信息论与编码第四章习题参考答案
《信息论与编码》习题解答-第四章(新)
《信息论与编码》习题解答第四章 信息率失真函数-习题答案4.1解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率⎥⎦⎤⎢⎣⎡--=εεεε11)|(i j a b p 平均失真:εεεεε=⨯-⨯+⨯⨯+⨯⨯+⨯-⨯==∑∑==0)1(2/112/112/10)1(2/1),()|()(2121j i i j i j i b a d a b p a p D4.2解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0210d , 0min =D ,∑=⨯+⨯=⨯+⨯===ij i i j j y x d x p D D )102/122/1(2/112/102/1),()(min min max 舍去当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=1001P当2/1max =D ,0)(max =D R因为取的是第二列的max D 值,所以输出符号概率:,1)(,0)(21==b p b p ,,2221b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=1010P 4.3解:0min =D0041041041041),(min )(43041141141141),()(min min min max =⨯+⨯+⨯+⨯===⨯+⨯+⨯+⨯===∑∑i j i j i i j i i j j y x d x p D y x d x p D D 当0min =D ,bit X H R D R 24log )()0()(min ==== 因为没有失真,此时的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010000100001P 当4/3max =D ,0)(max =D R因为任何一列的max D 值均为3/4,所以取输出符号概率:0)(,0)(,0)(,1)(4321====b p b p b p b p ,即14131211,,,b a b a b a b a →→→→因此编码器的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001000100010001P 4.4解: 依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=4/1014/110d , 0min =D∑=⨯+⨯===ij i i j j y x d x p D D )2/12(4/1)4/12/14/12/1min(),()(min min max 个均为其它当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=010001P 当4/1max =D ,0)(max =D R因为取的是第三列的max D 值为1/4,所以取输出符号概率:1)(,0)(,0)(321===b p b p b p ,即3231,b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=100100P 4.5解:(1)依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率为:⎥⎦⎤⎢⎣⎡-=q q P 101 )1(0)1()1(1)1(1001),()|()(11p q q p q p p p y x d x y p x p D n i mj j i i j i -⨯=⨯-⨯-+⨯⨯-+⨯⨯+⨯⨯==∑∑==(2) 0min =D因为)(D R 是D 的递减函数,所以)1log()1(log )()()())(m ax (min min p p p p D H p H D R D R ----=-==当0=q 时可达到))(max(D R ,此时0=D(3) ∑-=⨯+⨯===iji i j j ,p p p p y x d x p D D )1(10),()(min min max 舍去更大另一个 因为)(D R 是D 的递减函数,所以0)()()())(m in(max max =-==D H p H D R D R当1=q 时可达到))(min(D R ,此时p D -=1(图略,见课堂展示)4.6解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡∞∞=1010d ,信源⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2/12/110)(u p u 0min =D ,∑⨯+⨯⨯+∞⨯∞⨯+⨯===iji i j j y x d x p D D )12/112/1,02/12/1,2/102/1min(),()(min min max )(1]1,,m in[舍去另二个,∞=∞∞=10≤≤D因为二元等概信源率失真函数:⎪⎭⎫ ⎝⎛-=a D H n D R ln )( 其中1,2==a n ,所以率失真函数为:D D R -=1)(4.7解:失真矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011101110d ,按照P81页方法求解。
