不等式练习题(精选5篇)
不等式练习题
不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。
2. 已知x > 3,求证:x^2 > 9。
3. 已知0 < x < 1,求证:x^3 < x。
4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。
5. 已知|x| > |y|,求证:x^2 > y^2。
二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。
2. 解不等式:5 2(x 3) ≤ 3x 1。
3. 解不等式:2(x 1) 3(x + 2) > 7。
4. 解不等式:4 3(x 2) ≥ 2x + 5。
5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。
三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。
2. 解不等式:2x^2 3x 2 < 0。
3. 解不等式:x^2 4x + 4 ≤ 0。
4. 解不等式:3x^2 + 4x 4 > 0。
5. 解不等式:x^2 + 5x 6 < 0。
四、分式不等式1. 解不等式:x / (x 1) > 2。
2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。
3. 解不等式:(x 1) / (x + 1) < 0。
4. 解不等式:(2x + 3) / (x 4) ≥ 1。
5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。
五、含绝对值的不等式1. 解不等式:|x 2| > 3。
2. 解不等式:|2x + 1| ≤ 5。
3. 解不等式:|3x 4| < 2。
4. 解不等式:|x + 3| |x 2| > 1。
5. 解不等式:|x 5| + |x + 1| < 6。
六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。
不等式练习题(带答案)
不等式练习题(带答案)
第一篇:不等式练习题(带答案)
不等式基本性质练习
一、选择题(本大题共10小题,每小题5分,共50分)1.若
a>0, b >0,则(a+b)(A.
21a+1b)的最小值是
D.
4()
B.22 C.42
2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的 A.必要条件 C.充要条件
1a
1b
()
1a
1b
B.充分条件 D.必要或充分条件
3.设a、b为正数,且a+ b≤4,则下列各式中正确的一个是
A.
+
<
1D.
1a+1b
≥
2()
B.+≥1 C.
1a
+
1b
<2
4.已知a、b均大于1,且logaC·logbC=4,则下列各式中,一定正确的是
A.ac≥b 5.设a=2,b=7-
A.a>b>c
B.ab≥c
3,c=
6-
()
C.bc≥a D.ab≤c
()
2,则a、b、c间的大小关系是
B.b>a>c
a+mb+m
C.b>c>a
>ab
D.a>c>b
()
6.已知a、b、m为正实数,则不等式
A.当a< b时成立C.是否成立与m无关
B.当a> b时成立D.一定成立
()
7.设x为实数,P=ex+e-x,Q=(sinx+cosx)2,则P、Q之间的大小关系是
A.P≥Q
ab
B.P≤Q
ab
C.P>Q
ab。
不等式经典题型专题练习含答案
1 / 14不等式经典题型专题练习(含答案)姓名:__________ 班级:___________一、解答题1.解不等式组: ()13x 2x 11{ 25233x x-+≤-+≥-,并在数轴上表示不等式组的解集.2.若不等式组21{ 23x a x b -<->的解集为-1<x<1,求(a+1)(b -1)的值.3.已知关于x ,y 的方程组⎩⎨⎧=+=+3135y x m y x 的解为非负数,求整数m 的值.4.由方程组212x yx y a+=⎧⎨-=⎩得到的x、y的值都不大于1,求a的取值范围.5.解不等式组:并写出它的所有的整数解.6.已知关于x、y的方程组52111823128x y ax y a+=+⎧⎨-=-⎩的解满足x>0,y>0,求实数a的取值范围.6.求不等式组x20x1x32->⎧⎪⎨+≥-⎪⎩的最小整数解.7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解.8.已知关于x的不等式组{x−a≥03−2x>−1的整数解共有5个,求a的取值范围.3/ 149.若二元一次方程组2{24x y kx y-=+=的解x y>,求k的取值范围.10.解不等式组5134122x xx x->-⎧⎪⎨--⎪⎩≤并求它的整数解的和.11.已知x,y均为负数且满足:232x y mx y m+=-⎧⎨-=⎩①②,求m的取值范围.5 / 14 12.解不等式组⎪⎩⎪⎨⎧<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.14.若方程组2225x y m x y m +=+⎧⎨-=-⎩的解是一对正数,则: (1)求m 的取值范围(2)化简:42m m -++15.我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?16.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?17.3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。
不等式练习题及答案
不等式练习题及答案不等式练习题及答案不等式是数学中常见的概念,它描述了数值之间的大小关系。
