(完整word版)信息论与编码-曹雪虹-课后习题答案

合集下载

信息论与编码第三章曹雪虹习题答案

信息论与编码第三章曹雪虹习题答案

第三章3.1 设二元对称信道的传递矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32313132(1) 若P(0) = 3/4, P(1) = 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y); (2) 求该信道的信道容量及其达到信道容量时的输入概率分布;解: 1)symbolbit Y X H X H Y X I symbol bit X Y H Y H X H Y X H X Y H Y H Y X H X H Y X I symbol bit y p Y H x y p x p x y p x p y x p y x p y p x y p x p x y p x p y x p y x p y p symbolbit x y p x y p x p X Y H symbolbit x p X H jj iji j i j i i i / 062.0749.0811.0)/()();(/ 749.0918.0980.0811.0)/()()()/()/()()/()();(/ 980.0)4167.0log 4167.05833.0log 5833.0()()(4167.032413143)/()()/()()()()(5833.031413243)/()()/()()()()(/ 918.0 10log )32lg 324131lg 314131lg 314332lg 3243( )/(log )/()()/(/ 811.0)41log 4143log 43()()(222221212221221211112111222=-==-==+-=+-=-=-==⨯+⨯-=-==⨯+⨯=+=+==⨯+⨯=+=+==⨯⨯+⨯+⨯+⨯-=-==⨯+⨯-=-=∑∑∑∑2)2221122max (;)log log 2(lg lg )log 100.082 /3333mi C I X Y m H bit symbol==-=++⨯=其最佳输入分布为1()2i p x =3-2某信源发送端有2个符号,i x ,i =1,2;()i p x a =,每秒发出一个符号。

信息论与编码第二版答案第六章曹雪虹

信息论与编码第二版答案第六章曹雪虹

信息论与编码第二版答案第六章曹雪虹【篇一:信息论与编码-曹雪虹-课后习题答案】lass=txt>第二章2.1一个马尔可夫信源有3个符号?u1,u,2u?3,转移概率为:p?u1|u1??1/2,p?u2|u1??1/2,p?u3|u1??0,p?u1|u2??1/3,p?u2|u2??0,p?u3|u2??2/3,p?u1|u3??1/3,p?u2|u3??2/3,p?u3|u3??0,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为: ?1/2?p?1/3??1/3?1/202/30??2/3?0??设状态u1,u2,u3稳定后的概率分别为w1,w2、w311?1w1?w2?w3?w110??233w1???2512???wp?w?w1?w3?w29?由?得?2计算可得?w2? 325?w1?w2?w3?1?2??w2?w36?3w3???25???w1?w2?w3?12.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:p(0|00)=0.8,p(0|11)=0.2,p(1|00)=0.2,p(1|11)=0.8,p(0|01)=0.5,p(0|10)=0.5,p(1|01)=0.5,p(1|10)=0.5。

画出状态图,并计算各状态的稳态概率。

解:p(0|00)?p(00|00)?0.8 p(0|01?)pp(0|11)?p(10|11)?0.2p(0|10?)pp(1|00)?p(01|00)?0.2p(1|01?)pp(1|11)?p(11|11)?0.8 p(1|10?)p(10?|01) (00?|10) (11?|01)(01?|10)?0.8?0于是可以列出转移概率矩阵:p???0.5??00.200.5000.500.20??0.5? 0??0.8?状态图为:设各状态00,01,10,11的稳态分布概率为w1,w2,w3,w4 有5?w1??14?0.8w1?0.5w3?w1???w2?10.2w1?0.5w3?w2?wp?w????470.5w2?0.2w4?w3 得计算得到 ???wi?11?0.5w2?0.8w4?w4???w3??i?1??7w1?w2?w3?w4?1???5?w4?14?2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息;(2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, ? , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