信息论第四章习题解答
e( x)
1 x x2 x3 x4 x5 x6
0
校验子
s0( x) = 1 s1 ( x) = x s2 ( x) = x2 s3 ( x) = x2 ? 1 s4( x) = x2 ? x ? 1 s5( x) = x ? 1 s6( x) = x2 ? x
s无 (x) = 0
20
习题解答
第 4.13 已知 (7, 4) 循环码的生成多项式为 g( x) = x3 ? x2 ? 1,
注:实际上,正反码仅仅用作纠错码 。
8
习题解答
第 4.6 试分析用于电报系统的纠错码 正反码的检错和纠错
四
能力。若已知信道的误码率 Pe = 10- 4 , 求系统的正确接
章
收概率和漏检概率。
抗解 干 扰 二 元 编 码
(2) 当收到的码字无错或者一位错时, 能够正确接收, 因此正确接收的概率为: P正 = (1 - Pe)10 ? C110 Pe (1 - Pe)9 = 0.9999995502 4;
扰 二解 元 编
汉明码序列。
(1) 生成矩阵 [G] =
1000 101 0100 111 0010 110 0001 011
码
(2) 编码序列 1 1 0 1 1 1 0 1 0 0 1
0110 0110001
1010 1010011
14
习题解答
第 4.10 已知 (7, 3) 汉明码的监督矩阵为:
习题解答
第 四 章
抗 干
第四章 习题解答
扰
二
元
编
码
1
习题解答
第 4.1 写出与 10011 的汉明距离为 3 的码字。
四 章
王育民信息论与编码理论第四章答案2
4.5若将N 个相同的BSC 级联如题图4.5所示,各信道的转移概率矩阵为⎥⎦⎤⎢⎣⎡--p p p p 11。
令Q t =P{X t =0},t=0,1,…,N,且Q 0为已知。
题图 4.5(a)求Q t 的表达式。
(b)证明N →∞时有Q N →1/2,且与Q 0取值无关,从而证明N →∞级联信道的信道容量C N →0,P>0。
解:(a)对于满足X N 为马氏链的串联信道,他们总的信道转移概率矩阵为各个串联信道矩阵的乘积,即P(X N |X 0)= P(X 1|X 0) P(X 2|X 1)……P(X N |X N-1)由已知得,但各信道的转移概率矩阵为⎥⎦⎤⎢⎣⎡--p p p p 11 则两个信道级联的转移概率矩阵为: P 2=⎥⎦⎤⎢⎣⎡--p p p p 11⎥⎦⎤⎢⎣⎡--p p p p 11=()()()()⎥⎦⎤⎢⎣⎡-+---+2222112p 12p 1p p p p p p 三个信道级联的转移概率矩阵为: P 3=()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+33331221211221211221211-2p 2121p p p 四个信道级联的转移概率矩阵为: P 4=()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+44441221211221211221211-2p 2121p p p 以此类推:可得N 个信道级联的转移概率矩阵为:P N =()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+N N N N p p p 1221211221211221211-2p 2121 则Q t =P{X t =0}=()()()()()000121221211122121122121Q p p Q p Q p t t t t -+--=-⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡-+即Q t 的表达式为:Q t =()()012122121Q p p t t -+-- t=0,1,……,N (b) 由(a)可得到:Q N =()()012122121Q p p t t -+-- 由0<p<1,则0<2p<2,-1<2p-1<1,即|2p-1|<1 则21lim =∞→N N Q ,与Q 0取值无关。
信息论与编码技术第四章课后习题答案
解:(1) D =
∑ P(u,υ )d (u,υ ) = (1 − p)q
UV
(2)根据题4.5,可知R(D)的最大值为H(p),此时q=0,平均失真D=0; (3)R(D)的最大值为0,此时q=1,平均失真D=(1-p); 4.7 设连续信源 X ,其概率密度分布为
p ( x) =
a − a | x| e 2
达到
D
min
的信道为