在解决实际问题时,不等式也经常被用来建立数学模型。
本文将为大家提供一些不等式练习题及其答案,帮助读者提升对不等式的理解和应用能力。
1. 练习题一:解不等式求解不等式2x - 5 < 3x + 2。
解答:首先,我们可以将不等式转化为等式,即2x - 5 = 3x + 2。
然后,将x项移到一边,常数项移到另一边,得到2x - 3x = 2 + 5。
化简得到-x = 7,再乘以-1,得到x = -7。
所以,不等式2x - 5 < 3x + 2的解集为x < -7。
2. 练习题二:求不等式的解集求解不等式x^2 - 4x > 3。
解答:首先,我们可以将不等式转化为等式,即x^2 - 4x = 3。
然后,将所有项移到一边,得到x^2 - 4x - 3 > 0。
接下来,我们可以使用因式分解或配方法来求解这个二次不等式。
通过因式分解,我们可以得到(x - 3)(x + 1) > 0。
根据零点的性质,我们可以得到x - 3 > 0或x + 1 > 0。
解得x > 3或x > -1。
所以,不等式x^2 - 4x > 3的解集为x > 3。
3. 练习题三:证明不等式证明对于任意正实数a、b和c,有(a + b + c)^2 ≥ 3(ab + bc + ca)。
解答:我们可以使用数学归纳法来证明这个不等式。
首先,当n = 2时,不等式成立,即(a + b)^2 ≥ 3ab。
假设当n = k时,不等式成立,即(a1 + a2 + ... + ak)^2 ≥ 3(a1a2 + a2a3 + ... + ak-1ak)。
我们需要证明当n = k + 1时,不等式也成立。
考虑(a1 + a2 + ... + ak + ak+1)^2,展开后可以得到:(a1 + a2 + ... + ak)^2 + 2(a1 + a2 + ... + ak)(ak+1) + ak+1^2。
高中不等式例题(超全超经典)
一. 不等式的性质:二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。
其中比较法(作差、作商)是最基本的方法。
三.重要不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”); 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 2ab a +b ≤ab ≤ a +b 2 ≤ a 2+b 22 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x 解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
不等式组练习题(5篇)
不等式组练习题(5篇)不等式组练习题(5篇)不等式组练习题范文第1篇【教学过程与评析】一、基本练习老师课前在黑板上先写好以下的口算、估算、笔算题组。
并在上课开头向同学提出本课的学习目标:通过这节课的练习,要求同学们能进一步娴熟地计算两位数乘两位数,并能解决一些简洁的实际问题。
先请大家在练习纸上以最快的速度按要求计算下面各题。
1.口算题组一:82×4= 题组二:40×30=82×20= 40×40=82×24= 40×50=2.估算39×30≈ 39×41≈ 38×52≈3.笔算82×24= 39×41= 38×52=同时提出练习与合作要求:(1)先独立完成以上各题,再想一想以上算式中哪些题是有联系的?(2)小组长负责,先组内同学相互批改,再说一说这些算式有什么联系。
老师在同学独立计算和小组争论时,有意识地关注同学的计算和争论状况。
(留意同学错误的反馈)通过同学的独立计算、分小组进行沟通争论后,老师让一位同学把每题的得数和竖式写在黑板上,同时也把有错的得数写在旁边。
接着组织以下反馈评讲。
师:请大家认真观看黑板上各道题的得数和笔算过程,你有什么想说的吗?(同学观看片刻后作出回答)同学先对错误的得数作了订正,再提出:生:我看出口算的题组二中,下面一题的得数要比上一题的得数大“400”。
师:为什么呢?生:每一题相差10个40,所以相差400。
生:我发觉题组一最终一个算式的结果,刚好是把上面两个算式结果加起来。
生:将每一道估算的算式都看成整十数乘整十数,刚好是上面口算的题组二。
师:是吗。
(老师依据同学说出的估算方法,线连到对应的口算题上)生:我还发觉笔算的第一题与口算题的题组一有关。
师:是吗?(老师让这位同学把关系说清晰)生:每道估算题与每道笔算题也有联系。
师:那估算对笔算有什么作用呢?生:可以用估算的方法检查笔算的得数是不是正确。
不等式的解法练习题及解析
不等式的解法练习题及解析1. 解下列不等式:2x - 5 < 3x + 4解析:我们可以通过移项和合并同类项的方式来求解不等式。
首先,将3x移到等式的左边,将-5移到等式的右边,得到2x - 3x < 4 + 5。
然后合并同类项,得到-x < 9。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x > -9。
2. 解下列不等式:3(x - 2) ≥ 5x + 6解析:同样地,我们可以通过移项和合并同类项来求解不等式。
首先将5x移到等式的右边,将6移到等式的左边,得到3x - 5x ≥ 6 - 10。
然后合并同类项,得到-2x ≥ -4。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x ≤ 2。
3. 解下列不等式:4 - 3x > 7x + 2解析:同样地,我们可以通过移项和合并同类项来求解不等式。
首先将7x移到等式的左边,将4移到等式的右边,得到-3x - 7x > 2 - 4。
然后合并同类项,得到-10x > -2。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x < 0.2。
