异谱现象大量发生,地物类内方差明显增大,光谱特征统计分布更加复杂,地物光谱信息的统计可分性严重减弱[28],导致早期支持向量机㊁核极限学习机[29]和低秩稀疏表示[30]等分类方法在双高影像分类面临极大挑战.为此,本章综述主要面向基于深度学习的双高分类研究,根据分类网络数据输入的形式划分为基于空间取块(P a t c h Gb a s e d )和无须空间取块(P a t c h Gf r e e)两大类方法.2.2.1㊀P a t c h Gb a s e d 深度学习双高影像分类方法如图6所示,P a t c h Gb a s e d 深度学习分类方法以标记像元为中心选取邻域的三维 空间块 作为网络模型的输入,输出中心像元的类别标签.目前,针对双高遥感分类的方法模型主要包括空谱信息融合提取网络和双分支空谱融合网络两大类.(1)空谱信息融合提取网络:该类模型以三维 空间块 为输入数据,利用深层神经网络学习全部光谱信息和邻域的空间信息.该类模型早期利用2D C N N 或3D C N N 提取空谱融合特征进行分类,然后采用条件随机场[11]等后处理方法消除双高影像分类结果中错分的孤立区域.随着研究的不断深入,基于图卷积网络[31]㊁联合注意力机制[32]㊁视觉T r a n s f o r m e r [33]等优异的网络架构也被开发出来,可以显著提升双高影像的空谱融合特征提取能力.(2)双分支空谱特征融合网络:该类网络构建2个分支分别为侧重光谱信息提取的光谱分支和空间信息提取的空间分支[34G35].光谱分支一般采用光谱注意力机制㊁L S T M 模型挖掘光谱连续特征,空间分支一般采用空间注意力机制[36]㊁多尺度残差模块等操作捕获降维后双高影像的空间特征,其中降维的方法包括波段选择㊁主成分分析(P C A )和最小噪声分离(MN F )等.最后,双分支分别将提取的空谱特征级联后输入到全连接层进行整合,进而实现空谱信息融合.P a t c h Gb a s e d 深度学习分类模型在双高影像上取得了优异的结果,但是该类模型仍存在一些不足:① 空间块 的最优尺寸受到空间分辨率和地物分布等多种因素的影响,导致 空间块 的最优尺寸难以确定,且不同影像的最优尺寸存在差异;② 空间块 输入导致后续的深度学习模型仅利用局部空谱信息,局部空谱融合的方式在空间分辨率极高的双高影像中会产生错分的孤立区域现象;③空间取块的方式使得相邻像元空间块存在着大量的数据冗余,使得网络在模型推理时需要耗费大量的时间和计算成本.图6㊀基于空间取块机制的卷积神经网络分类F i g.6㊀P a t c h Gb a s e d c o n v o l u t i o n a l n e u r a l n e t w o r k f o rH S I c l a s s i f i c a t i o n 2.2.2㊀P a t c h Gf r e e 深度学习双高影像分类方法为了缓解P a t c h Gb a s e d 的方法在双高影像分类的局限性,一些研究学者开始提出无须空间取块(P a t c h Gf r e e)的分类方法,其将全局影像(或分7121Copyright ©博看网. All Rights Reserved.J u l y2023V o l.52N o.7A G C S h t t p:ʊx b.c h i n a s m p.c o m区裁剪为若干个NˑNˑB的图像块)作为网络的输入,通过全卷积神经网络实现全局空谱信息融合缓解双高影像极高的光谱变异性.相比于P a t c hGb a s e d的方法,P a t c hGf r e e的方法避免了空间取块机制最佳窗口选择的难题,并且具有更优的模型推理效率.(1)全局影像输入:当双高影像的数据量较小时,可以直接将全局影像作为模型的输入.文献[37]首次提出快速全卷积深度网络实时分类框架F P G A,其在编码器中嵌入光谱注意力模块提升特征提取效率,相比于P a t c hGb a s e d的方法在精度和效率上都有极大的提升.但是,F P G A方法受到卷积核的限制无法捕获长距离像素间的依赖关系,同时难以应对地物尺度多样性的挑战,导致其在对空谱异质性极高的双高影像分类时仍会出现错分孤立区域现象.在此基础上,一些融合多尺度信息㊁长距离上下文信息等双高分类网络相继被提出.在融合多尺度信息方面,文献[38]通过深层次残差网络空洞卷积空间金字塔池化(a t r o u s s p a t i a l p y r a m i d p o o l i n g,A S P P)提取高层语义信息和多尺度上下文信息,极大缓解了双高影像严重的空间异质性和地物尺度差异的挑战.文献[39]在A S P P基础上进一步提出了尺度注意力模块,其通过自适应聚合多尺度上下文特征更好解决地物尺度多样性的挑战,并且通过聚合光谱G空间G尺度注意力机制实现了地物亚类之间的精细区分.在长距离上下文依赖关系捕获方面,文献[40]通过图注意力网络对影像长距离空间上下文进行建模,并通过融合卷积神经网络提取的特征,使网络获得了更加优异的地物分类精度.(2)分区裁剪输入:当双高影像的数据量较大时,会采用分区裁剪的输入方式来降低计算代价.文献[7]将A e r o R I T数据集按照50%重叠率裁剪为空间尺寸为64ˑ64的图像块,在U N e t 模型的基础上研发了轻量化的UGN e tGm模型,实现了对建筑物㊁道路㊁汽车等5类地物的精细分类.文献[10]在H R N e t模型的基础上针对双高影像的特点提出3DGH R N e t,在L u o j i aGH S S R数据集(6438个256ˑ256图像块)的测试数据中取得了优异精度.文献[13]利用残差连接的T r a n s f o r m e r层来学习影像的全局上下文特征,其构建的H S IGT r a n s U N e t模型在U A VGH S IGC r o p数据集中(433个96ˑ96图像块)实现了对27类作物的精细分类.2.2.3㊀双高分类试验与分析本节以WHUGH iGH o n g H u双高数据集进行双高分类方法的对比分析试验,其中训练集为每类100个样本,其余标记样本作为测试集.试验方法包括:①基于统计学习的方法,如光谱角匹配法(S AM)㊁最大似然分类法(M L C)和支持向量机(S VM);②P a t c hGb a s e d深度学习方法,如一维卷积光谱特征网络(F EG1D C N N[41])㊁二维卷积空间特征网络(RGP C A C N N[42])㊁三维卷积空谱联合特征提取(AGF CG3D C N N[43]和H y b r i d S N[44])㊁双分支空谱特征融合网络(S S A N[45]);③P a t c hGf r e e深度学习方法,如F P G A[37]㊁S3A N e t[39]㊁F u l l C o n t N e t[46]和S S D G L[47].可视化分类图和分类精度表分别如图7和表3所示.S AM㊁M L C㊁S VM和F EG1D C N N 4类方法由于仅利用双高影像的光谱信息,存在严重的地物错分现象,其分类精度整体在75%以下.其中,F EG1D C N N方法可以挖掘更深层次的光谱信息,其分类性能优于基于统计学习的3种光谱分类方法.RGP C A C N N㊁AGF CG3D C N N㊁H y b r i d S N和S S A N4种P a t c hGb a s e d分类方法可以同时利用双高影像光谱信息和空间信息,分类性能得到极大的提升,其中H y b r i d S N精度达到了90.02%.然而,该类方法仅能利用局部空间信息难以有效解决双高影像极高的光谱变异性,导致分类结果中仍有大量错分的孤立区域.同时,该类方法逐像元的模型推理方式需要大量的计算时间.相比于P a t c hGb a s e d分类方法, F P G A㊁S3A N e t㊁F u l l C o n t N e t和S S D G L4种P a t c hGf r e e分类方法可以融合全局空谱信息,极大地消除了孤立错分情况且分类性能也有着明显提升,总体分类精度均优于97%,全局输入的方式也极大提升了模型的推理速度.然而,以整张影像作为输入的全卷积网络模型显存占用较大,对计算机的性能要求较高.2.3㊀双高遥感影像目标探测高光谱目标探测旨在确定特定或异常目标在每个像元中存在性问题,通过像元与目标的置信度值进行度量[48].在传统中低分辨率遥感影像中,通常假设目标具有小尺寸与低比例等特性,甚至假设目标为亚像元.与之相比,双高影像空间分辨率更高,目标通常表现为超像元形式,且具备如纹理㊁形状等空间上下文信息,因此基于空G谱特征的目标探测方法效果一般由于传统基于光谱8121Copyright©博看网. All Rights Reserved.第7期钟燕飞,等:高光谱高空间分辨率遥感观测㊁处理与应用特征的探测方法.本节根据目标光谱先验信息是否已知,将现有方法划分为已知先验的目标探测方法和先验未知的异常探测方法,并分别进行试验分析.图7㊀不同方法分类结果定性对比(WHU GH i GH o n gH u )F i g .7㊀C o m p a r i s o no f d i f f e r e n t c l a s s i f i c a t i o nm e t h o d sb y u s i n g t h eWHU GH i GH o n g H ud a t a s e t 表3㊀WH U GH i GH o n gH u 分类精度表T a b .3㊀C l a s s i f i c a t i o na c c u r a c y o fWH U GH i GH o n gH u 分类方法推理时间/s 显存占用/M B总体精度/(%)S AM 53.01G45.66M L C78.06G58.53S VM10.03G71.34F E G1D C N N2479.51101971.62R GP C AC N N5584.38110576.14A GF C G3D C N N 1899.75110383.09H y b r i d S N 5477.43105790.02S S A N2837.80102384.46F P G A11.51590197.56S 3A N e t11.77884997.82F u l l C o n t N e t 11.86975197.91S S D G L11.101036598.162.3.1㊀已知先验的目标探测已知目标先验时,探测算法利用目标的先验光谱特征将高光谱影像中的目标与其他地物区分[49].由于目标在高光谱影像中所占比例极小.高光谱目标探测算法可大致分为基于统计的方法㊁基于核的方法㊁基于表示的方法和基于深度学习的方法.基于统计的方法可以细分为结构化背景模型和非结构化背景模型[50].结构化背景模型使用子空间模型对背景光谱变化进行建模,目标探测问题归结为在式(1)所二元假设中进行选择的问题[51]H 0:x =B a b +w目标不存在H 1:x =S a t +B a b +w目标存在}(1)式中,矩阵B 和S 分别定义了背景的变化子空间和目标的变化子空间.基于结构化背景模型的典型方法包括:正交子空间投影[52]㊁匹配子空间探测器[51]等.非结构化背景模型使用统计分布描述背景变化,一般将背景和噪声进行统一建模为一个均值为0,协方差矩阵为Γb 的多元正态分布,无须对B 和w 进行显式求解.基于非结构化背景模型的典型方法包括:约束能量最小化方法(C E M )[52],自适应一致性余弦估计(A C E )[53]等.然而,传统统计方法存在非线性混合建模不足等问题.为此,基于核的方法被提出,该类方法利用核函数将高光谱数据从原始特征空间投影到高维特征空间,使得原始特征空间的非线性混合转化为高维特征空间的线性混合,从而可以利用更简单的判别准则实现探测.基于核的方法包括核匹配子空间探测器[54]和核正交子空间投影[55]等.为增强子空间模型表示能力,稀疏表示被引入并应用于高光谱目标探测问题,由此产生了基9121Copyright ©博看网. All Rights Reserved.。
光纤通信中常用英文简写
光纤通信中常用英文简写光纤通信中常用英文缩写Acronymsac alternating current交变电流交流AM amplitude modulation幅度调制AON all-optical network全光网络APD avalanche photodiode雪崩二极管ASE amplified spontaneous emission放大自发辐射ASK amplitude shift keying幅移键控ATM asynchronous transfer mode异步转移模式BER bit error rate误码率BH buried heterostructure掩埋异质结BPF band pass filter带通滤波器C3cleaved-coupled cavity解理耦合腔CATV common antenna cable television有线电视CDM code division multiplexing码分复用CNR carrier to noise ratio载噪比CSO Composite second order复合二阶CPFSK continuous-phase frequency-shift keying连续相位频移键控CVD chemical vapour deposition化学汽相沉积CW continuous wave连续波DBR distributed Bragg reflector分布布拉格反射DFB distributed feedback分布反馈dc direct current直流DCF dispersion compensating fiber色散补偿光纤DSF dispersion shift fiber色散位移光纤DIP dual in line package双列直插DPSK differential phase-shift keying差分相移键控EDFA erbium doped fiber amplifier掺铒光纤激光器FDDI fiber distributed data interface光纤数据分配接口FDM frequency division multiplexing频分复用FET field effect transistor场效应管FM frequency modulation频率调制FP Fabry Perot法布里里-珀落FSK frequency-shift keying频移键控FWHM full width at half maximum半高全宽FWM four-wave mixing四波混频GVD group-velocity dispersion群速度色散HBT heterojunction-bipolar transistor异质结双极晶体管HDTV high definition television高清晰度电视HFC hybrid fiber-coaxial混合光纤纤/电缆IC integrated circuit集成电路IMD intermodulation distortion交互调制失真IM/DD intensity modulation with direct detection强度调制直接探测ISDN integrated services digital network综合业务数字网ISI intersymbol interference码间干扰LAN local-area network局域网LED light emitting diode发光二极管L-I light current光电关系LPE liquid phase epitaxy液相外延MAN metropolitan-area network城域网MBE molecular beam epitaxy分子束外延MOCVD metal-organic chemical vapor deposition金属有机物化学汽相沉积MCVD Modified chemical vapor deposition改进的化学汽相沉积MONET Multiwavelength optical network多波长光网络MPEG motion-picture entertainment group视频动画专家小组MPN mode-partition noise模式分配噪声MQW multiquantum well多量子阱MSK minimum-shift keying最小频偏键控MSR mode-suppression ratio模式分配噪声MZ mach-Zehnder马赫泽德NA numerical aperture数值孔径NF noise figure噪声指数NEP noise-equivalent power等效噪声功率NRZ non-return to zero非归零NSE nonlinear Schrodinger equation非线性薛定额方程OC optical carrier光载波OEIC opto-electronic integrated circuit光电集成电路OOK on-off keying开关键控OPC optical phase conjugation光相位共轭OTDM optical time-division multiplexing光时分复用OVD outside-vapor deposition轴外汽相沉积OXC optical cross-connect光交叉连接PCM pulse-code modulation脉冲编码调制PDF probability density function概率密度函数PDM polarization-division multiplexing偏振复用PON passive optical network无源接入网PSK phase-shift keying相移键控RIN relative intensity noise相对强度噪声RMS root-mean-square均方根RZ return-to-zero归零RA raman amplifier喇曼放大器SAGCM separate absorption,grading,charge,and multiplication 吸收渐变电荷倍增区分离APD的一种SAGM separate absorption and multiplication吸收渐变倍增区分离APD的一种SAM separate absorption and multiplication吸收倍增区分离APD的一种SBS stimulated Brillouin scattering受激布里渊散射SCM subcarrier multiplexing副载波复用SDH synchronous digital hierarchy同步数字体系SLA/SOA semiconductor laser/optical amplifier半导体光放大器SLM single longitudinal mode单纵模SNR signal-to-noise ratio信噪比SONET synchronized optical network同步光网络SPM self-phase modulation自相位调制SRS stimulated Raman scattering受激喇曼散射STM synchronous transport module同步转移模块STS synchronous transport signal同步转移信号TCP/IP transmission control protocol/internet protocol传输控制协议议/互联网协议TDM time-division multiplexing时分复用TE transverse electric横电模TM transverse magnetic横磁TW traveling wave行波VAD vapor-axial epitaxy轴向汽相沉积VCSEL vertical-cavity surface-emitting laser垂直腔表面发射激光器VPE vapor-phase epitaxy汽相沉积VSB vestigial sideband残留边带WAN wide-area network广域网WDMA wavelength-division multiple access波分复用接入系统WGA waveguide-grating router波导光栅路由器XPM cross-phase modulation交叉相位调制YIG yttrium iron garnet钇铁石榴石晶体DWDM dense wavelength division multiplexing/multiplexer密集波分复用用/器FBG fiber-bragg grating光纤布拉格光栅AWG arrayed-waveguide grating阵列波导光栅LD laser diode激光二极管AOTF acousto optic tunable filter声光调制器AR coatings antireflection coatings抗反膜SIOF step index optical fiber阶跃折射率分布GIOF graded index optical fiber渐变折射率分布光纤通信技术课程常用词汇Cross-talk串音Passive component无源器件Active component有源器件Soliton孤子Jitter抖动Heterodyne外差Homodyne零差Transmitter发射机Receiver接收机Transceiver module收发模块Birefringence双折射Chirp啁啾Binary二进制Chromatic dispersion色度色散Cladding包层Jacket涂层Core cladding interface纤芯包层界面Gain-guided semiconductor laser增益波导半导体激光器Index-guide semiconductor laser折射率波导半导体激光器Damping constant阻尼常数Threshold阈值Power penalty功率代价Dispersion色散Attenuation衰减Nonlinear optical effect非线性效应Polarization偏振Double heterojunction双异质结Electron-hole recombination电子空穴复合Linewidth线宽Preamplifer前置放大器Inline amplifier在线放大器Power amplifier功率放大器Extinction ratio消光比Eye diagram眼图Fermi level费米能级Multimode fiber多模光纤Higher-order dispersion高阶色散Dispersion slope色散斜率Block diagram原理图Intermode dispersion模间色散Intramode dispersion模内色散Filter滤波器Directional coupler定向耦合器Isolator隔离器Circulator环形器Detector探测器Laser激光器Polarization controller偏振控制器Attenuator衰减器Modulator调制器Optical switch光开关Lowpass filter低通滤波器Highpass filter高通滤波器Bandpass filter带通滤波器Longitudinal mode纵模Transverse mode横模Lateral mode侧模Sensitivity灵敏度Linewidth enhancement factor线宽增强因子Packet switch分组交换White noise白噪声Responsibility响应度Waveguide dispersion波导色散Stripe geometry semiconductor laser条形激光器Ridge waveguide脊波导Zero-dispersion wavelength零色散波长Free spectral range自由光谱范围Surface emitting LED表面发射LEDEdge emitting LED边发射LEDEthernet以太网Shot noise散粒噪声Thermal noise热噪声Quantum limit量子极限Sensitivity degradation灵敏度劣化Intensity noise强度噪声Timing jitter时间抖动Front end前端Packaging封装Maxwell’s equations麦克斯韦方程组Material dispersion材料色散Rayleigh scattering瑞利散射Nonradiative recombination非辐射复合Driving circuit驱动电路ADM Add Drop Multiplexer分插复用器:AON Active Optical Network有源光网络:APON ATM Passive Optical Network ATM无源光网络:ADSL Asymmetric Digital Subscriber Line非对称数字用户线:AA Adaptive Antenna自适应天线:ADPCM Adaptive Differential Pulse Code Modulation自适应脉冲编码调制: ADFE Automatic Decree Feedback Equalizer自适应判决反馈均衡器:AMI Alternate Mark Inversion信号交替反转码:AON All Optical Net全光网AOWC All Optical Wave Converter全光波长转换器:ASK Amplitude Shift Keying振幅键控:ATPC Automatic Transfer Power Control自动发信功率控制: AWF All Wave Fiber全波光纤:AU Administrative Unit管理单元:AUG Administrative Unit Group管理单元组:APD Avalanche Diode雪崩光电二极管:BA Booster(power)Amplifier光功率放大器:BBER Background Block Error Ratio背景误块比:BR Basic Rate Access基本速率接入:Bluetooth蓝牙:C Band C波带:Chirp啁啾:C Container C容器:CSMA/CD Carrier Sense Multiple Access with Collision Detection载波侦听多址接入/碰撞检测协议:CSMA/CA Carrier Sense Multiple Access with Collision Avoidance载波侦听多址接入/避免冲撞协议:CNR Carrier to Noise Ratio载噪比:CP Cross polarization交叉极化:DCF Dispersion Compensating Fiber色散补偿单模光纤DFF Dispersion-flattened Fiber色散平坦光纤:DR Diversity Receiver分集接收DPT Dynamic Packet Transport动态包传输技术:ODM Optical Division ltiplexer光分用器:DSF Dispersion-Shifted Fiber色散移位光纤:DTM Dynamic Synchronous Transfer Mode动态同步传送模式: DWDM Dense Wavelength Division Multiplexing密集波分复用: DLC Digital loop carrier数字环路载波:DXC Digital cross connect equipment数字交叉连接器:EA Electricity Absorb Modulation电吸收调制器:EB Error Block误块:ECC Embedded Control Channel嵌入控制通路: EDFA Erbium-doped Fiber Amplifier掺铒光纤放大器EDFL Erbium-doped Fiber Laser掺铒光纤激光器: ES Errored Second误块秒:ESR Errored Second Ratio误块秒比:FEC Forward Error Correction前向纠错:FWM Four-wave Mixing四波混频:FDMA Frequency Division Multiple Access频分多址: FTTB Fiber to the Building光纤到大楼:FTTC Fiber to the Curb光纤到路边FTTH Fiber to the Home光纤到户:FA Frequency agility频率捷变:CSMF Common Single Mode Fiber单模光纤:DSF Dispersion-Shifted Fiber色散位移光纤:GE Gigabit Ethernet千兆以太网技术:GIF Graded Index Fiber渐变型多模光纤:GS-EDFA Gain Shifted Erbium-doped Fiber Amplifier增益平移掺饵光纤放大器:GVD Group Velocity Dispersion群速度色散:HPF High Pass Filter高通滤波器:HRDS Hypothetical Reference Digital Section假设参考数字段:IDLC Integrated DLC综合数字环路载波:IDEN Integrated Digital Enhanced Networks数字集群调度专网:IEEE802.3:CSMA/CD局域网,即以太网标准。