⎡1 ⎡1 0 ⎤ ⎡1 0 ⎤ ⎢ ⎥ ⎢ ⎥ ⎢1 [ P (υ j | u i )] = ⎢ ⎢ 0 1 ⎥ , ⎢1 0 ⎥ 或 ⎢ 2 ⎢ ⎣0 1 ⎥ ⎦ ⎢ ⎣0 1⎥ ⎦ ⎢0 ⎣
4.2 已知二元信源 ⎢
0⎤ 1⎥ ⎥ 2⎥ 1⎥ ⎦
1 ⎤ ⎡ X ⎤ ⎡ 0, ⎡0 1⎤ =⎢ =⎢ 以及失真矩阵 ⎡ dij ⎤ ⎥ ⎥ ⎥ ,试求: ⎣ ⎦ ⎣ p ( x ) ⎦ ⎣ p, 1 − p ⎦ ⎣1 0 ⎦
g (θ ) 的傅立叶变换
G s(w) = ∫
+∞ −∞
g
s
(θ )e
− jwθ
dθ =
s
2
s
2 2
+w
, (3)
得: Q( w) = P ( w) + w2 P( w), (4)
2
s
求式(4)的傅立叶反变换,又根据式(2)得
p( y ) = p( x = y) − D 所以 p( y ) =
2
p ( x = y), (5)
⎡0 ⎢1 定义为 D = ⎢ ⎢1 ⎢ ⎣1
解:
1 0 1 1
1 1 0 1
1⎤ 1⎥ ⎥ ,求 Dmax , Dmin 及信源的 R ( D ) 函数,并作出率失真函数曲线(取4到5个点)。 1⎥ ⎥ 0⎦
《信息论与编码》部分课后习题参考答案
1 5 1 5 1 1 1 1 1 1 1 1 = − 2 × log + 2 × log + 2 × log + 2 × log + 2 × log + log 6 36 6 36 9 9 12 12 18 18 36 36 = 3.274 bit / symbol
2.2 如果你在不知道今天是星期几的情况下问你的朋友“明天是星期几?”则答案中含有多 少信息量?如果你在已知今天是星期四的情况下提出同样的问题, 从别人的答案中你能获得 多少信息量(假设已知星期一至星期日得排序)? 答:若不知道今天是星期几,则答案可能有 7 种,这 7 种都是有价值的,所以答案的信息量 为:
2.5 4 个等概率分布的消息 M1、M2、M3、M4 被送入如题所示的信道进行传输,通过编码 使 M1=00,M2=01、M3=10、M4=11.求输入是 M1 和输出的第一个符号是 0 的互信息量是多 少?如果知道第二个符号也是 0,这时带来多少附加信息量? X 0 p p 1 1-p 1-p Y
I(X N ) I (Y )
=
2.1 × 106 13.29
= 1.58 ×105 字
2.4 某居住地区的女孩中有 25%是大学生,在女大学生中有 75%是身高 1.6 米以上的,而女 孩中身高 1.6 米以上的占总数一半。假如我们得知“身高 1.6 米以上的某女孩是大学生”的
消息,问获得多少信息量? 答:设随机变量 X 代表女孩子学历 X x1(是大学生) x2(不是大学生) P(X) 0.25 0.75 设随机变量 Y 代表女孩子身高 Y y1(身高>160cm) P(Y) 0.5
第二章
2.1 同时掷两个骰子,设每个骰子各个面向上的概率都是 1/6。试求: (1)事件“2 和 6 同时出现”的自信息量; (2)事件“两个 3 同时出现”的自信息量; (3)事件“两个点数中至少有一个是 5”的自信息量; (4)两个点数之和的熵。 答: (1)事件“2 和 6 同时出现”的概率为:
信息论与编码第四章课后习题答案
∫ =
− log λe−λx
∞ 0
+ log e
ln e−λx de−λx
∫ =
− log
λ
+
log
et
ln
t
0 1
−
log
e
dt
= −log λ + log e
= log e λ
(2)
h( X )
= −∫ p(x)log p(x)dx
∫ = − ∞ 1 λe−λ x log 1 λe−λ x dx
−∞ 2
2
∫ = − ∞ λe−λx log 1 λe−λxdx
0
2
∫ ∫ = − ∞ λe−λx log 1 dx − ∞ λe−λx log λe−λxdx
0
2
0
= log 2 + log e λ
= log 2e λ
注:(2)题直接借用了(1)的结论。
【4.3】设有一连续随机变量,其概率密度函数为:
sin
x
=
1 2
log
e∫
ln(1
+
sin
x)d
sin
x
+
1 2
log
e∫
ln(1
−
sin
x)d
sin
x
∫ ∫ ln(1+ sin x)d sin x
π
= (1 + sin
x) ln(1+ sin
x)
2 −π
−
2
1 + sin x d sin x 1 + sin x
= 2ln 2 − 2
∫ ln(1− sin x)d sin x
信息论与编码习题与答案第四章
4-1 设有一个二元等该率信源{}1,0∈X ,2/110==p p ,通过一个二进制对称信道(BSC )。
其失真函数ij d 与信道转移概率ij p 分别定义为 j i j i d ij =≠⎩⎨⎧=,0,1 ,j i ji p ij =≠⎩⎨⎧-=,1,εε试求失真矩阵d 和平均失真D 。