信息论与编码_曹雪虹_张宗橙_北京邮电大学出版社课后习题答案

信息论与编码_曹雪虹_张宗橙_北京邮电大学出版社课后习题答案
i i i
得:随意取出一球时,所需要的信息量为 (1) P(红)= P(白)=1/2
1 1 1 1 H(X)= log 2 log 2 2 2 2 2
= 1比特
3 2013-8-9
(2)P(白)= 1/100 P(红)= 99/100 所以 1 H(X)= log 2
100
1 99 99 log 2 100 100 100
13 2013-8-9
2-10
解: (1)H(colour)=2/38log19+2*(18/38)log(38/18) =0.22+1.02=1.24bit (2)H(colour,number)=H(number)=log38 =5.25bit (3)H(number|colour)=H(c,n)-H(c) =5.25-1.24=4.01bit
8 2013-8-9
2-5
解: (1)I=log18=4.17bit (2)略
9 2013-8-9
2-6
解:
(1) 平均每个符号携带的信息量:
H(X)=14/45log(45/14)+13/45log(45/13) +12/45log(45/12)+6/45log(45/6) =1.95比特/符号 (2)消息自信息量: I=1.95*45=87.8
40 2013-8-9
信源熵
H w1 H ( x / s1) w2 H ( x / s2) w3 H ( x / s3) 1.435
41 2013-8-9
5
2-23

28 2013-8-9
2-24
解: 1 3 4 H ( x) log 4 log 0.81 (1)

信息论与编码习题答案-曹雪虹

信息论与编码习题答案-曹雪虹

3-14
信源 符号 xi x1 x2 x3 x4 x5 x6 x7
符号概 率 pi 1/3 1/3 1/9 1/9 1/27 1/27 1/27 1/3 1/3 1/9 1/9 2/27 1/27 1/3 1/3 1/9 1/9 1/9
编码过程
编码 1/3 1/3 1/3 2/3 1/3 00 01 100 101 111 1100 1101
得p0p1p223当p0或p1时信源熵为0第三章无失真信源编码31321因为abcd四个字母每个字母用两个码每个码为05ms所以每个字母用10ms当信源等概率分布时信源熵为hxlog42平均信息传递速率为2信源熵为hx0198bitms198bitsbitms200bits33与上题相同351hu12log2?14log4?18log8?116log16?132log32?164log64?1128log128?1128log128?1984111111112481632641281282每个信源使用3个二进制符号出现0的次数为出现1的次数为p0p134相应的香农编码信源符号xix1x2x3x4x5x6x7x8符号概率pi12141811613216411281128累加概率pi00507508750938096909840992logpxi12345677码长ki12345677码字010110111011110111110111111011111110相应的费诺码信源符号概符号xi率pix1x2x3x4x5x6x7x812141811613216411281128111第一次分组0第二次分组0第三次分组0第四次分组0第五次分组011第六次分组01第七次分组01二元码0101101110111101111101111110111111105香农码和费诺码相同平均码长为编码效率为

信息论与编码-曹雪虹-课后习题答案

信息论与编码-曹雪虹-课后习题答案

《信息论与编码》-曹雪虹-课后习题答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

信息论与编码第六章课后习题答案(曹雪虹)(word文档良心出品).docx

信息论与编码第六章课后习题答案(曹雪虹)(word文档良心出品).docx

第六章:信道 (本章复大我重新修改了一下,尤其要关注色内容 )1、基本概念:差符号、差比特;差:随机差、突差;分:和、分和卷、性与非性、随机差和突差;矢量空、空及其偶空;有离散信道的定理:P e e- NE ( R)(掌握信道定理的内容及减小差概率的方法);形分的展与短(掌握奇偶校及短的校矩、生成矩与原形分的关系)。

2、性分 (封性 ):生成矩及校矩、系形式的 G 和 H、伴随式与准列表、距与能力、完(明 )、循的生成多式及校多式、系形式的循。

作: 6-1、6-3、6-4、6-5 和 6-6 一、 6-7 6-8 和 6-9 一6-1 二元域上 44重失量空的元素个数共有24=16 个,它分是(0,0,0,0),(0,0,0,1)⋯ (1,1,1,1),它的一个自然基底是(0,0,0,1),(0,0,1,0),(0,1,0,0)和(1,0,0,0);其中一个二子空含有的元素个数 22个,取其中一个自然基底(0,0,0,1)和(0,0,1,0),其二子空中所包含的全部矢量(0,0,0,0,),(0,0,0,1),(0,0,1,0)和(0,0,1,1)(注不唯一 );上述子空的偶子空可以有三种不同的:(0,0,0,0) ,(0,1,0,0),(1,0,0,0),(1,1,0,0)或(0,0,0,0) ,(0,1,0,0)或(0,0,0,0) (1,0,0,0)。