Ubiquiti AF-5XHD 5 GHz 长距离无线网络设备数据手册说明书
D atasheet5 GHz Carrier Radio with LTU™ TechnologyModel: AF‑5XHDUp to 1+ Gbps Real Throughput, Up to 100 km RangeThe LTU Design TeamTen years ago, Ubiquiti® sparked a global Wireless ISP revolution with the introduction of NanoStation® — a cost-disruptive 802.11 Wi-Fi long range outdoor plug and play radio. The NanoStation broke down technical and financial barriers for WISP’s around the world, enabling nearly any operator to deploy scalable networks and grow profitable business models.As bandwidth demands and scalability challenges increased through the years, Ubiquiti responded with performance-enhancing innovations such as the airMAX® TDMA protocol, PRISM® active RF filtering,and GPS synchronization — all working to extract every ounce of potential from consumer 802.11 Wi-Fi chipsets. However, we always knew that one day growing subscriber bandwidth demands combined with an increasingly crowded unlicensed RF spectrum would expose the fundamental limitations of 802.11Wi-Fi silicon and ultimately threaten the survival of our industry.Years ago, a core group of engineers at Ubiquiti set out to make sure this day would never come. We began an ambitious plan that would span millions of man hours of development and tens of millions of dollars of investment. The result was a new technology and ASIC chipset created from the ground floor up specifically for the Wireless ISP industry — a technology we believe positions our Industry to succeed in the new challenging landscape of the future. Welcome to what we call the Long Term Ubiquiti vision, or simply LTU™.OverviewUbiquiti Networks continues to disrupt the wireless broadband market with revolutionary LTU technology that breaks through the limitations of 802.11 Wi-Fi technology. Designed for use in the 5 GHz frequency band, the new airFiber AF-5XHD is Ubiquiti's first LTU radio, offering greater channel bandwidths of up to 100 MHz, and more advanced RF components. Pair the AF-5XHD with a compatible Ubiquiti® airFiber X antennaor RocketDish™ antenna for a complete 5 GHz Point-to-Point (PtP) solution.An IP67 upgrade kit is included to provide enhanced protection from dust and water.Engineered for Performance Designed specifically for the Wireless ISP industry fromthe ground floor up, theAF‑5XHD’s custom LTU siliconand radio architecture provide breakthrough performance. Its core communications processing engine surpasses the limitations inherent to generic Wi‑Fi chips to provide low latency, long-range capability, DFS flexibility, higher constellations, and better power output, along with improved receive sensitivity.The AF-5XHD features industry-leading 21.2 bps/Hz spectral efficiency*, line-rate data packet processing for up to 1.34 Gbpsof real data throughput*, and innovative xtreme Range Technology (xRT™).* Assuming 4096QAM, available with a futurefirmware upgrade.D a t a s h e e tKey FeaturesThe AF-5XHD offers the following advanced features: • Programmable Transmit Power The radio's transmit power level can be programmed up to +29 dBm.• Programmable Duty Cycle (GPS synchronized frames) asymmetric TX and RX duty cycles. TX ratios include 25%, 33%, 50%, 66.7%, and 75%.• Configurable GPS Synchronization The AF‑5XHD offers configurable support for 2, 2.5, 4, and 5 ms frames. Timing is compatible with all other synchronous systems.1 The radio can operate 1 Support for15SoftwareThe airFiber AF‑5XHD uses Ubiquiti's airOS LTU software, which offers you a variety of advanced features.Spectral Analysis with airViewairView® allows you to identify noise signatures and plan your networks to minimize noiseinterference. airView performs the following functions:• Constantly monitors environmental noise• Collects energy data points in real-time spectral views• Helps optimize channel selection, network design, and wireless performanceairView runs in the background without disabling the wireless link, so there is no disruption to the network.In airView, there are three spectral views, each of which represents different data: waveform, waterfall, and ambient noise level.airView provides powerfulspectrum analyzer functionality, eliminating the need to rent or purchase additional equipment for conducting site surveys.UNMS AppThe AF‑5XHD supports the Ubiquiti Network Management System. UNMS ™ is a comprehensivemanagement controller featuring an easy-to-navigate graphic UI. The UNMS app provides instant access to the airOS configuration interface and can be downloaded from the App Store® (iOS) or Google Play ™ (Android). UNMS allows you to set up, configure, and manage the AF-5XHD and offers various configuration options once you’re connected or logged in.airOS LTUDedicated Spectral AnalysisUNMS Configuration Screen7Co-LocationCo-location is vital in manyscenarios. For example, a WISP may have limited tower space, so it must co‑locate all equipment within that allotted footprint.GPS SynchronizationPrecise GPS frame synchronization frees the AF-5XHD from interference for superiorco-location capability. GPS enables the concurrency of TX and RX frames so you can co-locate the AF‑5XHD radios and enhance the overall performance of your backhaul links.Clean Power OutputUsing digital pre‑distortion compensation and multi‑IFFT processing, the innovative RF design delivers ultra-clean power output that improves noise immunity and co‑location performance. This reduces the potential impact on the RF noise environment and allows for the use of higher-order modulation, such as 1024QAM.Deployment FlexibilityThe AF-5XHD can be used with existing airFiber slant-polarized antennas for improved noise immunity and Signal-to-Noise Ratio (SNR). It is compatible with multiple Ubiquiti airFiber X antennas offering gain of 23 to 34 dBi. The compact form factor of the AF-5XHD allows it to fit into the radio mount of airFiber X antennas, so installation requires no special tools.The airFiber X antennas are purpose-built with 45° slant polarity for seamless integration with the AF-5XHD. Pairthe AF-5XHD with one of the following airFiber X antennas:The AF-5G23-S45 offers 23 dBi of gain in a 378-mmdiameter size.The AF-5G30-S45 offers 30 dBi of gain in a 650-mmdiameter size.The AF-5G34-S45 offers 34 dBi of gain in a 1050-mm diameter size.1 Varies with fir m ware load and operational mode.2 Full range depends on Ethernet cable length.3 After installation of IP67 upgrade kit (included).4 Throughput and range values may vary depending on the environmental conditions.5 Assuming 4096QAM (available with future firmware upgrade).6Hardware bridge mode only.7Based on 2 ms frame. Specifications are subject to change. Ubiquiti products are sold with a limited warranty described at: /support/warranty©2018 Ubiquiti Networks, Inc. All rights reserved. Ubiquiti, Ubiquiti Networks, the Ubiquiti U logo, the Ubiquiti beam logo, airFiber, airMAX, airOS,airView, AlignLock, LTU, NanoStation, Prism, Rocket, RocketDish, UNMS, and xRT are trademarks or registered trademarks of Ubiquiti Networks, Inc. inthe United States and in other countries. Apple and the Apple logo are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple, Inc., registered in the U.S. and other countries. Google, Android, and Google Play are trademarks of Google Inc. All othertrademarks are the property of their respective owners.* For region-specific details, refer to the Compliance chapter of the airFiber AF-5XHD User Guide at /download/airfiber。
Oscillation power as a diagnostic tool for stellar turbulent spectra
a r X i v :a s t r o -p h /0101128v 1 9 J a n 2001Oscillation power as a diagnostic tool for stellar turbulent spectraR´e za SamadiDESPA Observatoire de Paris-Meudon,F-92195MeudonG¨u nter HoudekInstitute of Astronomy,University of Cambridge,Cambridge CB30HA,UKABSTRACT Recent observations and theoretical studies support the theory that solar-type oscillations are intrinsically stable but excited stochastically by the turbulent convection in the outer layers of the star.The acoustic noise generated by the convective motion depends on the details of the turbulent energy spectrum.In this paper we present a general formulation for the acoustic noise generation rate based on previous works by other authors.In this general formulation any model for the spatial turbulent energy spectrum and for the turbulent time spectrum can be assumed.We compute acoustic power spectra and oscillation amplitudes of radial oscillations for models of the Sun and Procyon A.The results are compared with recent observations.1.Introduction Instruments aboard the SOHO spacecraft have provided high-quality data of solar paring theoretical estimates of acoustic power spectra with such high-quality data leads to a better understanding of the excitation processes of p-mode oscillations and provides more details of the characteristics of stellar turbulence.The acoustic power injected into the p modes by turbulent convection has been modelled by several authors (e.g.,Goldreich &Keeley 1977;Christensen-Dalsgaard &Frandsen 1983;Balmforth 1992b;Goldreich,Murray &Kumar 1994;Musielak et al.1994).Balmforth (1992b)and Goldreich,Murray &Kumar (1994)investigated the contributions of the fluctuating entropy to the noise generation rate additional to the contributions of the fluctuating Reynolds stresses but reported different results.Balmforth found the entropy fluctuations to be less important relative to the Reynolds stress contributions.Goldreich,Murray &Kumar (1994,hereafter GMK),however,concluded that the fluctuating entropy contribution is about 3–4times larger than the Reynolds stress contribution,a result which was also found by the hydrodynamical simulations of Stein &Nordlund (1991).Here,we adopt the formulation of Samadi et al.(2000),which takes into account contributions both from the Reynolds stresses and from the fluctuations of the entropy.Moreover,the new formulation allows a consistent investigation of the effects of using different forms of the turbulent time spectrum and turbulent energy spectrum.In particular,we study the effects of using various forms of the spatial turbulent energy spectrum and turbulent time spectrum on the acoustic power of radial p-mode oscillations for a model of the Sun and for a model of Procyon A and compare the results with recent observations.Better agreementwith the observations is found for calculations in which the turbulent energy spectrum includes contributions from convective elements with spatial scales larger than one mixing length.2.Excitation of stellar p modes by turbulent convection2.1.Acoustic noise generation rateThe acoustic power injected into the oscillations is defined(e.g.,GMK)in terms of the damping rateη,the mean-square amplitude A2 ,the mode inertia I and oscillation frequencyω0:P=2η1/2 A2 Iω20.(1)The mean-square amplitude is determined by the balance between the energy gain from the turbulentflow and the energy drain by thermal and mechanical damping processes.It can be derived as(e.g.,Balmforth 1992b)A2 ∝η−1 M0dmρ0w4 ∂ξrFig.1.