解:由题意得,失真矩阵为d ⎥⎦⎤⎢⎣⎡=0110d ,信道转移概率矩阵为P ⎥⎦⎤⎢⎣⎡--=εεεε11)(i j 平均失真为εεεεε=⨯-+⨯+⨯+⨯-==∑0)1(211211210)1(21),()()(,j i d i j p i p D ji 4-3 设输入符号与输出符号X 和Y 均取值于{0,1,2,3},且输入符号的概率分布为P(X=i)=1/4,i=0,1,2,3,设失真矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0111101111011110d 求)(),(,,max min max min D R D R D D 以及相应的编码器转移概率矩阵。
解:由题意,得 0min =D则symbol bit X H R D R /24log )()0()(2min ====这时信源无失真,0→0,1→1,2→2,3→3,相应的编码器转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010000100001)j (i P ∑===33,2,1,0max ),()(min i j j i d i p D,,141141041141141141141041min{⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯=}041141141141141041141141⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯, 43}43,43,43,43min{==则0)(max =D R此时输出概率分布可有多种,其中一种为:p(0)=1,p(1)=p(2)=p(3)=0则相应的编码器转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001000100010001)(i j P4-5 具有符号集{}10,u u U =的二元信源,信源发生概率为:2/10,1)(,)(10≤<-==p p u p p u p 。
信息论与编码第四章课后习题答案
−∫
1 − sin x d sin x 1 − sin x
因此有
h( X ) = −2 A log A −
A log e(2 ln 2 − 2 + 2 ln 2 − 2) 2Байду номын сангаас= −2 A log A + 2 A log e − 2 A log e ln 2 = −2 A log A + 2 A log e − 2 A 1 ,因此 2
试计算 h( X ) , h(Y ) , h( XY ) 和 I ( X ; Y ) 。 解: p( x) = ∫ p ( x, y )dy 1 =∫ dy (a 2 − a1 )(b2 − b1 ) = 1 a2 − a1
同理, p( y ) = 因此
1 。 b2 − b1
h( X ) = − ∫ p ( x ) log p ( x)dx = log(a 2 − a1 ) h(Y ) = − ∫ p( y ) log p( y )dy = log(b2 − b1 ) h( XY ) = − ∫ p ( x, y ) log p ( x, y )dxdy = log( a2 − a1 ) + log(b2 − b1 ) I ( X ; Y ) = h( X ) + h(Y ) − h( XY ) = 0 【4.7】在连续信源中,根据差熵、条件差熵和联合差熵的定义,证明 (1) h( X | Y ) ≤ h( X ) ,当且仅当 X 和 Y 统计独立时等号成立; (2)h( X 1 X 2 L X N ) ≤ h( X 1 ) + h( X 2 ) + L + h( X N ) ,当且仅当 X 1 X 2 L X N 彼此统计 独立时等式成立。 证明: (1) h( XY ) = − ∫ p( y )dy ∫ p( x | y ) log p ( x | y )dx ≤ − ∫ p ( y )dy ∫ p( x | y ) log p ( x )dx = − ∫ p( x, y ) log p ( x )dxdy = h( X ) 等号成立当且仅当 p( x | y ) = p ( x ) ,即 p( x, y ) = p( x ) p ( y ) ,因此仅当 X 和 Y 统计 独立时等号成立。 (2)根据条件概率密度的相关公式,有 h( X 1 X 2 X N ) = h( X 1 ) + h( X 2 | X 1 ) + h( X 3 | X 1 X 2 ) + L + h( X N | X 1 X 2 X N −1 ) 根据(1)的结论,条件差熵小于差熵,因此有 h( X 1 X 2 L X N ) ≤ h( X 1 ) + h( X 2 ) + L + h( X N ) 等号成立当且仅当
信息论与编码第4章习题解答
P[ Z N
= 1|
X
= 0] =
P
Z
'
N
>
1 2
|
X
= 0
=
PZ 'N
−p
>
1 2
−
p|
X
=
0
≤
P|
Z
' N
−
p
|>
1 2
−
p|
X
=
0
≤
σ2 Z 'N |X =0
1 2
−
p 2
= p(1 − p) N (1 − p)2 2