4. 解下列不等式:2(3x - 4) + 5 > 4(5 - x) - 7解析:同样地,我们可以通过移项和合并同类项来求解不等式。
首先将4(5 - x)移到等式的左边,将2(3x - 4)移到等式的右边,得到10 -4x > 6x - 8 - 7。
然后进行合并计算,得到10 - 4x > 6x - 15。
接着将4x和6x移到等式的右边,将10移到等式的左边,得到-4x - 6x > -15 - 10。
合并计算后得到-10x > -25。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x < 2.5。
5. 解下列不等式:|2x - 3| < 7解析:这是一个绝对值不等式,我们需要分别考虑绝对值内部的正负情况。
解不等式例题50道
解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。
- 计算右边式子得2x>4。
- 两边同时除以2,解得x > 2。
2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。
- 即3x<9。
- 两边同时除以3,解得x<3。
3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。
- 计算得3x≤slant6。
- 两边同时除以3,解得x≤slant2。
4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。
- 即x≥slant8。
5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。
- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。
- 两边同时乘以 - 2,不等号变向,解得x < 8。
6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。
- 计算得(1)/(3)x≤slant3。
- 两边同时乘以3,解得x≤slant9。
7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。
- 移项得2x-3x>-3 - 6。
- 计算得-x>-9。
- 两边同时乘以 - 1,不等号变向,解得x < 9。
8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。
- 移项得3x-2x≤slant2+6。
- 计算得x≤slant8。
不等式题目及答案
不等式题目及答案【篇一:基本不等式练习题及答案】教a版教材习题改编)函数y=x+xx>0)的值域为( ).a.(-∞,-2]∪[2,+∞)c.[2,+∞)b.(0,+∞) d.(2,+∞)a+b12.下列不等式:①a2+1>2a;②2;③x2+≥1,其中正确的个数是 x+1ab( ).a.0b.1c.2d.33.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ).1a.2b.1 c.2 d.4a.1+2b.1+3c.3d.4t2-4t+15.已知t>0,则函数y=的最小值为________. t考向一利用基本不等式求最值11【例1】?(1)已知x>0,y>0,且2x+y=1,则x+y的最小值为________;(2)当x>0时,则f(x)=2x________. x+1【训练1】 (1)已知x>1,则f(x)=x+1的最小值为________. x-12(2)已知0<x<5y=2x-5x2的最大值为________.(3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________.考向二利用基本不等式证明不等式bccaab【例2】?已知a>0,b>0,c>0,求证:abca+b+c..【训练2】已知a>0,b>0,c>0,且a+b+c=1.111求证:a+b+c≥9.考向三利用基本不等式解决恒成立问题________.考向三利用基本不等式解实际问题【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(1)求出f(n)的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?双基自测d.(2,+∞)答案 c2.解析①②不正确,③正确,x2+112(x+1)+1≥2-1=1.答案 b x+1x+11的最小值是( ). a?a-b?13.解析∵a>0,b>0,a+2b=2,∴a+2b=2≥2ab,即ab≤2答案 a4.解析当x>2时,x-2>0,f(x)=(x-2)+=3,即a=3.答案 ct2-4t+115.解析∵t>0,∴y==t+tt-4≥2-4=-2,当且仅当t=1时取等号.答案-2【例1】解析 (1)∵x>0,y>0,且2x+y=1,112x+y2x+yy2xy2x∴x+y=x+y=3+x+y3+22.当且仅当xy 时,取等号.(2)∵x>0,∴f(x)=2x221=1≤2=1,当且仅当x=x,即x=1时取等号.答x+1x+x案 (1)3+22 (2)1【训练1】.解析 (1)∵x>1,∴f(x)=(x-1)+1+1≥2+1=3 当且仅当xx-11?5x+2-5x?2=1,∴y≤,当且仅当5x=2-5x,-5x>0,∴5x(2-5x)≤?52??1128即x=5时,ymax=5.(3)由2x+8y-xy =0,得2x+8y=xy,∴y+x=1,4yx当且仅当xyx=2y时取等号,又2x+8y-xy=0,∴x=12,y =6,∴当x=12,y=6时,x+y取最小值18.1答案 (1)3 (2)5(3)18bcca【例2】证明∵a>0,b>0,c>0,∴a+b≥2bcabcaab=2b;acb+c≥2 bccabcab=2c;aba+c≥2caab?bccaab?