—Computed surface velocities for the Sun obtainedfrom computations including the contributions from both theReynolds stresses and the entropyfluctuations,and assumingdifferent spatial turbulent energy spectra:the continuous curvedisplays the results for the RKS spectrum,the dashed curve forthe KS and the dot-dashed curve for the SS spectrum.TheGaussian time spectrum is used in all three cases.Crossesrepresent the solar measurements of Libbrecht(1988).Thesolar model has an age of4.6Gy and its composition forthe abundance by mass of hydrogen and heavy elements isY=0.2682,Z=0.0175,respectively.For the mixing-lengthparameter a value ofα=1.785is used and the effectivetemperature T eff=5782K.3.Solar model and calibrationWe considered a solar model computed with the CESAM code(Morel1997)assuming the model parameters displayed in Fig.1.The oscillation properties were obtained from the adiabatic FILOU pulsation code of Tran Minh&Leon(1995).We computed models with various time spectra and concluded that the Gaussian time spectrum provides the best agreement between the computed and observed(Libbrecht1988)acoustic power spectrum.In particular the shape of the acoustic spectrum and the frequency of the maximum value of the acoustic power are closest to the observations for models computed with the Gaussian time spectrum.Using the observed linewidths of Libbrecht(1988)we computed the mean surface velocities from the power estimates.The results are plotted in Fig.1as functions of oscillation frequencies for model computations using the RKS(continuous curve),the KS(dashed curve)and the SS(dot-dashed curve) spectrum.For all three model computations the Gaussian time spectrum was assumed.Amplitudes obtained with the RKS spectrum are closest to the observed values.Moreover,use of the RKS spectrum leads to the smallest frequency shift between the computed and observed maximum value of the velocity amplitudes.In order to estimate acoustic power spectra for other stars we need to calibrate our formulation,i.e., to scale the free parameters,which are inherent in the formulation of the noise generation rate(for details see Samadi et al.2000).The noise generation rate is calibrated for all three turbulent spectra in such a way as to predict the same maximum value for the velocity amplitude of18cm s−1as suggested by the BBSO observations of Libbrecht(1988).4.What can we learn from other stars?Using the same programmes with the same input physics as used for the solar model described above, we computed a model for Procyon A.For the model parameters we assumed a mass M=1.46M⊙,an effective temperature T eff=6395K,α=1.785and the same chemical composition as for the solar model(see Fig.1).The left panel of Fig.2shows the normalized power versus the oscillation frequenciesFig. 2.—Left panel :Acoustic power estimates of p-mode oscillations for a model of Procyon A.The results are obtained from computations including the contributions from both the Reynolds stresses and the entropy fluctuations,and assuming different turbulent spectra:the RKS (continuous curve),the KS (dashed curve)and the SS (dot-dashed curve)turbulent spectra.Right panel :Expected surface velocities for a model of Procyon A.The continuous curve displays the results obtained with the RKS spectrum and the dashed line shows the results obtained with the KS spectrum.The observational upper limit of ≈60cm s −1is indicated by the straight horizontal dotted line.The straight vertical dotted line indicates the position of frequency of the maximum value of the observed velocities.computed with the RKS (continuous curve),the KS (dotted curve)and the SS (dot-dashed curve)spectrum.The results suggest large differences at high frequencies between models computed with the RKS and the KS spectrum.At low frequencies the shape of the noise generation rate (power)is predominantly determined by the modal inertia,whereas at high frequencies the shape of the eigenfunctions becomes more important.This dependence on the eigenfunctions at high frequencies is more pronounced in the model of Procyon than in the solar model.However,only small differences are found between power estimates obtained from computations including only the Reynolds stress contribution and for computations including both Reynolds stress and entropy contributions,assuming the same turbulent spectrum.In order to compute velocity amplitudes we need estimates of the pulsation damping rates,η.The damping rates for radial oscillations were obtained from a non-adiabatic pulsation programme introduced by Balmforth (1992a).In this programme convection is treated with a time-dependent,nonlocal generalization of the mixing-length formulation (Gough 1976,1977).Computation details can be found in Balmforth (1992b)and in Houdek et al.(1999).The right panel of Fig.2shows the estimated surface velocities computed with the RKS and the KS spectra assuming the computed damping rates ηand the same parameters as suggested by a solar model which has been calibrated to the observations.We observe a large frequency shift of the maximum values of the estimated velocities between models computed with the RKS and the KS spectrum.In the calculations for the amplitudes we assumed that the effect of using different eigenfunctions for computing the power with the programme of Tran Minh &Leon and for the damping rates with theprogramme of Balmforth are small compared to the uncertainties inherent in the formulation of estimating the acoustic power.This inconsistency may affect the absolute value of the surface velocity but has no effect on the comparison between velocity estimates obtained with different turbulent spectra.Observations of Procyon have been carried out by Martic et al.(1999)and Barban et al.(1999). These authors concluded that the maximum velocity is observed aroundν≃1mHz with an upper limit of V max∼<60cm s−1.The velocity estimates using the RKS spectrum(continuous curve in the right panel of Fig.2)exhibit a maximum atν≃1mHz,in fair agreement with the observations.However,the predicted surface velocities are too large relative to the observations.It should be noted that some of the uncertainties in the computed amplitudes do stem from the uncertainties in the damping rate estimations,η.5.Conclusion and perspectivesWe have presented results of a more general and consistent formulation for estimating the acoustic noise generation rate in solar-type stars.In accordance with GMK,the entropy contribution has been found to be roughly three times larger than the contributions from the Reynolds stresses.However,preliminary results suggest only small differences in the maximum amplitude values in other stars between models computed with the Reynolds stress contribution alone and models computed with both Reynolds stress and entropy contributions,provided the amplitudes in both cases are calibratedfirst to solar observations for a solar model.For the solar case we conclude that the“Raised Kolmogorov”spectrum(RKS)and the Gaussian time spectra provide the best agreement with the putations for a model of Procyon A support this conclusion.For the Procyon model the differences between the RKS and the KS spectra are larger than in the solar case.Further investigations of the proposed formulation are necessary such as testing it against the results of hydrodynamical simulations.Extending the investigation of the noise generation rate to other stars improves our understanding of stellar turbulence.Moreover,the results of modelling solar-type oscillation properties are of great importance for the selection process of target stars in future space projects such as COROT (COnvection and ROTation),MONS(Measuring Oscillations in Nearby Stars)or MOST(Microvariability &Oscillations of STars).AcknowledgmentsWe are grateful to Y.Lebreton for the computation of models.We thank F.Tran Minh and L.Leon for the use of the FILOU pulsation code,and we are indebted to M.J.Goupil for useful discussions.REFERENCESBalmforth,N.J.,1992a,MNRAS255,603Balmforth,N.J.,1992b,MNRAS255,639Barban,C.,Michel,E.,Martic,M.,Schmitt,J.,Lebrun,J.C.,Baglin,A.,and Bertaux,J.L.,1999,A&A 350,617Christensen-Dalsgaard,J.,and Frandsen,S.,1983,Solar Physics82,489Goldreich,P.,and Keeley,D.A.,1977,ApJ212,243Goldreich,P.,Murray,N.,and Kumar,P.,1994,ApJ424,466Gough,D.O.,1976,in:Problems of stellar convection,E.Spiegel,J.-P.Zahn(eds),Springer-Verlag,Berlin, p.15Gough,D.O.,1977,ApJ214,196Houdek,G.,Balmforth,N.J.,Christensen-Dalsgaard,J.,and Gough,D.O.,1999,A&A351,582 Libbrecht,K.G.,1988,ApJ334,510Martic,M.,Schmitt,J.,Lebrun,J.-C.,Barban, C.,Connes,P.,Bouchy, F.,Michel, E.,Baglin, A., Appourchaux,T.,and Bertaux,J.-L.,1999,A&A351,993Morel,P.,1997,A&AS124,597Muller,R.,1989,in:Solar and Stellar Granulation,R.Rutten and G.Severino(eds.),Kluwer Academic Publishers,p.101Musielak,Z.E.,Rosner,R.,Stein,R.F.,and Ulmschneider,P.,1994,ApJ423,474Samadi,R.,Goupil,M.-J.,and Mangeney,A.,2000,in preparationSpiegel,E.,1962,J.Geophys.Res.67,3063Stein,R.F.,1967,Solar Physics2,385Stein,R.F.,and Nordlund,˚A.,1991,in:in:Challenges to Theories of the Structure of Moderate Mass Stars,D.O.Gough and J.Toomre(eds.),Springer-Verlag,Heidelberg,p.195Tran Minh,F.,and Leon,L.,1995,in Physical Process in Astrophysics,I.W.Roxburgh and J.-L.Masnou (eds.),Springer-Verlag,Berlin,p.219DISCUSSIONDOUGLAS GOUGH:Why does the‘‘Raised Kolmogorov’’spectrum lead to larger power estimates at high frequencies?REZA SAMADI:The‘‘Raised Kolmogorov’’spectrum(RKS)leads to a smallerdepth of excitation.The RKS takes into account eddies of smaller wavenumbers than the Kolmogorov spectrum(KS).There is also an excess of power at low wavenumbers.Consequently,for a given wavenumber k the correlation time ofan eddy(τk)is larger with the RKS than with the KS spectrum.The major contribution to mode excitation comes from eddies withτkω0∼<1.Thus theregion whereτkω0∼<1should also be smaller with the RKS than with the KS. Therefore the RKS induces a smaller depth of the excitation region.。
太赫兹时域光谱技术在中药鉴别中的研究进展
2019年第22期第46卷总第408期广东化工•59-太赫兹时域光谱技术在中药鉴别中的研究进展高梅,贾茹(西南科技大学分析测试中心,四川绵阳621010)[摘要]频率介于0.1-10THz的太赫兹技术反映了物质分子振动和转动层面的信息,太赫兹指纹图谱对中药复杂成分的鉴别及其质量评估具有特殊的优越性。
本文简要介绍了太赫兹时域光谱技术,综述了近年来太赫兹时域光谱技术在中药鉴别方面的应用,最后对该技术在中药研究中存在的问题和发展前景进行了探讨。
[关键词]太赫兹;太赫兹时域光谱;中药;鉴别[中图分类号]TQ[文献标识码]A[文章编号]1007-1865(2019)22-0059-02Progress of Terahertz Time-domain Spectroscopy in Identification of TraditionalChinese MedicineGao Mei,Jia Ru(Analysis and Testing Center,Southwest University of Science and Technology,Mianyang621010,China)Abstract:Terahertz time-domain spectroscopy(THz-TDS)which the spectrum frequency settled from0.1to10THz is a useful tool for reflecting the information about molecular vibration and rotation.The THz-TDS has a particular advantage for identification of traditional Chinese medicines which its component is very complex.In this pater,the principle of THz-TDS is given,and the applications for identification of traditional Chinese medicines in recent years are overviewed.The difficulties of THz-TDS in the research field of traditional Chinese medicines are discussed and the prospect in this field is described also.Keywords:Terahertz;terahertz time domain spectroscopy:traditional Chinese medicine;identification1引言中医药是中华民族几千年来的文化瑰宝,为中华民族繁衍昌盛做出了巨大贡献。
东满酷达克色彩反转肖像胶卷说明书