当 p < 1 ,以及 N 充分大时 2
求该级联信道的容量 C N
,并证明
lim
N →∞
C
N
=0
X0
BSC X1
BSC X2 ……
BSC XN
习题 4.4(1)图 级联信道
(2)并联输入信道,把输入 X 并联接到各信道,输出是矢量,当 N → ∞ 时并联输
入信道容量趋于 1。
X
BSC Y1
BSC Y2
BSC YN
习题 4.4(2)图 并联输入信道
所以
C = 6 ⋅ 1 log 1/ 3 + 3 ⋅ 1 log 1/ 3 9 2/9 9 1/3
= 2 log 3 bit/次 32
(f)信道转移概率矩阵
P
=
1
− δ
ε
1
ε −
δ
利用方程求逆方法计算信道容量。设
p( X = 0) = q , p( X = 1) = 1 − q , 0 < q < 1
信息论与编码习题参考答案(全)
信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论编码第四章答案
解:
唯一可译码是A,B,C,E 唯 可译码是A,B,C,E,非延长码为A,C,E A的平均码长:n = p( si )ni
i =1 6
= 3(1 / 2 + 1 / 4 + 1 / 16 + 1 / 16 + 1 / 16 + 1 / 16)
= 3码符号 / 信源符号
编码效率:
η=
H (s) 2 = * 100% = 66.67% n log r 3
2. 有一个信源X如下:
x2 x3 x4 x5 x6 X x1 p ( x) = 0.32 0.22 0.18 0.16 0.08 0.04
(1)、求信源熵; (2)、用Shannon编码法编成二进制变长码,并计算其编码效 率; (3)、用 用Fano编码法编成二进制变长码,并计算其编码效率; 编码法编成二进制变长码 并计算其编码效率 (4)、用Huffman码编码成二进制变长码,并计算其编码效率; (5)、用Huffman码编码成三进制变长码,并计算其编码效率; (6)、比较三种编码方法的优缺点。
H ( X ) 2.3522 = × 100% = 98% n log l r 2.4 log l 2
三进制Huffman编码 ? 首先, 判断q − (r − 1)α = r 6 − (3 − 1) × 2 = 2 < 3
选择m = r − [q − (r − 1)α ] = 3 − 2 = 1个虚假符号
0.40 0.60 0 0.37 0 0.40 1 0 0.23 1 1
L = P( si )li = 2.63
i =1
二元符号/灰度级
通过哈夫曼最佳二元编码后,每个像素平均需要用 2.63个二元符号,则此图象平均共需要用263个二元符 号来表示。因此,需2.63秒才能传送完这幅图象。 (3)在(2)题中计算时没有考虑图象的像素之间的依赖 关系,但实际此图象的像素之间是有依赖的。例如,若 考虑像素前后之间灰度的依赖关系,就有灰度“1”后 面只可能出现灰度“1”或 “2”;灰度“2”后只可能 出现“2” 或“3” ,等等。这时,此图象灰度值信源 S可以看成一阶马尔可夫信源。还可以进一步看成为m 阶马尔可夫信源。因此,在考虑了这些依赖关系后,像 素的灰度值信源S的实际信息熵 H ∞ < H ( S ) 。根据香农第 一理,总可以找到一种编码,使每个灰度级的平均码 长L → H ∞ (极限熵)。所以,这幅图象还可以进一步压缩, 平均每个像素(灰度)所需要的二元码符号数 L < H ( S ) 。
信息论与编码习题参考答案(全)
(1,4)
(1,5)
(1,6)
P(X)
1/36
2/36
2/36
2/36
2/36
2/36
X
(2,2)
(2,3)
(2,4)
(2,5)
(2,6)
P(x)
1/36
2/36
2/36
2/36
2/36
X
(3,3)
(3,4)
(3,5)
(3,6)
P(x)
1/36
2/36
2/36
2/36
X
(4,4)
(4,5)
信息论与编码习题参考答案
第一章单符号离散信源
同时掷一对均匀的子,试求:
(1)“2和6同时出现”这一事件的自信息量;
(2)“两个5同时出现”这一事件的自信息量;
(3)两个点数的各种组合的熵;
(4)两个点数之和的熵;
(5)“两个点数中至少有一个是1”的自信息量。
解:
(3)信源空间:
X
(1,1)
(1,2)
解:
设电话信号的信息率为×104比特/秒.在一个噪声功率谱为N0=5×10-6mW/Hz,限频F、限输入功率P的高斯信道中传送,若F=4kHz,问无差错传输所需的最小功率P是多少W若
F→∞则P是多少W
解:
已知一个高斯信道,输入信噪功率比为3dB,频带为3kHz,求最大可能传送的信息率是多少若信噪比提高到15dB,求理论上传送同样的信息率所需的频带.
(1)求状态极限概率并找出符号的极限概率;
(2)计算信源处在Sj(j=1,2,3)状态下输出符号的条件熵H(X/Sj);
(3)信源的极限熵H∞.
解:
下图所示的二进制对称信道是无记忆信道,其中 ,试写出N=3次扩展无记忆信道的信道矩阵[P].