(注意本中所包含的关于矢量空的一些基本概念 )6-3 由可以写出系 (8,4)的形方程如下:v 7 u 3 v 6 u 2 v 5 u 1v 4 u 0(注:系统码高四位与信息位保持一致, u i 为信息位 )v 3 u 3 u 2 u 0 v 2 u 3 u 1 u 0 v 1 u 2 u 1 u 0 v 0 u 3 u 2 u 1把上述方程组写成矩阵形式, 可以表示为 V=UG ,其中 V 为码字构成的矢量,即 V=(v 7,v 6,v 5,v 4,v 3,v 2,v 1,v 0),U 为信息位构成的矢量,即U=( u 3,u 2,u 1,u 0),观察方程组可得系统生成矩阵为:1 0 0 0 1 1 0 10 1 0 0 1 0 1 1 4| P4*4G0 1 0 0 1 1 I 0 1 0 0 0 1 1 1 1 0由系统生成矩阵和校验矩阵的关系可得:1 1 0 1 1 0 0 0 HP 4*4T1 0 1 1 0 1 0 0| I 41 1 1 0 0 1 01 1 1 0 0 0 0 1由校验矩阵可以看出,矩阵 H 的任意三列都是线性无关的 (任意三列之和不为 0),但存在四列线性相关的情况 (如第 1、5、6、8 列,这四列之和为 0),即校验矩阵 H 中最小的线性相关的列数为 4,从而得该线性分组码的最小码距为 4。

信息论与编码-曹雪虹-第五章-课后习题答案

信息论与编码-曹雪虹-第五章-课后习题答案

信息论与编码-曹雪虹-第五章-课后习题答案第五章(2) 哪些码是⾮延长码?(3) 对所有唯⼀可译码求出其平均码长和编译效率。

解:⾸先,根据克劳夫特不等式,找出⾮唯⼀可译码31123456231244135236:62163:22222216463:164:22421:2521:2521C C C C C C --------------?<+++++=<<++?=+?>+?<5C ∴不是唯⼀可译码,⽽4C :⼜根据码树构造码字的⽅法1C ,3C ,6C 的码字均处于终端节点∴他们是即时码(1) 因为A,B,C,D四个字母,每个字母⽤两个码,每个码为0.5ms, 所以每个字母⽤10ms当信源等概率分布时,信源熵为H(X)=log(4)=2平均信息传递速率为bit/ms=200bit/s(2) 信源熵为H(X)==0.198bit/ms=198bit/s5-541811613216411281128H(U)=1 2Log2() 14Log4() +18Log8() +116Log16 ()+132Log32 ()Log64()+1128Log128()+1128Log128()+ 1.984= (2) 每个信源使⽤3个⼆进制符号,出现0的次数为出现1的次数为P(0)=P(1)=(3)相应的费诺码(5)⾹农码和费诺码相同平均码长为编码效率为:5-11(1)信源熵(2)⾹农编码:平均码长:编码效率为(3)平均码长为:编码效率:4平均码长为:编码效率:5.16 已知⼆元信源{0,1},其p0=1/4,p1=3/4,试⽤式(4.129)对序列11111100编算术码,并计算此序列的平均码长。

解:根据算术编码的编码规则,可得:P(s=11111100) = P2(0)P6(1) = (3/4)6 (1/4)27)(1log =??=S P l根据(4.129)可得:F(S) = P(0) + P(10) + P(110) + P(1110) + P(11110) + P(111110) = 1–∑≥sy y P )(= 1 – P(11111111) – P(11111110) – P(11111101) – P(11111100)= 1– P(111111) = 1– (3/4)6 = 0.82202 = 0.110100100111⼜P(S) = A(S)= 0.0000001011011001,所以F(S) + P(S) = 0.1101010 即得C = 0.1101010 得S 的码字为1101010平均码长L 为 0.875。

信息论与编码(第二版)曹雪虹(最全版本)答案

信息论与编码(第二版)曹雪虹(最全版本)答案

《信息论与编码(第二版)》曹雪虹答案(一)第二章Equation Chapter 1 Section 12.1一个马尔可夫信源有3个符号,转移概率为:,,,,,,,,,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:设状态u1,u2,u3稳定后的概率分别为W1,W2、W3由得计算可得2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:=0.8,=0.2,=0.2,=0.8,=0.5,=0.5,=0.5,=0.5。