+c≥2(abc=2a.以上三式相加得:2?ab?bccaab+b+c),即abca+b+c.【训练2】111a+b+ca+b+c证明∵a>0,b>0,c>0,且a+b+c=1,∴a+b+c=aba+b+cbcacab?ba?ca?cb?a+b+?ac+?bc 3+3+caabbcc??????1≥3+2+2+2=9,当且仅当a=b=c=3时,取等号.xx解析若对任意x>0≤a恒成立,只需求得y=的最大值即x+3x +1x+3x+1可,因为x>0,所以y=x=x+3x+1111x=1时115x+x32 xx ?1??1?取等号,所以a的取值范围是?5,+∞?答案 ?5? ????【训练3】解析由x>0,y>0,xy=x+2y≥2 2xy,得xy≥8,于是由m-2≤xy恒成立,得m-2≤8,m≤10,故m的最大值为10.答案 1016当且仅当x=x,即x=4时取等号.故当侧面的长度为4米时,总造价最低.【训练3】解 (1)第n次投入后,产量为(10+n)万件,销售价格为100元,固定成本为80元,科技成本投入为100n万元.所以,年利润为f(n)=(10+n+180?80??*100-100-?-100n(n∈n).(2)由(1)知f(n)=(10+n)?-100n n)?n+1?n+1???9?9n+1+≤520(万元).当且仅当n+1==1 000-80?, n+1??n +1即n=8时,利润最高,最高利润为520万元.所以,从今年算起第8年利润最高,最高利润为520万元.【示例】.正解∵a>0,b>0,且a+b=1,12?12b2a∴a+b=?a+b(a+b)=1+2+ab3+2 ??b2aab3+22. a+b=1,??当且仅当?b2a??ab ?a=2-1,12即?时,ab3+22. ?b=2-22 11112【试一试】尝试解答] a+ab=a-ab+ab+ab+a(a-b)+a?a-b?a?a-b?11+ab+ab≥2 1a?a-b?2 1abab2+2=4.当且仅当a(a-a?a-b?a?a-b?b)=1a?a-b?且ab=1aba=2b时,等号成立.答案d【篇二:初中数学不等式试题及答案】t>a卷2?x7x??1的解集为_____________。
高中不等式练习题及答案
高中不等式练习题及答案高中不等式练习题及答案在高中数学学习中,不等式是一个重要的概念和工具。
不等式是数学中描述数值大小关系的一种方式,它可以帮助我们解决各种实际问题。
在学习不等式的过程中,练习题是必不可少的,下面我将为大家提供一些高中不等式练习题及其答案。
1. 练习题一:解不等式:2x - 5 < 3x + 2解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 3x < 2 + 5化简得:-x < 7由于系数为负数,所以不等号方向需要翻转,得到:x > -72. 练习题二:解不等式:3(x - 2) > 2(x + 3)解答:先进行分配律的运算,得到:3x - 6 > 2x + 6将变量移到一边,常数移到另一边,得到:3x - 2x > 6 + 6化简得:x > 123. 练习题三:解不等式:4x + 5 > 3 - 2x解答:将变量移到一边,常数移到另一边,得到:4x + 2x > 3 - 5化简得:6x > -2由于系数为正数,所以不等号方向不需要翻转,得到:x > -1/34. 练习题四:解不等式:2x - 3 > 5x + 1解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 5x > 1 + 3化简得:-3x > 4由于系数为负数,所以不等号方向需要翻转,得到:x < -4/35. 练习题五:解不等式:2x + 1 < 3(x - 2)解答:先进行分配律的运算,得到:2x + 1 < 3x - 6将变量移到一边,常数移到另一边,得到:2x - 3x < -6 - 1化简得:-x < -7由于系数为负数,所以不等号方向需要翻转,得到:x > 7通过以上的练习题,我们可以看到解不等式的基本步骤。
首先,将不等式中的变量移到一边,常数移到另一边;然后,化简不等式;最后,根据系数的正负确定不等号的方向。
不等式解决问题练习题
不等式解决问题练习题一、一元一次不等式1. 解不等式:3x 5 > 22. 解不等式:4 2x ≤ 13. 解不等式:5x + 8 > 34. 解不等式:7 3x < 45. 解不等式:2x 6 ≥ 4二、一元一次不等式组1. 解不等式组:\[\begin{cases}x 2 > 0 \\3x + 1 < 4\end{cases}\]2. 解不等式组:\[\begin{cases}2x 3 < 5 \\4x + 7 > 11\end{cases}\]3. 解不等式组:\[\begin{cases}5x + 4 > 2x 1 \\3x 2 ≤ 8\end{cases}\]三、一元二次不等式1. 解不等式:x^2 5x + 6 > 02. 解不等式:2x^2 4x 6 < 03. 解不等式:x^2 + 3x 4 ≥ 04. 解不等式:x^2 + 2x + 3 ≤ 05. 解不等式:4x^2 12x + 9 > 0四、分式不等式1. 解不等式:\(\frac{1}{x2} > 0\)2. 解不等式:\(\frac{2}{x+3} < 1\)3. 解不等式:\(\frac{3}{x1} + \frac{1}{x+2} ≥ 0\)4. 解不等式:\(\frac{4}{x+1} \frac{2}{x3} ≤ 2\)5. 解不等式:\(\frac{5}{x^2 4x + 3} > 0\)五、绝对值不等式1. 解不等式:|x 4| < 32. 解不等式:|2x + 1| ≥ 53. 解不等式:|3x 7| > 24. 解不等式:|4 x| ≤ 65. 解不等式:|5x + 3| < 8六、综合应用题1. 某企业生产一种产品,每件产品的成本为50元,售价为80元。