信息论与编码理论-第4章无失真信源编码-习题解答-20071202
第4章无失真信源编码习题及其参考答案4-1 有一信源,它有六个可能的输出,其概率分布如下表所示,表中给出了对应的码A、B、C、D、E和F(1)求这些码中哪些是唯一可译码;(2)求哪些码是及时码;(3)对所有唯一可译码求出其平均码长l。
4-2 设信源61261126()1()()()()iis s sXp sp s p s p sP X=⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦∑。
对此次能源进行m元唯一可译编码,其对应的码长为(l1,l2,…,l6)=(1,1,2,3,2,3),求m值的最好下限。
(提示:用kraft不等式)4-3设信源为1234567811111111()248163264128128s s s s s s s sXp X⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,编成这样的码:(000,001,010,011,100,101,110,111)。
求(1)信源的符号熵;(2)这种码的编码效率;(3)相应的仙农码和费诺码。
4-4求概率分布为11122(,,,,)3551515信源的二元霍夫曼编码。
讨论此码对于概率分布为11111(,,,,)55555的信源也是最佳二元码。
4-5有两个信源X和Y如下:121234567()0.200.190.180.170.150.100.01X s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦123456789()0.490.140.140.070.070.040.020.020.01Y s s s s s s s s s p Y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用二元霍夫曼编码、仙农编码以及费诺编码对信源X 和Y 进行编码,并计算其平均码长和编码效率;(2)从X ,Y 两种不同信源来比较三种编码方法的优缺点。
4-6设二元霍夫曼码为(00,01,10,11)和(0,10,110,111),求出可以编得这样 霍夫曼码的信源的所有概率分布。
4-7设信源为12345678()0.40.20.10.10.050.050.050.05X s s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求其三元霍夫曼编码。
信息论与编码第四章习题参考答案
4.1某离散无记忆信源概率空间为分别使用长度为10和100的序列进行等长无失真编码,分别计算最短平均码长和编码效率。
解:信源的熵为881.03.03.07.07.0)(H =--=lb lb X 比特/符号当N=10时,序列码长应当满足 81.81881.0102)(L 1=⨯=>lb X NH 比特/序列考虑到序列码长应该为整数,取L1=9比特/符号,平均每个符号的码长为9.0NL L 11==比特/符号 所以编码效率为%9.97L )(H 11==X η 当N=100时,序列码长为1.881881.01002)(L 1=⨯=>lb X NH 比特/100符号取L1=89比特/符号,平均每个符号的码长为89.0NL L 22==比特/符号 编码效率为%99L )(H 22==X η 4.2设离散无记忆信源为如果要求编码效率为,允许错误概率为,求编码序列的长度。
解:信源的熵为722.02.02.08.08.0)(H =--=lb lb X 比特/符号自信息量方差为64.0722.0-)2.0(2.0)8.0(8.0D 222=+=lb lb采用二进制码进行等长编码,序列长度应当满足72221062.1)1)((D N ⨯=-≥δηηX H4.3设离散无记忆信源的概率空间为要求编码效率为(1) 如果采用序列等长编码,而允许译码错误概率为,求编码序列的长度。
(2) 如果采用序列变长编码,求编码序列的长度,并且与(1)比较,说明为什么会有这样的结果。
解1)信源的熵为811.025.025.075.075.0)(H =--=lb lb X 比特/符号自信息量方差为471.0811.0-)25.0(25.0)75.0(75.0D 222=+=lb lb采用二进制编码,序列长度为62221029.1)1)((D N ⨯=-≥δηηX H2)对信源进行二次扩展,并采用下列编码方式构成唯一可译码平均码长为6875.13161316321631169L =⨯+⨯+⨯+⨯=比特/2符号 每个符号码长为84375.026875.12L L ===比特/符号 编码效率为%95%1.9684375.0811.0L H(X)=>===δη 由于变长编码能够更好利用不同序列的概率分布进行编码,概率越大,序列的码长越短,概率越小,序列的码长越长,所以相对等长编码而言,变长编码的平均码长很短。
《信息论、编码与密码学》部分课后习题答案
+∞
当 0 ≤ x ≤ a 时, p( x ) = a −1 ,则
H ( X ) = − ∫ a −1 log a −1dx =
0
a
1 log a a ⋅ log a ⋅ [x ]0 = ⋅ a = log a a a