画出状态图,并计算各状态的稳态概率。

解:于是可以列出转移概率矩阵:状态图为:000110110.80.20.50.50.50.50.20.8设各状态00,01,10,11的稳态分布概率为W1,W2,W3,W4 有得 计算得到2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解:(1)(2)(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是其他15个组合的概率是(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:(5)2-42.5 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?解:设随机变量X代表女孩子学历X x1(是大学生)x2(不是大学生)P(X)0.250.75设随机变量Y代表女孩子身高Y y1(身高>160cm)y2(身高<160cm)P(Y)0.50.5已知:在女大学生中有75%是身高160厘米以上的即:求:身高160厘米以上的某女孩是大学生的信息量即:2.6 掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时,该消息所包含的信息量又是多少?解:1)因圆点之和为3的概率该消息自信息量2)因圆点之和为7的概率该消息自信息量2.7 设有一离散无记忆信源,其概率空间为(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量解:同理可以求得因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和就有:平均每个符号携带的信息量为bit/符号2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7}二进制脉冲可以表示2个不同的消息,例如:{0, 1}假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量八进制脉冲的平均信息量二进制脉冲的平均信息量所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

信息论与编码-曹雪虹-第二章-课后习题答案

信息论与编码-曹雪虹-第二章-课后习题答案

2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)p p == (0|11)(10|11)0.2p p == (0|10)(00|10)p p == (1|00)(01|00)0.2p p == (1|01)(11|01)p p==(1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

信息论与编码第六章课后习题答案(曹雪虹)(word文档良心出品)

信息论与编码第六章课后习题答案(曹雪虹)(word文档良心出品)

第六章:信道编码(本章复习大纲我重新修改了一下,尤其要关注红色内容)1、基本概念:差错符号、差错比特;差错图样:随机差错、突发差错;纠错码分类:检错和纠错码、分组码和卷积码、线性码与非线性码、纠随机差错码和纠突发差错码;矢量空间、码空间及其对偶空间; 有扰离散信道的编码定理:-()NE R e P e (掌握信道编码定理的内容及减小差错概率的方法);线形分组码的扩展与缩短(掌握奇偶校验码及缩短码的校验矩阵、生成矩阵与原线形分组码的关系)。

2、线性分组码(封闭性):生成矩阵及校验矩阵、系统形式的G 和H 、伴随式与标准阵列译码表、码距与纠错能力、完备码(汉明码)、循环码的生成多项式及校验多项式、系统形式的循环码。

作业:6-1、6-3、6-4、6-5和6-6选一、6-7 6-8和6-9选一 6-1 二元域上4维4重失量空间的元素个数总共有24=16个,它们分别是(0,0,0,0),(0,0,0,1)…(1,1,1,1),它的一个自然基底是(0,0,0,1),(0,0,1,0),(0,1,0,0)和(1,0,0,0);其中一个二维子空间含有的元素个数为22个,选取其中一个自然基底为(0,0,0,1)和(0,0,1,0),则其二维子空间中所包含的全部矢量为(0,0,0,0,),(0,0,0,1),(0,0,1,0)和(0,0,1,1)(注选择不唯一);上述子空间对应的对偶子空间可以有三种不同的选择:(0,0,0,0) ,(0,1,0,0),(1,0,0,0),(1,1,0,0)或(0,0,0,0) ,(0,1,0,0)或(0,0,0,0) (1,0,0,0)。

(注意本题中所包含的关于矢量空间的一些基本概念)6-3 由题设可以写出该系统(8,4)码的线形方程组如下:736251403320231012100321v u v u v u v u v u u u v u u u v u u u v u u u=⎧⎪=⎪⎪=⎪=⎪⎨=++⎪⎪=++⎪=++⎪⎪=++⎩(注:系统码高四位与信息位保持一致,u i 为信息位) 把上述方程组写成矩阵形式,可以表示为 V =U G ,其中V 为码字构成的矢量,即V =(v 7,v 6,v 5,v 4,v 3,v 2,v 1,v 0),U 为信息位构成的矢量,即U =( u 3,u 2,u 1,u 0),观察方程组可得系统生成矩阵为:[]44*41000110101001011G I |P 0010011100011110⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦由系统生成矩阵和校验矩阵的关系可得:4*441101100010110100H P |I 0111001011100001T ⎡⎤⎢⎥⎢⎥⎡⎤==⎣⎦⎢⎥⎢⎥⎣⎦由校验矩阵可以看出,矩阵H 的任意三列都是线性无关的(任意三列之和不为0),但存在四列线性相关的情况(如第1、5、6、8列,这四列之和为0),即校验矩阵H 中最小的线性相关的列数为4,从而得该线性分组码的最小码距为4。