若该企业每月固定开支为2000元,要使企业不亏损,每月至少需要销售多少件产品?2. 一辆汽车以60km/h的速度行驶,行驶过程中,速度每增加10km/h,油耗增加1L/100km。
初中几何不等式练习题
初中几何不等式练习题一、基本不等式1. 已知正数a、b,证明:a+b ≥ 2√(ab)。
2. 已知a、b为实数,证明:(a+b)² ≥ 4ab。
3. 已知a、b、c为正数,证明:a+b+c ≥ 3√[abc]。
4. 已知x、y为实数,求证:x² + y² ≥ 2xy。
5. 已知a、b、c为等差数列,求证:a² + b² + c² ≥ ab + bc+ ca。
二、三角形不等式1. 在△ABC中,求证:a+b > c,b+c > a,c+a > b。
2. 已知△ABC的三边长分别为3、4、5,求证:3² + 4² > 5²。
3. 在△ABC中,若∠A = 60°,求证:a > bsinA。
4. 在△ABC中,若a² = b² + c² bc,求证:∠A = 90°。
5. 已知△ABC的三边长满足a² + b² = 3c²,求证:∠C < 90°。
三、四边形不等式1. 已知平行四边形ABCD的对角线交于点E,求证:AE² + BE² + CE² + DE² ≥ 4AB²。
2. 在矩形ABCD中,求证:AB + BC > AC。
3. 已知菱形ABCD的对角线AC、BD交于点O,求证:AO² + BO² + CO² + DO² ≥ 4AB²。
4. 在梯形ABCD中,AB // CD,求证:AD + BC > CD。
5. 已知四边形ABCD的四边长分别为1、2、2、3,求证:不能构成矩形。
四、圆的不等式1. 在圆中,求证:直径所对的圆周角是直角。
2. 已知圆的半径为r,求证:圆的面积S ≤ πr²。
不等式练习题简单
不等式练习题简单一、一元一次不等式的解法1. 解下列不等式:(1) 3x 7 > 2(2) 5 2x ≤ 3x + 1(3) 4(x 3) > 2x + 62. 简化下列不等式:(1) 2(x 3) + 3(x + 4) > 7x 5(2) 5 3(x 2) ≤ 2x + 4 x二、一元二次不等式的解法1. 解下列不等式:(1) x^2 5x + 6 > 0(2) 2x^2 3x 2 < 0(3) x^2 4x + 4 ≤ 02. 判断下列不等式的解集:(1) (x 1)(x + 2) > 0(2) (2x + 3)(x 4) < 0三、含绝对值的不等式1. 解下列不等式:(1) |x 2| > 3(2) |2x + 1| ≤ 5(3) |3x 4| + |x + 2| = 72. 简化下列不等式:(1) |2x 3| |x + 1| > 0(2) |x 4| + |x + 3| < 5四、不等式组1. 解下列不等式组:(1)\[\begin{cases}x 2y > 3 \\3x + y < 7\end{cases}\](2)\[\begin{cases}2x y ≤ 1 \\x + 4y > 8\end{cases}\]2. 判断下列不等式组的解集: (1)\[\begin{cases}x + y > 4 \\x y < 2\end{cases}\](2)\[\begin{cases}3x 2y ≥ 6 \\x + y ≤ 3\end{cases}\]五、应用题1. 某商店举行打折活动,原价商品满100元减20元,满200元减50元,满300元减80元。
小明购物满300元,求小明实际支付金额的范围。
2. 一辆汽车以60km/h的速度行驶,行驶时间t(小时)与行驶距离s(千米)之间的关系为s = 60t。
不等式练习题
若a 是有理数,比较2a 和3a 的大小.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.1.已知a <b ,用“<”或“>”填空:⑴a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4);2______2b a (5);7______7b a -- (6)5a +2______5b +2; (7)-2a -1______-2b -1; (8)4-3b ______6-3a .2.用“<”或“>”填空: (1)若a -2>b -2,则a ______b ;(2)若,33b a <则a ______b ; (3)若-4a >-4b ,则a ______b ; (4),22b a -<-则a ______b . 3.不等式3x <2x -3变形成3x -2x <-3,是根据______.4.如果a 2x >a 2y (a ≠0).那么x ______y .(1)x -10<0.(2).62121+->x x 2x ≥5. (4).131-≥-x5关于x 的不等式mx -n >0,当m ______时,解集是;mn x <当m ______时,解集是⋅>m n x 6.已知b <a <2,用“<”或“>”填空:(1)(a -2)(b -2)______0;(2)(2-a )(2-b )______0;(3)(a -2)(a -b )______0.7.当x 取什么值时,式子563-x 的值为(1)零;(2)正数;(3)小于1的数..2(2x -3)<5(x -1). 10-3(x +6)≤1.⋅-->+22531x x⋅-≥--+612131y y y .3[x -2(x -7)]≤4x ..17)10(2383+-≤--y y y求不等式361633->---x x 的非负整数解.求不等式6)125(53)34(2+<-x x 的所有负整数解.已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0.