当 x < 0 或 x > a 时, p( x ) = 0 ,则 H ( X ) → ∞ 根据得到的结果可以画出相应的平面图,由图可以看到随着 a 的增加,即 p( x ) 的 减小,微分熵 H ( X ) 相应的增加。
∞ 1 B ⋅ log ∑ ∞ ∞ ∞ ∞ 1 log( AB ) n=2 B =? 则熵为:H ( X ) = ∑ P ( X )I ( X ) = ∑ =∑ log( AB ) = ∑ ∞ 1 AB n=2 n = 2 AB n=2 n=2 B⋅∑ n=2 B
1.8 计算概率分布函数为
x1 x1 x1 x1 x1 x2 x1 x2 x1 x2 x1 x1 x1 x2 x2
1 0 1 1.0 0.5 0
0.5 0.4 0.1
图 1.11 霍夫曼编码
则霍夫曼码如下表:
符号 x1 x2 x3
概率 0.5 0.4 0.1
码字 1 00 01
该信源的熵为:
H ( X ) = −∑ pk log 2 pk
k =1
3
= −(0.5log 2 0.5 + 0.4 log 2 0.4 + 0.1log 2 0.1) = 0.5000 + 0.5288 + 0.3322 = 1.3610(bit )
= 1(bit )
时 , 信 源 熵
对 于 三 元 离 散 信 源 , 当 概 率
信息论与编码理论习题答案
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载信息论与编码理论习题答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第二章信息量和熵2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此每个码字的信息量为 2=23=6 bit因此,信息速率为 61000=6000 bit/s2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1} ==得到的信息量 ===2.585 bit(2) 可能的唯一,为 {6,6}=得到的信息量===5.17 bit2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) =信息量===225.58 bit(b)==信息量==13.208 bit2.9 随机掷3颗骰子,X表示第一颗骰子的结果,Y表示第一和第二颗骰子的点数之和,Z表示3颗骰子的点数之和,试求、、、、。
解:令第一第二第三颗骰子的结果分别为,,,相互独立,则,,==6=2.585 bit===2(36+18+12+9+)+6=3.2744 bit=-=-[-]而=,所以= 2-=1.8955 bit或=-=+-而= ,所以=2-=1.8955 bit===2.585 bit=+=1.8955+2.585=4.4805 bit2.10 设一个系统传送10个数字,0,1,…,9。
奇数在传送过程中以0.5的概率错成另外一个奇数,其余正确接收,求收到一个数字平均得到的信息量。
信息论与编码第4章习题解答
《信息论与编码》第四章习题解答4.1 计算如下所示离散无记忆信道的容量: 习题4.1图[解] (a )信道概率转移矩阵为−−−−=δεδεεδδε11P , 信道是准对称信道,因此在输入为等概分布时达到信道容量,即5.0)1()0(====X P X P 时达到信道容量。
这时δ5.05.0)0(−==Y P δ==)1(Y Pδ5.05.0)2(−==Y P相应的信道容量为);1();0(Y X I Y X I C ====∑==2)()0|(log)0|(j j p j p j p 0111-ε1-δε δ 00 121-ε-δ εδδ 1-ε-δ1ε0 221 0.5 δ 110.250.25 0.50.50 2 21-ε ε ε 1-ε1ε 11-ε 0 0 223/41/4 111/3 1/31/3 1/43/40 2 311/3 211/31/3 1/31/31/3 1/3 1/31/3 (c)(a)(b) (e)(f)(d)δεεδδδδδεδε5.05.0log log 5.05.01log)1(−++−−−−−=)5.05.0log()1(log )1log()1(δδεεδεδε−−−+−−−−= (b )信道概率转移矩阵为=5.05.0025.025.05.0001P当5.0)2()0(====X P X P ,0)(=X P 时,5.0)0(==Y P ,25.0)1(==Y P ,25.0)2(==Y P1)()0|(log )0|();0(2===∑=j j p j p j p Y X I bit∑===2)()2|(log)2|();2(j j p j p j p Y X I 125.05.0log 5.025.05.0log 5.0=+= bit10);1(≤==Y X I ; 所以满足定理4.2.2条件,由达到信道容量充要条件可知,信道容量C =1 bit/次(c )信道转移概率矩阵为−−−=εεεεεε101001P ,信道是对称信道,当输入为均匀分布时,即31)2()1()0(======X P X P X P 时,达到信道容量。
信息论与编码理论-第4章无失真信源编码-习题解答-20071202
信息论与编码理论-第4章无失真信源编码-习题解答-20071202信息论与编码理论第4章无失真信源编码习题及其参考答案4-1 有一信源,它有六个可能的输出,其概率分布如下表所示,表中给出了对应的码A、B、C、D、E和F(1)求这些码中哪些是唯一可译码;(2)求哪些码是及时码;(3)对所有唯一可译码求出其平均码长。