信息论与编码(曹雪虹)答案

信息论与编码(曹雪虹)答案
取e为底
= 0
3.3在有扰离散信道上传输符号0和1,在传输过程中每100个符号发生一个错误,已知P(0)=P(1)=1/2,信源每秒内发出1000个符号,求此信道的信道容量。
解:
由题意可知该二元信道的转移概率矩阵为:
为一个BSC信道
所以由BSC信道的信道容量计算公式得到:
3.4求图中信道的信道容量及其最佳的输入概率分布.并求当 =0和1/2时的信道容量C的大小。
(1)求符号的平均熵;
(2)有100个符号构成的序列,求某一特定序列(例如有m个“0”和(100 -m)个“1”)的自信息量的表达式;
(3)计算(2)中序列的熵。
解:
(1)
(2)
(3)
2-26
P(i)= P(ij)=
H(IJ)=
2.29有一个一阶平稳马尔可夫链 ,各Xr取值于集合 ,已知起始概率P(Xr)为 ,转移概率如下图所示
(2)求此信源的熵
(3)近似认为此信源为无记忆时,符号的概率分布为平稳分布。求近似信源的熵H(X)并与 进行比较
解:根据香农线图,列出转移概率距阵
令状态0,1,2平稳后的概率分布分别为W1,W2,W3
得到 计算得到
由齐次遍历可得
符号由最大熵定理可知 存在极大值
或者也可以通过下面的方法得出存在极大值:
解:
设随机变量X代表女孩子学历
X
x1(是大学生)
x2(不是大学生)
P(X)
0.25
0.75
设随机变量Y代表女孩子身高
Y
y1(身高>160cm)
y2(身高<160cm)
P(Y)
0.5
0.5
已知:在女大学生中有75%是身高160厘米以上的

信息论与编码(第二版)曹雪虹(最全版本)答案

信息论与编码(第二版)曹雪虹(最全版本)答案

《信息论与编码(第二版)》曹雪虹答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p ==u 1u 2u 31/21/21/32/32/31/3(1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:000110110.80.20.50.50.50.50.20.8设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

信息论与编码(第二版)曹雪虹(最全版本)答案

信息论与编码(第二版)曹雪虹(最全版本)答案

《信息论与编码(第二版)》曹雪虹答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

信息论与编码曹雪虹课后习题答案(供参考)

信息论与编码曹雪虹课后习题答案(供参考)

《信息论与编码》-曹雪虹-课后习题答案 第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下 状态转移矩阵为:设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。

信息论与编码第二章曹雪虹习题答案

信息论与编码第二章曹雪虹习题答案

2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)p p == (0|11)(10|11)0.2p p == (0|10)(00|10)p p == (1|00)(01|00)0.2p p == (1|01)(11|01)p p==(1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信息论与编码》-曹雪虹-课后习题答案 第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p=0.8,(0|11)p=0.2,(1|00)p=0.2,(1|11)p=0.8,(0|01)p=0.5,(0|10)p=0.5,(1|01)p=0.5,(1|10)p=0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p==(0|01)(10|01)0.5p p==(0|11)(10|11)0.2p p==(0|10)(00|10)0.5p p==(1|00)(01|00)0.2p p==(1|01)(11|01)0.5p p==(1|11)(11|11)0.8p p==(1|10)(01|10)0.5p p==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8 p⎛⎫⎪⎪=⎪⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W1,W2,W3,W4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。

解: (1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bitx p x I x p i i i 170.5361log )(log )(3616161)(=-=-==⨯=两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2-42.5 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。