求m 的取值范围.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.如果a >b ,那么不等式组⎩⎨⎧<<.,b x a x 的解集是⎩⎨⎧>>b ,a x x 的解集是______;⎩⎨⎧><b x x ,a 的解集是______;⎩⎨⎧<>b,a x x 的解集是______ ⎩⎨⎧->>3,2x x 的解集是______; ⎩⎨⎧-<<3,2x x 的解集是______; ⎩⎨⎧-><32x x 的解集是______; (4)⎩⎨⎧-<>3,2x x 的解集是______. .⎪⎩⎪⎨⎧⋅>-<-322,352x x x x ⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x .234512x x x -≤-≤-.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x .⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x⎪⎩⎪⎨⎧<+-+--≤+.121331),3(410)8(2x x x x 求⎪⎩⎪⎨⎧≤-->032,134x x x 的整数解如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为.在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )A 、a <12B 、a <0C 、a >0D 、a <-12若不等式组⎩⎨⎧>≤<k x x 21有解,则k 的取值范围是( ). (A )k <2(B)k ≥2(C)k <1 (D)1≤k <2 已知关于x 、y 的方程组⎩⎨⎧-=-+=+3472m y x m y x ,的解为正数.(1)求m 的取值范围;(2)化简|3m +2|-|m -5|.⎪⎩⎪⎨⎧≤<-15112x x x。
不等式经典例题
不等式经典例题一、一元一次不等式例1:解不等式2x + 3>5x - 11. 移项- 将含有x的项移到一边,常数项移到另一边。
- 得到2x-5x > - 1 - 3。
2. 合并同类项- 计算得-3x>-4。
3. 求解x的范围- 两边同时除以-3,因为除以一个负数,不等式要变号。
- 所以x <(4)/(3)。
二、一元一次不等式组例2:解不等式组x + 3>2x - 1 2x - 1≥(1)/(2)x1. 解第一个不等式x + 3>2x - 1- 移项可得x-2x > - 1 - 3。
- 合并同类项得-x>-4。
- 两边同时除以-1,不等式变号,解得x < 4。
2. 解第二个不等式2x - 1≥(1)/(2)x- 移项得到2x-(1)/(2)x≥1。
- 合并同类项(3)/(2)x≥1。
- 两边同时乘以(2)/(3),解得x≥(2)/(3)。
3. 综合两个不等式的解- 所以不等式组的解集为(2)/(3)≤x < 4。
三、一元二次不等式例3:解不等式x^2-3x + 2>01. 因式分解- 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)>0。
2. 分析不等式的解- 要使(x - 1)(x - 2)>0成立,则有两种情况:- 情况一:x - 1>0 x - 2>0,即x>1 x>2,取交集得x>2。
- 情况二:x - 1<0 x - 2<0,即x<1 x<2,取交集得x<1。
- 所以不等式的解集为x < 1或x>2。
不等式解法练习题
不等式解法练习题一、简单不等式解法练习题:1. 解不等式:2x - 5 > 3解:首先将不等式转化为简单形式,得到 2x > 8。
然后除以2,得到 x > 4。
所以解集为 x ∈ (4, +∞)。
2. 解不等式:3(x - 1) + 2 > 5x解:首先展开括号,得到 3x - 3 + 2 > 5x,再整理得到 -3 - 5x > -3x,即 2x > 0,所以解集为 x ∈ (0, +∞)。
二、复合不等式解法练习题:1. 解不等式组:2x - 3 > 6,5 - x ≤ 8解:首先解第一个不等式,得到 2x > 9,即 x > 4.5。
然后解第二个不等式,得到 -x ≤ 3,即x ≥ -3。
综合起来,解集为 x ∈ [-3, +∞)。
2. 解不等式组:3x + 1 > 4,x - 2 < 5解:首先解第一个不等式,得到 3x > 3,即 x > 1。
然后解第二个不等式,得到 x < 7。
综合起来,解集为 x ∈ (1, 7)。
三、绝对值不等式解法练习题:1. 解不等式:|2x - 3| ≤ 5解:首先分别考虑两种情况,即 2x - 3 ≥ 0 和 2x - 3 < 0。
当 2x - 3 ≥ 0 时,不等式可以简化为 2x - 3 ≤ 5,解得x ≤ 4。
当 2x - 3 < 0 时,不等式可以简化为 3 - 2x ≤ 5,解得x ≥ -1。
综合起来,解集为 x ∈ [-1, 4]。
2. 解不等式:|3x - 2| > 4解:首先分别考虑两种情况,即 3x - 2 ≥ 0 和 3x - 2 < 0。
当 3x - 2 ≥ 0 时,不等式可以简化为 3x - 2 > 4,解得 x > 2。
当 3x - 2 < 0 时,不等式可以简化为 2 - 3x > 4,解得 x < -2/3。
不等式练习题及答案
不等式练习题及答案不等式是数学中的一个重要概念,它描述了变量之间的关系,通常用于解决实际问题中的最值问题。
下面我将提供一些不等式的练习题,以及相应的答案,帮助大家更好地理解和掌握不等式的解法。
练习题1:解不等式:\[ x^2 - 5x + 6 < 0 \]答案:首先,将不等式因式分解为:\[ (x-2)(x-3) < 0 \]因此,不等式成立的条件是两个因子的乘积为负数,即一个因子为正,另一个为负。