July 2015 • H-1-2273tTECHNICAL DATA / COLOR INTERNEGATIVE FILMKODAK Color Internegative Film 2273, 3273 / ESTAR BaseKODAK Color Internegative Film 2273 (35mm), 3273 (16 mm) / ESTAR Base are medium-speed films with excellent image structure characteristics and color-correctionmasking. They are intended for making 35 mm or 16 mm internegatives from reversal color originals or from color prints when the original color negative has been damaged. The internegatives can then be printed onto KODAK Color Print Film.BASEKODAK Color Internegative Films 2273 and 3273 have a clear ESTAR Base (polyester) without rem-jet backing.DARKROOM RECOMMENDATIONSDo not use a safelight. Handle unprocessed film in total darkness.STORAGEStore unexposed film at 13°C (55°F) or lower. For extended storage, store at -18°C (0°F) or lower. Process exposed film promptly. Store processed film according to these recommendations:This relates to optimized film handling rather than preservation; static, dust-attraction and curl-related problems are generally minimized at the higher relative humidity. After usage, the film should be returned to the appropriate medium- or long-term storage conditions as soon as possible.Store processed film according to the recommendations in ISO 18911:2010, Imaging Materials - Processed Safety Photographic Films - Storage Practices .Short T erm(less than 6 months)Long T erm(more than 6 months)Unexposed film in original, sealed package 13°C (55°F)RH below 60%-18 to -23°C (0 to-10°F)RH below 50%Exposed film, unprocessed -18 to -23°C (0 to-10°F)RH below 20%Not recommended.Process film promtly.Process film21°C (70°F)RH 20 to 50%2°C (36°F)RH 20 to 30%Warm-upT imesT o prevent film telescoping, moisture condensation, and spotting, allow your film to warm to room temperature before use:For more information about film storage and handling, see ANSI/PIMA ISO-18911, SMPTE RP131-2002, and KODAK Publication No. H-845, The Essential Reference Guide for Filmmakers , available online at /go/referenceguide.EXPOSUREWithout pre-flashing, 2273 Film is significantly higher in contrast than EASTMAN Color Internegative Film 5272. Pre-flashing the film before exposing the negatives helps lower the contrast. As a starting point, we recommend that you pre-flash raw stock to densities +0.30, +0.32, +0.2 above D-min for R, G and B, respectively.Reciprocity CharacteristicsYou do not need to make any filter corrections or exposure adjustments for exposure times from 1/1000 to 1 second. For exposures in the 10 second range, it is recommended that you increase exposure by 1/3 of a stop and use a KODAK Color Compensating Filter CC 10R.Printer ConditionsAll printer setups for printing onto this film should include heat-absorbing (infrared) filter such as a KODAK Heat Absorbing Glass No. 2043, and a KODAK WRATTEN Gelatin Filter No. 2B to absorb ultraviolet (UV) light. For high light output with very long bulb life, the printer bulb should be operated at approximately 80 percent of rated voltage. A well-regulated constant-current DC power supply is recommended. The Laboratory Aim Density (LAD) control film should be printed at the center of the printer balance range, usually TAPE 25-25-25 on anadditive printer. The other scenes in the original should be printed as determined by color timing relative to thereversal LAD control film. The printer speed and filtration should be chosen to normalize the TRIM settings near the center of their range to allow for slight variations in film and printer.Film Package Typical Warm-up Time (Hours)14°C (25°F) Rise55°C (100°F) Rise16 mm 1 1 1/235 mm35On subtractive printers, the filter pack and diaphragm chosen should allow for the removal and addition of filters for color correction.On optical printers, the lens aperture should be set considering sharpness, depth of focus, and light transmittance characteristics. Ground glass or other diffusers may be used to improve uniformity of illumination, at a cost of printer light output. Printer optics should be cleaned and aligned for optimum light output and uniformity.PROCESSINGProcess in Process ECN-2.Compared to EASTMAN Color Internegative Film 5272, 2273 Film is significantly higher in contrast. Lower contrast can be achieved by reducing temperature, TOD (Time of Development) or pH changes. Changing the temperature to 102°F (vs. 106°F) is the most effective.Most commercial motion-picture laboratories provide a processing service for these films. See KODAK Publication No. H-24.07, Processing KODAK Color Negative Motion Picture Films, Module 7 available online at/go/h24, for more information on the solution formulas and the procedure for machine processing these films. There are also pre-packaged kits available for preparing the processing solutions. For more information on the KODAK ECN-2 Kit Chemicals, check Kodak's Motion Picture Films for Professional Use price catalog, also available online at /go/ motion.IDENTIFICATIONAfter processing, the product code numbers (2273, 3273), emulsion, roll, and strip number identification, KEYKODE Numbers, and manufacturer/film identification code (ES) are visible along the length of the film.POST PRODUCTIONLaboratory Aim Densities (LAD)T o maintain optimum quality and consistency in the final prints, the laboratory must carefully control the color timing, printing, and duplicating procedures. The LAD Control Film provides both objective sensitometric control and subjective verification of the duplicating procedures used by the laboratory.The status M LAD values for KODAK Internegative Film are as follows:For making prints, time the processed internegative relative to a negative LAD control film supplied by Eastman Kodak Company, using densitometry or an electronic color analyzer. The LAD on the print film is a neutral gray of 1.0 visual density.The LAD control method assumes that the film and process sensitometry are within specification.IMAGE STRUCTUREFor more information on image-structure characteristics, see KODAK Publication No. H-845, The Essential Reference Guide for Filmmakers available online at / go/referenceguide.The modulation-transfer curves, and the diffuse rms granularity data were generated from samples of 2273 Film exposed with daylight illumination and processed as recommended in Process ECN-2 chemicals.Note: The sensitometric curves and data in this publication represent product tested under the conditions of exposure and processing specified. They are representative of production coatings, and therefore do not apply directly to a particular box or roll of photographic material. They do not represent standards or specifications that must be met by Eastman Kodak Company. The company reserves the right to change and improve product characteristics at any time.Status M Densities RecommendedT oleranceRed Green BlueInternegativeLAD Aim0.90 1.30 1.70+/- 0.12 densityModulation Transfer FunctionThe "perceived" sharpness of any film depends on various components of the motion picture production system. The camera and projector lenses and film printers, among other factors, all play a role. But the specific sharpness of a film can be measured and is charted in the Modulation Transfer Function Curve.This graph shows a measure of the visual sharpness of this film. The x-axis, "Spatial Frequency," refers to the number of sine waves per millimeter that can be resolved. The y-axis, "Response," corresponds to film sharpness. The longer and flatter the line, the more sine waves per millimeter that can be resolved with a high degree of sharpness—and, the sharper the film. SensitometryThe curves describe this film's response to red, green, and blue light. Sensitometric curves determine the change in density on the film for a given change in log exposure.rms GranularityRead with a microdensitometer, (red, green, blue) using a 48-micrometer aperture.The "perception" of the graininess of any film is highly dependent on scene content, complexity, color, and density. Other factors, such as film age, processing, exposure conditions, and telecine transfer may also have significant effects.To find the rms Granularity value for a given density, find the density on the left vertical scale and follow horizontally to the characteristic curve and then go vertically (up or down) to the granularity curve. At that point, follow horizontally to the Granularity Sigma D scale on the right. Read the number and multiply by 1000 for the rms value. Note: This curve represents granularity based on modified measuring techniques. Sensitometric and Diffuse RMS Granularity curves are produced on different equipment. A slight variation in curve shape may be noticed.KODAK Color Internegative Film 2273, 3273 / ESTAR BaseRevised 7-15Printed in U.S.A.KODAK Color Internegative Film 2273, 3273 / ESTAR BaseSpectral Dye DensityProcessing exposed color film produces cyan, magenta, and yellow dye images in the three separate layers of the film. The spectral dye density curves indicate the total absorption by each color dye measured at a particular wavelength of light and the visual neutral density at (1.0) of the combined layers measured at the same wavelengths.The wavelengths of light, expressed in nanometers (nm) are plotted on the x-axis, and the corresponding diffuse spectral densities are plotted on the y-axis.Note: Cyan, Magenta, and Yellow Dye Curves are peak-normalized.SIZES AVAILABLESee the KODAK Motion Picture Products Price Catalog , available online at /go/motion.To order film in the United States and Canada, call 1-800-621-FILM (3456).Worldwide customers can find the nearest sales office at /motion/About/ Worldwide_Sales_Offices/index.htm.MORE INFORMATIONOutside the United States and Canada, please contact your Kodak representative. You can also visit our web site at /go/motion for further information. You may want to bookmark our location so you can find us easily the next time.H-2Cinematographer’s Field GuideH-845The Essential Reference Guide for Filmmakers H-24Manual for Processing KODAK Motion Picture Films, Process ECN-2 Specifications, Module 7H-61LAD—Laboratory Aim DensityH-606KODAK Telecine Tool Kit and Reference ManualKodak, Eastman, Keykode, Vision, and Wratten are trademarks.。
汽车--常用术语
汽车--常用术语常用术语1、汽车类型:the type of automobile汽车:motor vehicle,automobile载货车:truck 微型货车:mini-truck 轻型货车:light-truck中型货车:medium truck 重型货车:heavy truck 越野车:off-road vehicle自卸车:dump truck 牵引车:towing vehicle专用汽车:special purpose vehicle 客车:bus 轿车:passenger car微型轿车:mini-car 普通级轿车:subcompact car 中级轿车:compact car中高级轿车:intermediate car 高级轿车:limousine car2、汽车尺寸:dimension of vehicle车长:vehicle length 车宽:vehicle width 车高:vehicle height轴距:wheel space 轮距:track 前悬:front overhang后悬: rear overhang 最小离地间隙:ground clearance车轮外倾:camber angle 主销内倾: kingpin inclination 前束toe-in3、发动机:engine发动机总体构造和工作原理:the construction and working principle汽油机gasoline engine 柴油机diesel engine四冲程发动机four-stroke engine 单(多)缸发动机single(multi)-cylinder engine 立(斜、卧)式发动机vertical (inclined、horizontal) engine工作循环working process进气(压缩、膨胀、排气)行程suction(compression、expansion 、exhaust) stroke 点火次序firing order 上(下)止点top(bottom) dead centre活塞行程piston stroke 气缸工作容积piston swept volume发动机排量engine swept volume 充气系数volumetric efficiency配气相位valve timing 压缩比compression ratio直接喷射direct injection 间接喷射indirect injection喷油压力injection pressure 电控喷射electronic-controlled injection雾化atomization 混合气浓度mixture concentration可燃混合气combustible mixture 空燃比air-fuel ratio过量空气系数excess air ratio 燃烧室combustion chamber压燃compression ignition 点燃spark ignition抗暴性antiknock quality 增压中冷inter-cooling负荷load 空载no-load工况working condition曲柄连杆机构:connecting rods and crankshaft缸盖cylinder head 气缸cylinder缸体cylinder block 缸套cylinder liner油底壳oil pan 活塞piston活塞环(销) piston ring(pin) 气(油)环compression(oil control) ring连杆connecting rod 曲柄crank曲轴crankshaft 飞轮flywheel配气机构:valve gear凸轮(轴)cam(camshaft) 进(排)气阀inlet (exhaust) valve挺柱tappet 推杆push-rod摇臂rocker arm燃油供给系统:fuel system柱塞(转子)式喷油泵jerk fuel injection pump喷油器injector 调速器governor发动机调速系统:engine speed governing排放控制系统:emission control system发动机冷却系统:engine cooling system发动机润滑系统:engine lubrication system发动机点火系统:engine ignition system发动机起动系统:engine starting system5※<标题二>4、汽车底盘术语离合器:clutch摩擦离合器friction clutch(单盘single plate、双盘twin double plate、多盘multi-plate、膜片弹簧diaphragm spring、自动automatic、电磁electromagnetic)离合器操纵机构clutch operation 压盘pressure plate分离杆release lever 分离筒release sleeve离合器盖clutch cover 从动盘clutch plate从动盘毂clutch plate hub 分离弹簧(轴承)release spring(thrust bearing)中间压盘center plate 压紧弹簧pression减振弹簧damping spring 摩擦片plate friction lining扭转减振器torsional damping arrangement变速器:transmission, gearbox机械式变速器mechanical transmission自动变速器automatic transmission主(副)变速器basic(splitter) transmission行星齿轮变速器planetary transmission液力偶合器fluid coupling 液力变矩器torque