假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量? 解:设随机变量X 代表女孩子学历X x 1(是大学生)x 2(不是大学生) P(X)0.250.75设随机变量Y 代表女孩子身高Y y 1(身高>160cm ) y 2(身高<160cm )P(Y)0.50.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x yp 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x yp x p y x p y x I 415.15.075.025.0log)()/()(log )/(log )/(11111111=⨯-=-=-=2.6 掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时,该消息所包含的信息量又是多少? 解:1)因圆点之和为3的概率1()(1,2)(2,1)18p x p p =+=该消息自信息量()log ()log18 4.170I x p x bit =-== 2)因圆点之和为7的概率1()(1,6)(6,1)(2,5)(5,2)(3,4)(4,3)6p x p p p p p p =+++++=该消息自信息量()log ()log6 2.585I x p x bit =-==2.7 设有一离散无记忆信源,其概率空间为123401233/81/41/41/8X x x x x P ====⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ (1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解:122118()loglog 1.415()3I x bit p x === 同理可以求得233()2,()2,()3I x bit I x bit I x bit ===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++=平均每个符号携带的信息量为87.81 1.9545=bit/符号2.8 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7}二进制脉冲可以表示2个不同的消息,例如:{0, 1}假设每个消息的发出都是等概率的,则: 四进制脉冲的平均信息量symbol bit n X H / 24log log )(1===八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbolbit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

2-9 “-” 用三个脉冲 “●”用一个脉冲(1) I(●)=Log 4()2= I(-)=Log 43⎛⎝⎫⎪⎭0.415=(2) H= 14Log 4()34Log 43⎛⎝⎫⎪⎭+0.811= 2-10(2) P(黑/黑)= P(白/黑)=H(Y/黑)=(3) P(黑/白)= P(白/白)= H(Y/白)=(4) P(黑)= P(白)= H(Y)=2.11 有一个可以旋转的圆盘,盘面上被均匀的分成38份,用1,…,38的数字标示,其中有两份涂绿色,18份涂红色,18份涂黑色,圆盘停转后,盘面上的指针指向某一数字和颜色。

(1)如果仅对颜色感兴趣,则计算平均不确定度 (2)如果仅对颜色和数字感兴趣,则计算平均不确定度(3)如果颜色已知时,则计算条件熵解:令X 表示指针指向某一数字,则X={1,2,……….,38} Y 表示指针指向某一种颜色,则Y={l 绿色,红色,黑色}Y 是X 的函数,由题意可知()()i jip x y p x =(1)3112381838()()loglog 2log 1.24()3823818jj j H Y p y p y ===+⨯=∑bit/符号 (2)2(,)()log 38 5.25H X Y H X ===bit/符号(3)(|)(,)()()() 5.25 1.24 4.01H X Y H X Y H Y H X H Y =-=-=-=bit/符号 2.12 两个实验X 和Y ,X={x 1 x 2 x 3},Y={y 1 y 2 y 3},l 联合概率(),ijijr x y r =为1112132122233132337/241/2401/241/41/2401/247/24r r r r r r rr r ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(1) 如果有人告诉你X 和Y 的实验结果,你得到的平均信息量是多少?(2) 如果有人告诉你Y 的实验结果,你得到的平均信息量是多少?(3) 在已知Y 实验结果的情况下,告诉你X 的实验结果,你得到的平均信息量是多少? 解:联合概率(,)ijp x y 为22221(,)(,)log (,)724112log 4log 24log 4247244i j i j ijH X Y p x y p x y ==⨯+⨯+∑ =2.3bit/符号X 概率分布21()3log 3 1.583H Y =⨯=bit/符号 (|)(,)() 2.3 1.58H X Y H X Y H Y =-=- Y概率分布是=0.72bit/符号2.13 有两个二元随机变量X 和Y ,它们的联合概率为并定义另一随机变量Z = XY (一般乘积),试计算: (1) H(X), H(Y), H(Z), H(XZ), H(YZ)和H(XYZ); (2) H(X/Y), H(Y/X), H(X/Z), H(Z/X), H(Y/Z), H(Z/Y),H(X/YZ), H(Y/XZ)和H(Z/XY);(3) I(X;Y), I(X;Z), I(Y;Z), I(X;Y/Z), I(Y;Z/X)和I(X;Z/Y)。

相关文档
最新文档