这发生在\[ 2 < x < 3 \]的区间内。
练习题2:解绝对值不等式:\[ |x - 4| > 3 \]答案:绝对值不等式可以分成两个不等式来解:1. 当\[ x - 4 > 3 \]时,解得\[ x > 7 \]。
2. 当\[ -(x - 4) > 3 \],即\[ x - 4 < -3 \]时,解得\[ x < 1 \]。
因此,不等式的解集为\[ x \in (-\infty, 1) \cup (7, +\infty) \]。
练习题3:解不等式组:\[\begin{cases}x + 2 > 0 \\x - 3 < 0\end{cases}\]答案:第一个不等式\[ x + 2 > 0 \]解得\[ x > -2 \]。
第二个不等式\[ x - 3 < 0 \]解得\[ x < 3 \]。
因此,不等式组的解集是两个解集的交集,即\[ -2 < x < 3 \]。
练习题4:解不等式:\[ \frac{x^2 - 1}{x - 1} \geq 0 \]答案:首先,将分子因式分解为\[ (x+1)(x-1) \],然后考虑分母不能为零,即\[ x \neq 1 \]。
接下来,我们分析分子和分母的符号:- 当\[ x < -1 \]时,分子和分母都是负数,因此整个表达式是正数。
- 当\[ -1 < x < 1 \]时,分子是正数,分母是负数,因此整个表达式是负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式练习题(精选5篇)第一篇:不等式练习题不等式练习题(二)1.已知两个正数a、b的等差中项是5,则a、b的等比中项的最大值为A.10B.25C.502.若a>b>0,则下面不等式正确的是()A.D.100 222aba+ba+b2ab<<abB.<<ab a+b22a+ba+b2ab2aba+bC.D.<ab<<ab<2a+ba+b2a13.已知不等式(x+y)(+)≥9对任意正实数x,y恒成立,则正实数a的最小值是 xy⎧x≥-1⎪4.若变量x,y满足约束条件⎨y≥x 则z=2x+y的最大值为⎪3x+2y≤5⎩A.1B.2C.3D.4⎧x+3y-3≥0,⎪5.若实数x,y满足不等式组⎨2x-y-3≤0,且x+y的最大值为9,则实数m=⎪x-my+1≥0,⎩A.-2B.-1C.1D.26.若对任意x>0,≤a恒成立,则a的取值范围是__________.x+3x+12ab7若实数a,b满足a+b=2,则3+3的最小值为_______。
8.某公司仓库A存有货物12吨,仓库B存有货物8吨,现按7吨,8吨和5吨把货物分别调运给甲,乙,丙三个商店,从仓库A运货物到商店甲,乙,丙,每吨货物的运费分别为8元,6元,9元;从仓库B运货物到商店甲,乙,丙,每吨货物的运费分别为3元,4元,5元,问应该如何安排调运方案,才能使得从两个仓库运货物到三个商店的总运费最少?第二篇:均值不等式练习题均值不等式求最值及不等式证明2013/11/23题型一、均值不等式求最值例题:1、凑系数:当0<x<4时,求y=x(8-2x)的最大值。
2、凑项:已知x<51,求函数f(x)=4x-2+的最大值。
44x-5x2+7x+10(x≠-1)的值域。
3、分离:求y=x+14、整体代换:已知a>0,b>0,a+2b=1,求t=11+的最小值。
ab5、换元:求函数y=x+2的最大值。
2x+5152x-1+5-2x(<x<)的最大值。
226、取平方:求函数y=练习:1、若0<x<2,则y=2、函数y=x(6-3x)的最大值是1+x(x>3)的最小值是x-3x2+8(x>1)的最小值是3、函数y=x-1x4+4x2+54、函数y=的最小值是2x+25、f(x)=3+lgx+4(0<x<1)有最值等于lgx116x+2的最小值是xx+16、若x>0,则x+7、已知x为锐角,则sinx+cosx的最大值是8、函数sinxcosx的最大值是9、函数y=4249+的最小值是__________ 22cosxsinx11+=9,则x+y的最小值是 xyb10、已知x>0,y>0,且11、a,b∈R,且a+b=3则2+2的最小值是12、已知x,y为正实数,3x+2y=10,则函数W3x 2y 的最值是1 a13、已知a>0,b>0且a+b=1,则(211-1-1)的最小值是)(a2b2y 214、已知x,y为正实数,且x+=1,则x1+y的最大值215、已知a>b>0,则a+1的最小值是(a-b)⋅b16、若正数a,b满足ab=a+b+3,则ab的取值范围是___________17、若a、b∈R,ab-(a+b)=1,则+a+b的最小值是________18、设实数x,y,m,n满足条件m+n=1,x2+y2=9,则mx+ny的最大值是19、若x,y>0,则(x+22121)+(y+)2的最小值是 2y2x11)(b+)的最小值是 ab220、若a,b>0,a+b=1,则(a+题型二、利用均值定理证明不等式例题:1、求证:(1)已知a,b,c为两两不相等的实数,求证:a+b2+c2>ab+bc+ca(2)正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc(3)已知a、b、c∈R,且a+b+c=1,求证:4442222222、已知x,y,z>0,x+y+z≥xy+yz+zx≥xyz(x+y+z)+⎛1⎫⎛1⎫⎛1⎫-1⎪-1⎪-1⎪≥8 ⎝a⎭⎝b⎭⎝c⎭3、若a+b+c=<5第三篇:基本不等式练习题3.4基本不等式重难点:了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题.考纲要求:①了解基本不等式的证明过程.②会用基本不等式解决简单的最大(小)值问题.经典例题:若a,b,c都是小于1的正数,求证:,不可能同时大于.当堂练习: 1.若,下列不等式恒成立的是()A.2.