converter万向传动装置:十字轴(非等速、等速、准等速、挠性、双联、球销、球笼)万向节cardan (nonconstant velocity、constant velocity、near constant velocity、flexible、double cardan、ball and trunnion、rzeppa) universal joint十字轴总成cross assembly 万向节叉yoke驱动桥:driving axle断开(非断开)式驱动桥divided (rigid) drive axle单(双)级主减速器single (double) reduction final axle齿轮(防滑、自锁、摩擦)差速器gear (limited-slip、self-locking、multi-disc) differential 桥壳axle housing全浮(半浮)式半轴full-floating (semi-floating) axle shaft转向系:steering system机械(动力)转向系manual (power) steering system 转向器steering gear转向盘(轴、操纵机构) steering wheel (shaft、control mechanism)循环球-齿条齿扇(齿轮齿条)式转向器recirculating ball-rack and sector (rack and pinion ) steering gear正(逆)效率forward(reverse) efficiency行驶系:running system独立(非独立)悬架indepenndent (rigid axle) suspension钢板(螺旋、扭杆、空气、橡胶、油气)弹簧leaf(coil、torsion bar、air、rubber、hydro-pneumatic) spring减震器shock absorber 横向稳定器stabilizer anti-roll bar制动系:braking system鼓(盘)式制动器drum (disk) brake 驻车制动装置parking braking device制动鼓(蹄、钳)brake drum (shoe、caliper)5※<标题三>《汽车理论》1 汽车动力性vehicle tractive performance2 加速时间time of acceleration3 最大爬坡度maximum grade ability4 驱动力tractive force5 发动机的调速特性fixed throttle characteristics6 适应性系数adaptive coefficient7 机械效率mechanical efficiency8 行驶阻力resistance 9 滚动阻力rolling resistance10 弹性迟滞elastic slow-moving 11 滚动阻力矩moment of rolling resistance12 滚动阻力系数coefficient of rolling resistance13 切向反力tangential force 14 法向反力normal force15 空气阻力aerodynamic resistance16 空气阻力系数aerodynamic resistance coefficient17 坡道阻力grade resistance 18 道路阻力resistance of the road19 加速阻力accelerating resistance;inertia force20 旋转质量换算系数correction coefficient of rotating mass21 附着力adhesive force 22 切向反作用力tangential force23 法向反作用力normal force 24 附着系数coefficient of adhesion25 后备功率power reserve 26 发动机比功率power/mass ratio27 燃料经济性fuel economy 28 燃油消耗率specific fuel consumption29 万有特性cross sectional characteristics30 负荷特性part throttle characteristics31 道路循环油耗fuel economy of road test cycles32 制动性braking performance 33 地面制动力type-ground braking force34 制动器制动力braking force originated from brake system35 制动减速度braking deceleration 35 制动距离braking distance37 同步附着系数synchronizing adhesion coefficient38 侧倾角速度roll velocity 39 俯仰角速度pitch velocity40 横摆角速度yaw velocity 41 轮胎坐标系tire axis system42 轮胎侧偏角side-slip-angle 43 侧偏刚度cornering stiffness44 回正力矩aligning torque 45 转向特性steering characteristics46 侧偏力cornering force 47 横摆角速度增益yaw velocity gain48 临界车速critical speed 49 特征车速characteristic speed50 不足转向under steer 51 过多转向over steer52 中性转向neutral steer 53 静态储备系数static margin54 瞬态响应transient state response 55 稳态响应steadies state response56 汽车平顺性ride of the automobile57 路面谱spectrum of road surface roughness58 空间频率spatial spectral density 59 空间频率谱spatial spectral density60时间频率谱spectral density 61 最小离地间隙ground clearance62 汽车的通过性mobility over unprepared terrain63 纵向通过角ramp angle 64 接近角approach angle65 离地角departure angle 66 最小转弯直径diameter of turning circle67 转弯通道圆turning clearance circle 68 功率循环circulation of power69 牵引阻力tractive resistance 70 牵引力(功率)曲线图tractive-power chart71 最高车速maximum velocity 72 发动机外特性engine characteristic at maximum opening of valve73 制动效能brake efficiency 74 转向稳定性cornering stability75 后轴侧滑sideslip of rear axle 76 甩尾trail swing77 评价指标evaluated standard 78 操纵稳定性steering stability81 主销后倾kingpin caster 82 主销内倾kingpin inclination83 功率平衡图tractive and resistance power graph84 动力因数dynamical factor85 制动跑偏braking deviation from 86 制动力分配brake banlance87 制动防抱死ABS(Anti-lock Braking System)88动力特性dynamical characteristics89 横向稳定性stability of landscape orientation90 侧偏特性cornering characteristics91 轮胎花纹tire pattern 92 汽车技术状况technical condition of vehicle 93 暴露极限exposure boundary 94 发动机测功器engine dynamometer95 发动机综合试验机motor analyze / engine analyzer96 底盘测功器chassis dynamometer97 车轮功率平衡机dynamic wheel balancer98 前束量尺toe-in ganger 99 外倾测量器camber gauge100 红外线废气分析仪infrared rays exhaust gas analysis apparatus疲劳-降低工作效率界限fatigue-decreased proficiency boundary舒适降低界限decreased comfort boundary5※<标题四>《汽车设计》绪论introduction全球定位系统Global Position System计算机辅助设计Computer Aided Design自适应巡航控制系统Autonomous Intelligent Cruise Control电子伺辅开车Drive by wire防抱死制动系统Anti-block Brake System主动悬架Active Suspension被动悬架Passive Suspension半主动悬架Semi-Active Suspension自动变速器Automatic Transmission电控转向系统Electronic Control Steering通用汽车公司General Motors Company成本竞争能力Cost Competitiveness成本杀手Cost killer运动型多用途车Sport & utility vehicle概念设计Concept Design前置前驱Front-engine Front-drive前置后驱Front-engine Rear-drive后置后驱Rear-engine Rear-drive中置后驱Middle-engine Rear-drive全轮驱动Full-wheel-drive长头式Cab-behind-engine truck平头式forward control layout cab or cab forward type 短头式short bonneted type轴距wheel base轮距wheel center distance装载量weight-carrying capacity整车整备质量weight empty总质量weight in running order轴荷分配axle load ( weight)直接档direct drive燃油经济性fuel economy百公里油耗fuel consumption of 100km通过性throughput capacity最小转弯半径minimum negotiable radius总体布置general arrangement纵梁frame side member or frame girder member横梁frame cross member离合器设计clutch design从动盘clutch driven plate or clutch spider膜片弹簧diaphragm spring压盘pressure plate摩擦片clutch facing从动钢片clutch cushion disk or cushion spring扭转减振器torsion vibration damper or torsion damper 花键毂splined hub变速器设计transmission design中间轴式变速器countershaft transmission直齿spur gear斜齿圆柱齿轮helical gear换档机构gear shift mechanism直齿滑动齿轮shifting slider gear啮合套shifter collar同步器synchronizer轴承bear飞溅润滑plash oiling压力润滑full pressure oiling 换档位置图gear shifting diagram 第一轴input shaft中间轴counter shaft第二轴output shaft万向节设计universal joint柔性万向节rubber universal joint刚性万向节rigid cardan驱动桥drive axle主减速器final gear差速器differential车轮传动wheel driver驱动桥壳rear-axle housing整体式驱动桥壳one-piece housing 主减速比final drive ratio螺旋锥齿轮helical bevel gear双曲面齿轮hypoid bevel gear圆柱齿轮helical spur gear蜗轮蜗杆worm-and-gear (wheel)行星齿轮planetary gear最小离地间隙minimum ground clearance of rear axle摩擦片式差速器sure-grip differential半轴half rear axle悬架设计suspension design弹性元件springs导向机构guider减振器absorber缓冲块bumper横向稳定杆stabilizer钢板弹簧spring leaf螺旋弹簧spiral spring扭杆弹簧torsion bar spring橡胶弹簧rubber spring空气弹簧air spring油气弹簧oiliness spring横向摆臂式独立悬架ndependent wheel suspension by swinging arms 纵向摆臂式独立悬架independent suspension by swinging arms 不等长双横臂式独立悬架long and short arm suspension烛式悬架suspension stuck麦克弗逊式独立悬架suspension McPherson strut 平衡式独立悬架stabilizator suspension主簧mail leaf of spring副簧helper spring制动系brake system制动器brake驱动机构drive unit制动效能braking efficiency领从蹄式制动器leading-trailing shoe brake双领蹄式制动器two leading shoe brake单向增力式制动器half-servo brake横向稳定杆stabilizer bar准双曲面齿轮hypoid gear万向节轴cardan花键spline5※<标题五>《随机振动》1、Random Vibration 随机振动2、Probability 概率3、Statistics 统计4、Random Process 随机过程5、Density 密度6、Frequency 频率7、Discrete 离散8、Wave 波动9、Continuous model 连续模型10、Dynamic 动力的11、Structure 结构12、Dynamic Analysis 动力学分析13、Acceleration 加速度14、Gravitational Acceleration 重力加速度15、Definite Function 有限方程16、Excitation 激励17、Response 响应18、Discrete Model 离散模型19、Stationary 平稳的20、Nonstationary 非平稳的21、Rigid Body 刚体22、Correlation Function 相关函数23、Autocorrelation 自相关24、Spectral Density 谱密度25、Power Spectrum 功率谱26、Ergodic 各态历经的27、Temporal 短时的28、Limitation 极限29、Mean 均值30、Mean Square 均方值31、Variance 方差32、Covariance 协方差33、Variable 变量34、Constant 常数35、Single 单独的36、Filter 过滤37、Cross Correlation 互相关38、Second Order 二阶39、Lag 间隙40、Regular 规律的41、Irregular 不规则的42、Property 特性43、Performance 性能44、Ensemble 整体的45、Even 偶的46、Odd 奇的47、Independent 独立的48、Zero Mean 零均值49、Scatter 离散的50、Period 周期51、Sample 样本52、Uniform 均匀的53、Absolute 绝对值54、Phase 相位55、Circular Frequency 圆频率56、Distributed 分布的57、Dirac Delta Function 狄拉克?得尔塔函数58、Magnitude 模59、Infinite 无穷的60、Periodic 周期的61、Finite 有限的62、Restriction 约束63、Evaluation 估计64、Time Domain 时域65、Frequency Domain 频域66、Fourier Series 富里叶级数67、Fourier Integral 富里叶积分68、Piecewise 分段的69、Fourier Coefficient 富里叶系数70、Complex Number 复数值71、Complex Function 复数函数72、Real Function 实数函数73、Conjugate 共轭74、Parseval’s Formula 帕舍伐尔公式75、Amplitude 振幅76、Impulse 脉冲77、Complex Frequency 复数频域的78、Ordinate 坐标79、Singularity 奇异点80、Harmonic 谐波的81、Narrow Band 窄带82、Wind Band 宽带83、Exponent 指数84、Derivation 导数85、Joint Probability 联合概率分布86、Linear 线性的87、Superposition 重叠88、Inverse Transform 逆变换89、Single Degree of Freedom 单自由度90、Natural Frequency 自然频率91、Damp 阻尼92、Critical 临界的93、Displacement 位移94、Velocity 速度95、Unit Impulse 单位脉冲96、Momentum 动量97、Ordinary Differential Equation 常微分方程98、Complex Frequency Response Function 复频响应函数99、Algebraic Equation 代数方程100、Peak 峰值5※<标题六>《汽车电器设备》蓄电池accumulator电解液electrolyte电路electric circuit开关switch电流表ammeter电压表voltmeter电能electric energy化学能chemical energy电流强度current intensity 脉冲电流pulse current正极板positive plate负极板negative plate单格电池cell比重计hydrometer电极electrode电荷electric charge阳极positive electrode阴极negative electrode电路图circuit diagram电器electric equipment电压voltage电位差potential difference 电源power source充电系charging system交流发电机alternator充电指示器charge indicator 交流电alternating current 直流电direct current二极管diode三极管triode电压调节器voltage regulator 过充电overcharge转子rotor定子stator皮带轮pulley警告灯warning lamp保险丝fusible link短路short circuit电动势electro-motive force 起动系starting system电磁开关magnetic switch起动机马达starter motor机械能mechanical energy飞轮flywheel电磁场electromagnetic field 换向器commutator电刷brush继电器relay电枢armature小齿轮pinion电枢轴armature shaft电刷弹簧brush spring轴承bearing单向离合器overrunning clutch 换档机构shift mechanism电磁线圈solenoid压缩比compression ratio飞轮齿圈flywheel ring gear电枢绕组armature windings换向器片commutator segments 点火系ignition system点火开关ignition switch火花塞spark plug电容器condenser分电器distributor分电器盖distributor cap点火线圈ignition coil初级绕组primary winding次级绕组secondary winding断电器breaker电磁铁electromagnet断电器触点breaker points电火花electric spark分电器点火系统distributor ignition system 空燃比air-fuel ratio火花塞间隙air gap高压high voltage低压low voltage分火头distributor rotor高压线spark plug wire分电器凸轮distributor cam附加电阻ballast resistor点火提前spark advance离心提前centrifugal advance真空提前vacuum advance大气压atmospheric pressure照明lighting照明灯light bulb信号signal报警装置warning equipment仪表meter仪表板instrument panel指示器indicator指示板indicator board指针needle控制电路control circuit辅助设备auxiliary equipment汽油机gasoline engine柴油机diesel engine汽油泵gasoline pump电磁学electromagnetism电磁波electromagnetic wave晶体管点火系统transistorized ignition system无触点电子点火系统breakerless electronic ignition system电磁感应electromagnetic5※<标题七>《汽车电控原理及应用》进气温度(ACT)Air Charge Temperature空气流量传感器(AFS)Air Flow Sensor叶板式空气流量计(V AM)Vane Airflow Meter绝对压力传感器(AIV)Absolute Pressure Sensor空气温度传感器(A TS)Air Temperature Sensor进气温度传感器(ITA)Intake Air Temperature Sensor热线式空气流量计(HW AMMF)Hot-Wire Air-Mass Meter Flow热膜式空气流量计(HFAMFM)hot-film air-mass flow meter 卡门空气流量计(KV AFM)Karman vortex air flow meter大气压力传感器(BARO sensor)barometric pressure sensor 大气压力传感器(BP)barometric pressure sensor节气门关闭位置(CTP)closed throttle position进气温度传感器(IATS)intake air temperature sensor怠速空气控制阀(IACV)idle air control valve可变进气相位(VVT)variable valve timing混合气控制(M/C)mixture control节气门体(TB)throttle body节气门位置(TP)throttle position节气门位置传感器(TPS)throttle position sensor节气门位置开关(TPS)throttle position switch节气门电子控制(ETC)electronic throttle control体积空气流量(V AF)volume air flow电控单元(ECU)electronic control unit燃油喷射系统(INJ)injection system中央多点燃油喷射(CMFI)central multipart fuel ignition连续燃油喷射(CIS)continuous fuel injection直接燃油喷射(DFI)direct fuel injection间接燃油喷射(IFI)indirect fuel injection燃油泵(FP)fuel pump多点燃油喷射(MFI)multipart fuel injection单点燃油喷射(SPI)single point injection顺序电控燃油喷射(SEFI)sequential electronic fuel injection电子燃油控制(EFC)electronic fuel control冷起动喷射(CSI)cold star injection机械连续燃油喷射系统K-Jetronic分配式喷油泵(DFIP)distributor fuel injection pump脉冲调制(PWM)pulse width modulation可变截面喷嘴(V AN)variable area nozzle计算机控制点火(C3I)computer controlled coil ignition汽缸识别传感器(CID)cylinder identification sensor曲轴位置传感器(CKP)Sensor crankshaft position sensor有分电器电子点火EI-with distributor无分电器电子点火系统(EDIS)electronic distributorless ignition system 点火控制模块(ICM)ignition control module整体式电子点火(IEI)integrated electronic ignition感应式脉冲发生器Pickup induction pulse generator霍尔式脉冲发生器Hall-type pulse generator发动机转速及曲轴位置传感器Engine-speed and crankshaft position sensor 发动机转速及凸轮轴位置传感器Engine-speed and camshaft position sensor 车速传感器Speed sensor半导体点火系统Semiconductor ignition system霍尔集成电路(Hall IC)Hall integrated circuit霍尔传感器电压Hall sensor voltage点火提前机构Ignition advance mechanism device真空提前机构Vacuum advance mechanism device离心提前机构Centrifugal timing device unit ;centrifugal timer 电子点火系统EI system electronic ignition system闭环控制(CL)closed loop氧传感器(EGOS)exhaust gas oxygen sensor废气再循环阀(EGRV)exhaust gas recirculation valve氧传感器(EGS)exhaust gas sensor三元催化反应器(TWC)three way catalytic converter执行器Actuator温控定时开关Thermo-time switch凸轮轴位置传感器(CMP Sensor)camshaft position sensor 曲轴位置传感器(CKP Sensor)crankshaft position sensor发动机水温传感器(CTS)engine coolant temperature sensor 汽缸位置(CYP)cylinder position爆震传感器(DS)detonation sensor爆震传感器(KS)knock sensor水温传感器(WTS)water temperature sensor怠速控制(IAC)idle air control曲轴箱强制通风(PCV)positive crankcase ventilation自动变速器(A/T)automatic transaxle (transmission)手动变速箱(M/T)manual transmission无级变速器(CVT)continuously variable transmission 液力偶和器(FCPLG)fluid coupling电控变速器(ECT)electronically controlled transmission 空档开关(NPS)neutral position switch停车/空档位置(PNP)P/N park/neutral position手动停车制动器(PBA)parking brake applied变速器转速传感器(TSS)transmission speed sensor变速器电子控制装置Electronic transmission control计算机控制悬架Computer control suspension液力主动悬架Hydraulic active suspension车轮负荷传感器(WL-sensor)wheel-load sensor行程传感器Travel sensor加速度传感器Acceleration sensor载荷传感器Load sensor车身加速度计Body accelerometer车身高度传感器Vehicle height sensor电子空气悬架Electronic air suspension主动式后轮转向系(ARS)active rear steer system四轮转向(4WS)four wheel steering锁定离合器(L/C)lock-up clutch防滑差速器(LSD)limited slip differential动力转向压力开关(P/S)power steer pressure switch动力控制模块(PCM)power train control module踏板行程传感器(PTS)pedal trechometer sensor车速传感器(VSS)vehicle speed sensor减速传感器Deceleration sensor电子控制四轮转向系Electronically controlled 4WS*system 后轮转向角主传感器Main rear wheel angle sensor后轮转向角副传感器Sub rear wheel angle sensor前轮转向角主传感器Front main steer angle sensor前轮转向角副传感器Front sub steer angle sensor5※<标题八>《汽车计算机辅助设计》计算机辅助设计CAD(computer aideddesign)准时制生产Just in time (JIT)专家系统Expert System(ES)人工智能artificial intelligence客户/服务器Client/Server分布式系统distributed System内部网Intranet外部网extranet浏览器Browser服务器Server网络network局域网Local Area Network(LAN)星形网star network topology以太网Ethernet令牌环Token-ring多媒体Multimedia原型法Prototyping生命周期Life cycle类Class自底向上Bottom-up自顶向下Top-down操作系统Operation System硬件Hardware软件Software数据data数据字典data dictionary数据模型data model数据处理data processing数据结构data structure数据仓库data warehousing数据流data flow数据收集Data Gathering数据处理data processing数据冗余data redundancy信息整体性information integrity逻辑Logical物理Physical实体entity联系Relationship属性Attribute电子商务electronic commerce订单处理sales order processing相关干系人stakeholder participation 系统分析System analysis系统设计System design系统实施System implementation系统评估System assessment顺序结构Sequence条件结构condition输入控制input control处理控制Processing control输出控制Output control界面interface文件File文件传输协议File transfer protocol最终用户End-user密码Password代码Code防火墙Firewall条形码bar code外模式External schema概念模式Conceptual Schema内模式Internal Schema第一范式First Normal Form(1NF)主关键字key知识库knowledge base战略计划strategic planning管理控制Management control运行控制Operational Control结构化决策Programmed decisions管理信息系统Management information system(MIS)企业资源计划Enterprise Resource Planning(ERP)最优化技术Optimized Production Technology(OPT)物料需求计划Material Requirements Planning(MRP)制造资源计划Manufacturing Resource Planning (MRPII)客户关系管理Customer Relationship management(CRM)决策支持系统Decision support system(DSS)电子数据传输Electronic data exchange(EDI)办公自动化系统Office Automation system(OAS)开放系统互连Open system Interconnection (OSI)企业流程重组Business Process Reengineering(BPR)结构化系统开发方法Structured System Development Methodology面向对象方法Object-Oriented Method企业系统规划法Business System Planning(BSP)关键成功因素法Critical Success Factors(CSF)数据库管理系统Database management System(DBMS)面向对象的数据库管理系统object-oriented database management systems(OODBMS) 中央处理器Central Processing Units(CPU)数据流程图data flow diagram(DFD)数据模型规范化Data modeling formalism实体-联系图Entity-relationship diagram实体-联系模型Entity-relationship model实体-联系方法Entity-relationship approach软件开发与维护software development and maintenance 结构化程序设计Structured Programming人面相互作用human-computer interaction信息系统外包Outsourcing of information systems信息系统的安全性security of information system管理信息系统的结构the structure of MIS金字塔型的管理信息系统结构the MIS as a pyramid非结构化决策Non-programmed decisions5※<标题九>《汽车优化设计》优化技术optimization technique优化用数学模型mathematical model for optimization 理论分析法theoretical analysis method类比分析法analogy analysis method汽车选型automobile electrotype投资回收期法payback period method寿命周期费用分析法life cycle cost analysis method 年当量费用valent weight cost per year资金回收系数capital reclamation ratio价值分析法value analysis method汽车动力性motor vehicle dynamic characteristics费用效率分析法cost efficiency analysis method选型优化electrotype optimization技术任务书assignment for technical design技术评价technical evaluation经济评价economical evaluation技术经济优化technical economy optimization实验优化experiment optimization单因素优选法single factor selecting method多因素优选法multifactor selecting method正交实验法orthogonal experiment method汽车使用维修优化automobile utilization and repair optimization 线性规划法liner programming technique分级评分法classified graded method维修服务系统repairing service system维修任务与计划的优化repairing task and plan optimization 分枝界限法branch and bound method计划协调技术plan evaluation and review technique工序时间working procedure time概率计算法calculus of probability method加权平均法method of weighted mean工序最早开工期the earliest time of under stream period事件最迟完工期the latest time of completion date人力安排human resource arrangement缺货费OSS (out of stock) fee确定型模型deterministic model允许缺货的经济定货批量模型economical ordering lot model for permit OOS 生产批量模型production lot model批量回扣模型batch commission model随机性模型randomness model概率密度函数function of density of probability质量评估方法quality evaluation method最优质量水平the best quality level客观性原则principle of objectivity可比性原则comparability principle指向性原则directivity principle缺陷系数法defect coefficient method综合评定法evaluate synthetically method更新优化renewal optimization有形损耗physical depreciation无形损耗invisible depreciation疲劳损坏周期damage cycle tiredly汽车折旧和残值automobile depreciation and scrap value余额递减法declining balance method变率递减法diminish rates on cost method固定折旧率stationary depreciation rate更新时机优化renewal time optimization自然寿命natural lifespan经济寿命economical lifespan回归分析法regression analysis method劣化数值法deterioration numerical method年当量费用法annual valent weight cost method 更新方式优化update mode optimization汽车技术改造automobile technical innovation 成本分析法cost analysis method建模modeling模拟法simulation method年当量费用valent weight cost per year现值系数present value ratio现值系数present value ratio权重weighing通过性steering ability可靠性security载质量loading weight维修性maintainability设计优化design optimization 行驶路线driven route开式路线open type route单环式路线single ring route多环式路线multi ring route维修网点repairing block单路排队single line queue多路排队multi line queue任务分配task distribution关键路径法critical path method 流线图stream line diagram行列矩阵cortege matrix成本控制cost control最佳工期optimum duration存储优化storage optimization 保管费storage fee利息费interest fee保险费assurance fee损耗费dissipation fee定货费ordering fee手续费handing fee质量成本quality cost检验成本inspection cost预防成本prevention cost典型性原则model principle定量化原则ration principle残值scrap value前拦板front board后拦板rear gate边板side gateU形螺栓U-bolt铰链knuckle5※<标题十>《汽车排放与噪声控制》公害public hazard大气污染air pollution噪声noise生态平衡ecological balance燃料fuel内燃机internal combustion engine 光化学烟雾photochemical smog汽车保有量retain number of automobile 环境保护environment protecting大气检测air detection大气质量标准Air Quality Standard催化剂catalyst汽油机petrol engine柴油机diesel engine氧化反应oxidizing reaction催化反应catalysis reaction还原反应reduction reaction不完全燃烧incomplete combustion 轻型货车pick up truck微型货车minitype truck重型货车heavy truck越野车cross country vehicle驱动轮driven wheel高级轿车limousine特种用途车special used vehicle底盘chassis传动系power train离合器clutch变速器transmission传动轴transmission shaft万向传动装置universal driven device 驱动桥driving axle行驶系going system车架frame前桥front axle驱动桥driving axle后桥rear axle转向轮steering wheel驱动轮driving wheel前悬架front suspension后悬架back suspension转向系steering system方向盘joystick转向器diverter制动系brake system制动装置braking device车身car body电气设备electric equipment电源power点火系ignition system起动系starting system照明设备lighting device信号设备signaling equipment用电设备consumer活塞行程piston stroke压缩比compression ratio工作循环working cycle充量系数coefficient of charge进气input压缩过程compression燃烧膨胀expand排气exhausting可燃混合气carbureted mixture曲柄连杆机构crank link mechanism 配气机构valve mechanism燃料供给系fuel providing system 冷却系cooling system汽缸cylinder配气相位valve timing凸轮cam充气效率charge efficiency空气滤清器Air Filter空燃比Air-Fuel Ratio混合气浓度mixture strength燃料消耗量fuel consumption润滑系lubrication system润滑油lubricating oil燃烧室combustion chamber有效转矩effective torque有效功率effective power后备功率reserve capability负荷特性load characteristic万有特性universal characteristic大气压力air pressure真空度degree of vacuum怠速idle化学平衡chemical equilibrium点火提前角ignition advance angle大气湿度atmospheric humidity废气再循环Exhaust Gas Recirculation涡流vortex稀薄燃烧lean combustion气门重叠角valve overlap angle电子控制汽油喷射Electronic Fuel Injection 压力传感器Sensor空气流量计air flow meter紊流发生罐turbulence generating pot液体代用燃料liquid fuel substitute气体代用燃料gas fuel substitute后处理装置after treatment device三元催化反应器Three Way catalysts烟度limit of smoke消烟添加剂additive机内净化internal purification声强sound intensity声级计sound level meter消声器muffler烟度计smoke meter声压sound pressure定容取样法Constant V olume Sampling欧洲经济委员会Economic Commission for Europe欧洲经济共同体European Economic Community汽车排气净化automobile exhaust gas purification环境调节与自净能力environment adjustment and self-purification ability世界环境卫生经济合作与发展组织World Environment Health Organization for Economic Cooperation and Development汽车污染物排放标准Exhaust Standard for automobile pollution 催化净化装置catalysis and purification device活塞式内燃机piston type internal combustion engine中型客车Medium-sized passenger train发动机工作容积engine working volume四冲程内燃机four stroke internal combustion engine速度特性speed characteristic发动机外特性engine external characteristic电子控制点火系统Electronic Ignition System复合涡流控制燃烧compound vortex controlled combustion 程序化燃烧过程programmed combustion process曲轴箱强制通风系统Position Crankcase V entilatio废气涡轮增压技术exhaust turbo charging technique频带与频谱分析frequency band and spectrum analysis5※<标题十一>《汽车可靠性设计》事件event随机事件random event概率probability随机变量variant分布函数distribute function中位数median众数mode抽样samplingF检验F-test方差variance平均故障时间间隔MTTF-mean time to failure 平均维修时间间隔MTTR-mean time to repair 缺陷defect互换性interchange ability产品责任product liability可靠性控制reliability control可靠性管理reliability management耐久性durability走合break-in走合期break-in period走合距离break-in mileage环境温度ambient temperature大气压力atmospheric pressure台架试验bed test磨合试验running-in test工况behaviour。
南麂岛附近海域潮汐和潮流的特征
南麂岛附近海域潮汐和潮流的特征曾定勇;倪晓波;黄大吉【摘要】Based on the observed water level and current data during the winter of 2008 at four bottom-moorings near Nanji Island, Zhejiang Province, the characteristics of tide and tidal current are investigated with spectral and harmonic analysis. Spectral analysis of the water level shows that the semi-diurnal tides are the most significant constituents, followed by diurnal tides, shallow water tides at inshore area are significant than that in offshore. Harmonic analysis of the water level shows that the tide is regular semi-diurnal tide, the average tidal range is over 3 m and the potential maximum tidal range is greater than 6m at in-rnshore area. The tide has significant low tide daily inequality and tropical tide characteristics. Spectral analysis of the current shows that the semi-diurnal tidal currents are the most significant constituents, followed by diurnal tidal currents which are much weaker than the former, shallow water tidal current at inshore area is much more significant than that in offshore. Harmonic analysis of the current shows that the tidal current is regular semi-diurnal tidal current, the most significant semi-diurnal tidal current constituent is M2, with its maximum speed of 0. 32 - 0. 48 m/s ,the most significant diurnal tidal current constituent is K1, with its maximum speed less than 0.06 m/s. The M2 tidal current rotates counter-clockwise, with increasing of its ellipticity as approaching to the sea floor. The maximum speed of M2 tidal current occurs at middle and upper layers, decreases towards thesurface and the sea floor. The direction of the maximum tidal current ofM2 does not vary significant with depth, except that the direction deviates slightly to the left near the sea floor. The timing of the maximum current advances when approaching to the sea floor, with about 30 minutes ahead at the bottom layer than the above layer. The semidiurnal tidal current is barotropic dominate with vertical homogeneous, while the diurnal tidal current shows a baroclinic property with a strong vertical variation.%以2008年冬季在浙江近海南麂岛附近投放的4个底锚系观测的水位和流速资料为依据,分析了潮汐和潮流特征.水位谱分析结果显示半日分潮最显著,全日分潮其次;近岸的浅水分潮比离岸大.水位调和分析结果表明:潮汐类型均为正规半日潮,近岸处的平均潮差大于3 m,最大可能潮差大于6 m,潮汐呈现出显著的低潮日不等和回归潮特征.流速谱分析结果显示半日分潮流最强,全日分潮流其次,且比半日分潮流小得多;近岸浅水分潮流比远离岸显著.流速调和分析结果表明:潮流类型均为正规半日潮流,靠近岸的两个站浅水分潮流较显著;最显著的半日分潮流是M2分潮流,其最大流速介于0.32~0.48 m/s之间,全日分潮流均很弱,最大流速小于0.06 m/s.M2分潮流均为逆时针旋转,椭圆率越靠近海底越大;最大分潮流流速分布为中上层最大、表层略小、底层最小;最大分潮流流速方向的垂向变化很小,底层比表层略为偏左;最大分潮流流速到达时间随深度的加深而提前,底层比中上层约提前30 min.潮流椭圆的垂向分布显示这里的半日分潮流以正压潮流为主;日分潮流则表现出很强的斜压性.【期刊名称】《海洋学报(中文版)》【年(卷),期】2012(034)003【总页数】10页(P1-10)【关键词】南麂岛;潮汐;潮流【作者】曾定勇;倪晓波;黄大吉【作者单位】国家海洋局第二海洋研究所卫星海洋环境动力学国家重点实验室,浙江杭州310012;国家海洋局第二海洋研究所卫星海洋环境动力学国家重点实验室,浙江杭州310012;国家海洋局第二海洋研究所卫星海洋环境动力学国家重点实验室,浙江杭州310012;浙江大学海洋科学与工程学系,浙江杭州310058【正文语种】中文【中图分类】P731.23浙江近海区域的潮汐和潮流特征,一直受人们的关注,不少学者对此作了大量的工作。