若B.且C.D.,则下列四个数中最大的是()A.B.C.2abD.a 的最大值为()C.的最小值是()C.D.D.-13.设x>0,则A.3B.4.设A.10B.5.若x, y是正数,且,则xy有()A.最大值16B.最小值C.最小值16D.最大值 6.若a, b, c∈R,且ab+bc+ca=1, 则下列不等式成立的是()A.B.C.D.7.若x>0, y>0,且x+y4,则下列不等式中恒成立的是()A.B.C.D. 8.a,b是正数,则A.三个数的大小顺序是()B.C.D.9.某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有()A.B.C.D.10.下列函数中,最小值为4的是()A.C.11.函数B.D.的最大值为.12.建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2 的造价为200元和150元,那么池的最低造价为元.13.若直角三角形斜边长是1,则其内切圆半径的最大值是.14.若x, y为非零实数,代数式15.已知:的值恒为正,对吗?答., 求mx+ny的最大值.16.已知.若、, 试比较与的大小,并加以证明.17.已知正数a, b满足a+b=1(1)求ab的取值范围;(2)求的最小值.18.设正整数n都成立..证明不等式对所有的参考答案:经典例题:【解析】证法一假设,同时大于,∵ 1-a>0,b>0,∴ 同理,≥,.三个不等式相加得.,不可能,∴(1-a)b,(1-b)c,(1-c)a不可能同时大于证法二假设,同时成立,∵ 1-a>0,1-b>0,1-c>0,a>0,b>0,c>0,∴,即.(*)又∵ ≤,同理∴≤,≤≤,与(*)式矛盾,故当堂练习:不可能同时大于.1.A;2.B;3.C;4.D;5.C;6.A;7.B;8.C;9.C;10.C;11.;12.3600;13.15.;14.对;16.【解析】.∵、,∴ .当且仅当=时,取“=”号.当时,有.∴ ..即.当时,有.即17.(1)(2)18.【解析】证明由于不等式对所有的正整数k成立,把它对k从1到n(n≥1)求和,得到又因因此不等式以及对所有的正整数n都成立.第四篇:不等式性质练习题﹤不等式性质一、选择题1、已知a<b<0,下列不等式恒成立的是()A.a2<b2B.ab<1C.1111a<bD.a<b2、已知a<0,b<-1,下列不等式恒成立的是()A.a>ab>abB.aaaaaab2>b>aC.b>b2>aD.b>a>b3、若a,b,c,d四个数满足条件:(1)d>c;(2)a+b=c+d;(3)a+d<b+c,则()Ab.>c>d>aB.a>d>c> bC.d>b>a> cD.b>d>c> a4、如果a,b,c满足c<b<a,且ac<0,则以下选项中不一定成立的是()A.ab>acB.c(b-a)>0C.cb2<ab2D.ac(a-c)<05、下列命题中正确的是()Aa.>b,k∈N*⇒ak>bkB.a<b,c>1⇒c-1c-1b<aC.a>b,c>d⇒(a-b)>(c-d)2D.a>b>0,c>d>0⇒abd>c6、如果a,b是满足ab<0的实数,则()A.a+b>a-bB.a-<a bC.a-<a bD.a+b<a+b7、若a>0,b>0,则不等式-b<1x<a的解为()A.-1b<x<0或0<x<1aB.-111111a<x<bC.x<-a或x>bD.x<-b或x>a二、填空题8、若m<0,n>0,m+n<0,则m,n,-m,-n的大小关系为9、若-1<a<b<1,-2<c<3,则(a-b)c的取值范围是10、若0<a<1,给出下列四个不等式,其中正确的是1○1log⎛1⎫⎛1⎫1+a1+1+1+a(1+a)<loga ⎝1+a⎪⎭○2loga(1+a)>loga a a⎝1+a⎪⎭○3a<a○4a<aa11、已知三个不等式:(1)ab>0(2)-ca<-db(3)bc>ad,以其中两个作为条件,余下一个作为结论,可以组成个正确的命题。
、设x,y为实数,且满足3≤xy2≤8,4≤x2y≤9,则x312y4的取值范围是三、解答题、(1)设2<a<3,-4<b<-3,求a+b,a-b,ab213b,ab,a的取值范围。
(2)设二次函数f(x)的图像关于y轴对称,且-3≤f(1)≤1,-2≤f(2)≤3,求f(3)的最大值和最小值。
14、(1)已知-1<a<0,A=1+a2,B=1-a2112,C=1+a,D=1-a,试将A,B,C,D按从小到大的顺序排列,并说明理由。
b>c>0,比较aabbcc与(abc)a+b+c(2)已知a>3的大小。
15、火车站有某公司待运的甲种货物1530t,乙种货物1150t。
现用A,B两种型号车厢共50节运送这批货物。
已知35t甲种货物和15t乙种货物可装满一节A型货厢;25t甲种货物和35t乙种货物可装满一节B型货箱,据此安排A,B两种货箱的节数,共有几种方案?若每节A型货箱运费是0.5万元,每节B型货箱运费是0.8万元,哪种方案的运费最少?第五篇:不等式证明练习题不等式证明练习题(1/a+2/b+4/c)*1=(1/a+2/b+4/c)*(a+b+c)展开,得=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b基本不等式,得>=19>=18用柯西不等式:(a+b+c)(1/a+2/b+4/c)≥(1+√2+2)^2=(3+√2)^2=11+6√2≥18楼上的,用基本不等式要考虑等号什么时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z则原不等式等价于:x^2+y^2+z^2>=xy+yz+zx<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0<=>(x-y)^2+(y-z)^2+(z-x)^2>=0含有绝对值的不等式练习。