记录采用XilinxZYNQ系列板卡+AD9361实现简单2x2MIMO通信过程
记录采⽤XilinxZYNQ系列板卡+AD9361实现简单2x2MIMO通信过程2020-06-19写在最前,本⽂对MATLAB提供的例程做了⼀些检索和解读,并在⾃⼰的需求上做了更改。
最近⼀段时间⽼师不知道在研究些啥,突然之间对硬件产⽣了浓厚的兴趣,并且为我们20级的新⽣购置了⼏块SDR设备。
虽然不知道为什么,但是拿着这些板⼦也可以作为⽆聊的宅家消遣,毕竟我已经半年没有去过学校了。
软件/硬件准备硬件本次使⽤到的硬件为ZedBoard,是⼀块Xilinx ZYNQ 7000系列的开发板,该开发板的特点是成本低,操作简单,ARM处理器附带⼀块ZYNQ-7000系列的FPGA。
我个⼈⽽⾔对硬件不甚了解,在与同学的探讨中认为这块板⼦上的FPGA核是作为辅助运算⽽存在的。
在本次实验中,主要采⽤MATLAB作为编程平台,通过⼀个Linux系统驱动ARM核⼼,并且由ARM核调⽤FPGA进⾏部分运算。
这块板⼦可以采⽤Vivado HLS那⼀套⼯具做相对低层次⼀些的开发,⽽我作为不太懂得硬件描述语⾔的⼈⽽⾔只能采⽤MATLAB⼯具作为主要编程⼯具。
除了Zedboard以外,在扩展接⼝上我们连接了⼀块FMCOMMS3的板卡,是⼀块基于AD9361的射频卡,这将作为本次通信实验的收发机。
软件PC上的操作需要全程依赖MATLAB进⾏,因此⾸先安装对应的⽀持包。
在附加功能中找到获取硬件⽀持包,在其中搜索Communications Toolbox Support Package for Xilinx Zynq-Based Radio即可找到对应⽀持,按提⽰安装即可。
下载⽐较慢的情况可以酌情使⽤科学上⽹⼯具。
安装过程⽐较久。
实际上安装持续了将近⼀个⼩时安装后开始简单的硬件测试阶段,点击配置选项按步骤进⾏硬件的配置,按照右侧对话框的内容配置zedboard,最后可以运⾏⼀个⼩脚本验证。
这个配置过程主要在于给SD卡写⼊⼀个⼩型Linux系统⽤于ARM控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:as tr o-ph/17548v128J ul21USA Observation of Spectral and Timing Evolution During the 2000Outburst of XTE J1550−564K.T.Reilly 1,E.D.Bloom,W.Focke,B.Giebels,G.Godfrey,P.M.Saz Parkinson,G.Shabad Stanford Linear Accelerator Center,Stanford University,Stanford,CA 94309P.S.Ray 2,R.M.Bandyopadhyay 3,K.S.Wood,M.T.Wolff,G.G.Fritz,P.Hertz 4,M.P.Kowalski,M.N.Lovellette,D.J.Yentis E.O.Hulburt Center for Space Research,Naval Research Laboratory,Washington,DC 20375and Jeffrey D.Scargle Space Science Division,NASA/Ames Research Center,Moffett Field,CA 94305-1000ABSTRACT We report on timing and spectral observations of the 2000outburst of XTE J1550−564made by the Unconventional Stellar Aspect (USA)Experiment on board the Advanced Research and Global Observation Satellite (ARGOS).We observe a low-frequency quasi-periodic oscillation (LFQPO)with a centroid frequency that tends to increase with increasing flux and a fractional rms ampli-tude which is correlated with the hardness ratio.The evolution of the hardness ratio (4–16keV/1–4keV)with time and source flux is examined.The hardness-intensity diagram (HID)shows a cyclical movement in the clockwise direction and possibly indicates the presence of two independent accretion flows.We ob-serve a relationship between the USA 4–16keV count rate and radio observations and discuss this in the context of previously observed correlations between X-ray,radio,optical and IR data.We examine our results in the context of models invoking two accretion flows:a thin disk and a hot sub-Keplerian flow.1.IntroductionXTE J1550−564wasfirst observed in1998September by the All Sky Monitor(ASM) on board the Rossi X-ray Timing Explorer(RXTE)when it began an outburst lasting approximately8months(Smith1998).XTE J1550−564began a second outburst on2000 April2(Masetti&Soria2000),lasting approximately2months.The source was detected for a third time in2001January but did not go into a full outburst(Tomsick et al.2001b; Jain et al.2001).Recent optical observations of XTE J1550−564have placed a lower limit of7.4±0.7M⊙on the mass of the compact object(Orosz et al.2001).This mass places the compact object well above the maximum mass for a stable neutron star and so provides compelling evidence that XTE J1550−564contains a black hole.During its1998–1999outburst,apparent super-luminal radio jets(v>2c)were observed by Hannikainen et al.(2001);however,the jet’s angle to the line of sight has not yet been determined.Radio and optical observations of the 2000outburst also show evidence of jet formation(Corbel et al.2001;Jain et al.2001).Complex timing and spectral behavior has been observed by RXTE in XTE J1550−564 during its two full outbursts.This behavior includes detections of three classes of low-frequency quasi-periodic oscillations(LFQPO)(<20Hz)and several detections of high frequency QPOs(HFQPO)(>100Hz)(Remillard et al.2001;Miller et al.2001;Kalemci et al.2001).Further,color-color diagrams and hardness intensity diagrams of the1998–1999outburst showed separate spectral branches for each of the black hole states as well as correlations with quasi-periodic oscillations and other timing behavior(Homan et al.2001).During the1998–1999outburst,XTE J1550−564exhibited all four identified black hole spectral states(Sobczak et al.2000;Homan et al.2000).In the2000outburst the source never achieved the high state(HS),going from an initial low/hard state(LS)to an interme-diate state(IS)or a very high state(VHS)and returning to afinal LS(Miller et al.2001). Although previous authors have made a distinction between the IS and VHS,recent work on XTE J1550−564has suggested that the IS and VHS are actually the same state at dif-ferent X-rayflux levels(Homan et al.2000).Therefore,for the remainder of this paper we will refer to this state as the IS.The transition from the initial LS to the IS was made on 2000April26(MJD51660).The transition from the IS back to the LS occurred sometime between May13(MJD51677)and May19(MJD51623)(Corbel et al.2001).In this Letter,we report on X-ray observations of the2000outburst of XTE J1550−564 made by the Unconventional Stellar Aspect(USA)Experiment on the US Air Force Advanced Research and Global Observation Satellite(ARGOS).For a detailed description of the USA experiment see Ray et al.(1999)and Shabad(2000).We present lightcurves and hardnessratios and track a low frequency QPO which appears in the initial and late stages of the outburst.2.Observations and Data Analysis2.1.Lightcurves and Hardness RatiosThe USA Experiment observed XTE J1550−564at the rate of2–8times per day between 2000April14(MJD51648)and June18(MJD51713).For the present investigation,193 observations were used,from which we selected∼49ks of data obtained in low-background regions.The data are time tagged,having32µs time resolution,and cover an energy range of approximately1–17keV in16pulse height analyzer(PHA)channels.In this work we do not make use of the lowest(channel0)and highest(channel15)PHA channel.We refer to PHA channels1–14(∼1−16keV)as the total range.To create the light curves shown in Figure1,afirst order background subtraction was made by averaging blank sky observations and then subtracting these values from the count rate.To determine the total error,the standard deviation of the average in the background was added in quadrature to the error on the count A data were then corrected for obscuration by the instrument support structure and the collimator response.The overall average light curve(normalized to the USA Crab counting rate)for the total range is shown in panel(a)of Figure1.The circles are RXTE/ASM daily averaged data used to give the complete outburst profile(USA observations did not cover thefirst few days of the outburst). The USA data points shown are an average of several USA observations.The number of observations averaged was dependent on the observation spacing and signal to noise ratio.The spectral characteristics of the outburst were studied by dividing the USA data into two energy bands,USA PHA channels1–3and channels4–14.These two bands correspond to1–4keV and4–16keV,respectively.For the remainder of this Letter these bands will be referred to as the soft band count rate(SB)and the hard band count rate(HB).The motivation for choosing the specific energy ranges of the SB and HB came from properties of the hardness-intensity diagram(HID).During the outburst,XTE J1550−564traces a cyclic pattern in the HID.Plots of count rates versus the total range show this cyclical structure for individual channels in the range4–14,but not for channels1,2or3.Panels(b)and(c)of Figure1show the SB and HB as a function of time during the outburst.The bottom panel of Figure1shows the evolution of hardness ratio using these energy bands.The HID in Figure2shows how the hardness ratio evolves with total count rate during the outburst.The hardness ratio is plotted only for USA data prior to MJD51687,after which the signal to noise decreases to the point that the hardness ratio is not constrained.In Figure2and panel(f)of Figure1,one point is shown for each point in panels(b)and(c)of Figure1.The design of the USA detector incorporated automatic gain stabilization hardware and frequent iron source energy calibrations were done while in orbit.We note that the USA channel to energy conversion varies slightly over the USA orbit;however,checks performed showed that this variation made no significant impact on the relevant features seen in the SB, HB,and hardness ratio.A further check of our spectral results was made by comparing our data to public RXTE/ASM data.Daily averaged ASM data were used tofind the hardness ratio as a function of time and to make a HID.The ASM hardness ratio was calculated by dividing the sum of ASM B Band(3–5keV)and C Band(5–12keV)by A Band(1.5–3keV). To try to emulate the ASM energy bands the USA PHA channels3–11(3–11.5keV)were summed and divided by channel2(2–3keV).The ASM data confirmed the hardness ratio observed with USA and the cyclic behavior in the HID.2.2.Power Spectra:Low Frequency QPOsA low frequency quasi-periodic oscillation(LFQPO)was ubiquitous during the rise of the outburst and during the decay of the outburst after the secondary maximum.In order to track the LFQPO evolution through the outburst,observations were grouped by day and frequently in sub-day groups(signal to noise ratio permitting).Power spectra(see Nowak et al.1999and references therein)were calculated from these groups and averaged.The resultant power spectrum for each group containing a LFQPO wasfit with a power law or broken power law and a Lorentzian for any observable QPO features.Fits were made in three energy bands:the total range,SB,and HB.In case of confusion by sub-harmonics,the strongest QPO feature was chosen as the primary LFQPO (see Remillard et al.2001).In most cases no sub-harmonics were detectable.Panel(d)of Figure1shows how the centroid frequency of the LFQPO evolves during the outburst.The evolution of the rms amplitude for all three energy bands is shown in panel(e).Panels(d) and(e)show error bars calculated by allowing theχ2of thefit to vary by one.All error bars are given at the68%confidence level.3.Results3.1.QPO Evolution and Correlation to State ChangesWe observe LFQPOs between MJD51648and51663and between MJD51675and51686 which vary in frequency between0.24–7.19Hz and6.34–0.64Hz,respectively.During the times of these detections the source is either in the LS or near the transition from one state to another.The LFQPO rms amplitude decreases rapidly at the state transition from the LS to the IS and then increases during the transition back to the LS,indicating that the mechanism for creating the LFQPO is suppressed in the IS.The LFQPO centroid frequency generally increases with increasingflux;the fractional rms amplitude is correlated with hardness ratio (see Figure1).During the IS,significant detections of HFQPOs(249–278Hz)were made by RXTE between between MJD51663and51675(Miller et al.2001).A65Hz QPO has been discovered by Kalemci et al.(2001)at MJD51684.8.These HFQPO detections occurred during the periods where USA observed the LFQPO to be weakening or not detectable at all. It is interesting to note that the HFQPOs were observed to decrease in strength as a function of time in the IS(Miller et al.2001).These observations point to an unfavorable interaction between the mechanisms for LFQPO and HFQPO production.We observe a decline in rms amplitude of the LFQPO near the LS/IS transition,which marks the approximate onset of the HFQPOs.Towards the end of the IS,near the IS/LS transition,the HFQPO weakens as the LFQPO once again becomes detectable.This trend continues in the last days of the outburst,when the LFQPO rms amplitude weakens and the65Hz QPO is detected.These QPO features are qualitatively consistent with observations of XTE J1550−564 during the1998–1999outburst(Remillard et al.2001),during which an“antagonism”between LFQPOs and HFQPOs was also observed.During that outburst,type“C”QPOs were observed when strong correlations were seen between the frequency and diskflux while the amplitude was observed to correlate with disk temperature(Remillard et al.2001). These previous observations closely resemble what we see for the LFQPO observed during the2000outburst;thus we tentatively classify the LFQPO discussed here as a type C.At MJD51661.21an anomalous QPO was detectable exclusively in the HB,in contrast to the primary LFQPO which appears in all energy ranges.In Figure1panel(d),this anomalous QPO is the highest frequency point and is marked with a large unfilled circle near MJD51660.This QPO was detected between the primary LFQPO and its harmonicHz,whereas the primary LFQPO is seen at4.71±0.05Hz and has a frequency of7.19+0.12−0.11and its harmonic is seen at9.75+0.4Hz.−0.353.2.Spectral EvolutionFrom Figure1it is clear that the2000outburst of XTE J1550−564does not follow the canonical fast rise,exponential decay(FRED)outburst as would have been expected prior to the RXTE era.Now,with many more examples of well-observed soft X-ray transient (SXT)outbursts,it has become clear that few outbursts look like pure FREDs,and that the outburst profile can be very different at high energy than at low paring the SB and HB lightcurves in Figure1(b)and(c),the two bands rise approximately in unison,but show very different behavior after the peak.With the exclusion of the secondary maximum the HB light curve shows a nearly symmetric outburst profile,while the SB rapidly rises, then decays approximately linearly.As is often observed in SXTs,the decay returns to its original path after the secondary maximum.In the HID(Figure2),we observe that the difference between the SB and HB lightcurves manifests itself as a cyclic structure that moves with time in a clockwise direction.The HID shows a rapid drop in the hardness ratio as the source enters the IS and a rapid increase as thefinal LS is realized.This type of spectral structure,which has been seen in several other sources(Smith et al.2001),is a consequence of the spectrum being harder during the rise than during the decline.3.3.Multiwavelength CorrelationsMultiwavelength observations of XTE J1550−564during the2000outburst have shown correlations between radio,optical,IR and X-rays.These observations have been compared with similar correlations seen in other black-hole candidates(BHCs),such as GX339−4,and have led to the interpretation that the LS of BHCs is characterized by jets and the IS state is characterized by quenching of these jets(Corbel et al.2001).In Figure1,lines1and8 mark the times of optical/IR maxima and lines3and7indicate significant radio detections made by ATCA while line4indicates no significant radio detection.Line6is the time of an optical/IR minimum.(Optical/IR observations were made by YALO;for complete details on the radio and optical/IR observations see Corbel et al.2001and Jain et al.2001). Radio observations by MOST(not shown)made during the initial LS show a detection of 8–15mJy at843MHz(Corbel et al.2001).This indicates that the radio emission prior to line3is more than a factor of50stronger than at the time of the ATCA observation made at line4(Corbel et al.2001).Together,these radio and optical/IR observations have been interpreted(Corbel et al.2001;Jain et al.2001)as evidence for the presence of jets during the initial andfinal A observations indicate that the decline in the HB,during the IS, is associated with a rapid drop in radio emission.The weak radio detection(line3)occurswhile the SB is still very near its maximum and the HB has dropped from its maximum by a factor of∼2and continues on a rapid decline.At the point of no significant radio detection (line4),the HB has greatly reduced its rate of decrease.The return of the radio signal in thefinal LS suggests that the mechanism of jet production is related to but not dependent on HB photon production mechanism.In future outbursts,it would be helpful to obtain a much more thorough radio coverage in order to pin down the nature of the relationship between the HB and jet quenching.4.Discussion:Two Flow ModelsThe different behavior of the HB and SB lightcurves,together with the lack of a strict correlation between the QPO frequency and sourceflux,suggest a scenario involving a two component accretionflow.Models invoking two independent accretionflows have been described by Chakrabarti&Titarchuk(1995)and Smith et al.(2001),while van der Klis(2001)presents a model where the two parameters are the instantaneous and time averaged values of a single quantity.Whether the two accretionflows are dependent or independent,there will be a transition radius at which the Keplerian disk is disrupted and forms a hot sub-Keplerianflow.This innerflow can be an advection-dominated accretionflow(Esin et al.1997)or a postshockflow interior to the radius where two independentflows interact(Chakrabarti&Titarchuk1995). One may then consider models where the LFQPO is related to the Keplerian orbital period at the transition radius(r tr,measured in units of the Schwartzchild radius)between the thin disk and an innerflow.The relationship between the Keplerian orbital period and radius for a7.5M⊙black hole is R=195R Sch P2/3,where R Sch is the Schwartzchild radius and P is the orbital period in seconds.Thus,the LFQPO evolving from∼0.2Hz to∼5Hz could be related to the transition radius changing from∼570R Sch to∼67R Sch.When the disk inner radius gets small enough,Compton cooling becomes important and the hard Comptonized emission is suppressed while the black-body emission from the disk moves into the X-ray band,causing a spectral state transition.This agrees remarkably well with what was observed in this outburst.In order for a twoflow model to explain the spectral characteristics described in§3.2,it should allow for spectral softening to occur while the overall sourceflux is dropping.For two independentflows,this type of spectral evolution occurs because changes in the radialflow may occur on a short(free-fall)timescale,while the effect of changes in the the disk accretion rate are delayed due to viscosity(Chakrabarti&Titarchuk1995;Smith et al.2001).A model of two independentflows was applied to GRS1758−258and1E1740.7−2942by Smithet al.(2001),both of which also showed spectral softening with decreasingfling a dependentflow model,van der Klis(2001)suggests that if the count rate is dominated by the disk accretion rate and the spectral hardness is related to the inner disk radius(which is determined by the time-averaged accretion rate),the same cyclic structure in the HID will result.Recent ideas on the role of jets in microquasars suggest a link between the jet and the corona(see Fender2001and references therein)and provide a theoretical basis for the observed association between the HB and the radio and optical/IR signals(§3.3).This association is suggestive of a mechanism by which jets are created in the LS and quenched in the IS.The LS is associated with a continuous radio-emitting outflow and the presence of the strong LFQPO.At the transition to the IS,discrete radio ejections seem to be common but the continuous jet ceases and the LFQPO mechanism is suppressed.This indicates that both the outflow and the LFQPO are characteristic of the LS and are related to the presence of a hot corona or sub-Keplerianflow.We gratefully acknowledge useful discussions with Lev Titarchuk.We thank Mark Yashar for providing useful references.Work at SLAC was supported by department of Energy contract DE-AC03-76SF00515.Basic research in X-ray Astronomy at the Naval Research Laboratory is supported by ONR/NRL.This work was performed while RMB held a National Research Council Research Associateship Award at NRL.JDS is grateful to the NASA Applied Information Technology Research Program for support.This paper made use of quick-look results provided by the ASM/RXTE team(see ).REFERENCESChakrabarti,S.&Titarchuk,L.G.1995,ApJ,455,623Corbel,S.et al.2001,ApJ,553,in press(astro-ph/0102114)Esin,A.A.,McClintock,J.E.,&Narayan,R.1997,ApJ,489,865Fender,R.2001,Proc.International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg,Eds.F.Aharonian&H.Voelk,2001,AIP,in press,1233 Hannikainen,D.et al.2001,Proc.of the4th INTEGRAL Workshop,Alicante,2070 Homan,J.,Wijnands,R.,van der Klis,M.,Belloni,T.,van Paradijs,J.,Klein-Wolt,M., Fender,R.,&M´e ndez,M.2001,ApJS,132,377Homan,J.et al.2000,ApJ,in press(astro-ph/0001163)Jain,R.K.,Bailyn,C.D.,Orosz,J.A.,McClintock,J.E.,&Remillard,R.A.2001,ApJ, in press(astro-ph/0105115)Jain,R.,Bailyn,C.,&Tomsick,J.2001,IAU Circ.,7575,3Kalemci,E.,Tomsick,J.A.,Rothschild,R.E.,Pottschmidt,K.,&Kaaret,P.2001,ApJ, submitted(astro-ph/0105395)Masetti,N.&Soria,R.2000,IAU Circ.,7399Miller,J.M.et al.2001,ApJ,submitted(astro-ph/0105371)Nowak,M.A.,Vaughan,B.A.,Wilms,J.,Dove,J.B.,&Begelman,M.C.1999,ApJ,510, 874Orosz,J. A.,van der Klis,M.,McClintock,J.,Bailyn,C.,&Remillard,R.2001,The Astronomer’s Telegram,70Ray,P.S.et al.1999,in X-ray Astronomy1999,Bologna,Italy,in press(astro-ph/9911236) Remillard,R.A.,Sobczak,G.J.,Muno,M.P.,&McClintock,J.E.2001,ApJ,submitted, (astro-ph/0105508)Shabad,G.2000,Stanford Ph.D.Thesis,SLAC Report No.562Smith,D.A.1998,IAU Circ.,7008Smith,D.M.,Heindl,W.A.,&Swank,J.H.2001,ApJ,submitted(astro-ph/0103304) Sobczak,G.J.,McClintock,J.E.,Remillard,R.A.,Cui,W.,Levine,A.M.,Morgan,E.H., Orosz,J.A.,&Bailyn,C.D.2000,ApJ,544,993Tomsick,J.A.,Smith,E.,Swank,J.,Wijnands,R.,&Homan,J.2001,IAU Circ.,7575 van der Klis,M.2001,ApJ,in press(astro-ph/0106291)Fig.1.—Time Evolution of XTE J1550−564.(a)USA/ASM Crab normalizedfluxes for the outburst.The circles are ASM daily averaged data taken before USA started observations. ASM error bars are shown but are smaller than the circles.Crosses with error bars are USA data.(b)USA Soft Band count rate(SB),∼1−4keV.(c)USA Hard Band count rate(HB),∼4−16keV.(d)LFQPO centroid frequency.Filled squares show results for the energy range1–16keV.The large unfilled circle shows the frequency of the anomalous HB QPO.(e)LFQPO percent rms amplitude.Filled squares show results for the energy range1–16keV.Filled circles are the HB and the“X”s are the SB.The large unfilled circle marks the anomalous QPO.(f)Hardness ratio(HB/SB).Line2shows the transition between the initial LS and the IS.Line5shows the approximate beginning of the transition period between the IS andfinal LS.Lines3,4and7are the times of ATCA observations.Lines1and8show optical/IR maxima and line6shows an optical/IR minima.–11–Fig. 2.—Hardness Ratio(HB/SB)vs.Total Range Count Rate.Squares are plotted on points in which the LFQPO was detected.Points at which no QPO detection was made only show error bars.The error bars shown are the standard deviation of theflux and the hardness ratio.Arrows plotted between points show the direction of time.The larger outlined arrows mark the start and stop times of USA observations and the time of the secondary maximum. Transitions between states have been marked with the bold circles.。