?X??s14-2 设信源????p(s)P(X)???1s6?p(s2)?p(s6)???s2?p(s)?1。
对此次能源进行m元唯一ii?16可译编码,其对应的码长为(l1,l2,…,l6)=(1,1,2,3,2,3),求m值的最好下限。
(提示:用kraft不等式)?s?X??14-3设信源为??1??p(X)???2?(1)信源的符号熵;(2)这种码的编码效率;s214s3s411816s5132s6s7s8?,编成这样的码:(000,001,111???64128128?010,011,100,101,110,111)。
求(3)相应的仙农码和费诺码。
4-4求概率分布为(,11122信)源的二元霍夫曼编码。
讨论此码对于概率分布为355151511111(,,,,)的信源也是最佳二元码。
555554-5有两个信源X和Y如下:1信息论与编码理论s2s3s4s5s6s7??X??s1??p(X)??0.200.190.180.170.150.100.01?????s2s3s4s5s6s7s8s9??Y??s1??p(Y)??0.490.140.140.070.070.040.020.02 0.01?????(1)用二元霍夫曼编码、仙农编码以及费诺编码对信源X和Y进行编码,并计算其平均码长和编码效率;(2)从X,Y两种不同信源来比较三种编码方法的优缺点。
4-6设二元霍夫曼码为(00,01,10,11)和(0,10,110,111),求出可以编得这样霍夫曼码的信源的所有概率分布。
4-7设信源为?码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1某离散无记忆信源概率空间为
分别使用长度为10和100的序列进行等长无失真编码,分别计算最短平均码长和编码效率。
解:信源的熵为
881.03.03.07.07.0)(H =--=lb lb X 比特/符号
当N=10时,序列码长应当满足 81.81
881
.0102)(L 1=⨯=>
lb X NH 比特/序列
考虑到序列码长应该为整数,取L1=9比特/符号,平均每个符号的码长为
9.0N
L L 1
1==
比特/符号 所以编码效率为
%9.97L )
(H 1
1==
X η 当N=100时,序列码长为
1.881
881
.01002)(L 1=⨯=>
lb X NH 比特/100符号
取L1=89比特/符号,平均每个符号的码长为
89.0N
L L 2
2==
比特/符号 编码效率为
%99L )
(H 2
2==
X η 4.2设离散无记忆信源为
如果要求编码效率为,允许错误概率为
,求编码序列的长度。
解:信源的熵为
722.02.02.08.08.0)(H =--=lb lb X 比特/符号
自信息量方差为
64.0722.0-)2.0(2.0)8.0(8.0D 22
2=+=lb lb
采用二进制码进行等长编码,序列长度应当满足
722
21062.1)1)((D N ⨯=-≥δ
ηηX H
4.3设离散无记忆信源的概率空间为
要求编码效率为
(1) 如果采用序列等长编码,而允许译码错误概率为,求编码序列的长度。
(2) 如果采用序列变长编码,求编码序列的长度,并且与(1)比较,说明为什么会有这样的结
果。
解1)信源的熵为
811.025.025.075.075.0)(H =--=lb lb X 比特/符号
自信息量方差为
471.0811.0-)25.0(25.0)75.0(75.0D 22
2=+=lb lb
采用二进制编码,序列长度为
62221029.1)1)((D N ⨯=-≥δ
ηηX H
2)对信源进行二次扩展,并采用下列编码方式构成唯一可译码
平均码长为
6875.1316
1316321631169L =⨯+⨯+⨯+⨯=
比特/2符号 每个符号码长为
84375.02
6875.12L L ===
比特/符号 编码效率为
%95%1.9684375
.0811
.0L H(X)=>===
δη 由于变长编码能够更好利用不同序列的概率分布进行编码,概率越大,序列的码长越短,概率越小,序列的码长越长,所以相对等长编码而言,变长编码的平均码长很短。
在信源扩展长度很小情况下即可达到很高的编码效率。
4.4设有码集合
,根据唯一可
译码判断准则,判断是否为唯一可译码。
解:对应码长分别为3,4,4,4,5,5,5,6,将这些码长代入计算
14218758.022*******-5-5-5-4-4-4-3-≤=+++++++
结果满足麦克米伦不等式,因此该组码是唯一可译码的。
4.5设离散无记忆信源的概率空间为
将该信源扩展为长度的扩展信源,然后进行变长编码,求每个符号的平均码长可达
范围。
解:信源的熵为 98.1)()()(H 8
1
=-
=∑=i i
i a lbp a p X 比特/符号 根据香农第一定理,其可达范围为
)(H 1
N L L )(H N X N
X +<=
≤ 将N=100代入上述不等式,可以计算出每个符号的平均码长可达范围为(0.66,0.67)比特/符号。
4.6给定信源
的概率空间为
信宿的取值于
,失真矩阵为
求
和
,并且给出取得最小失真的条件。
解:根据失真矩阵行元素确定最小失真对应的实验信道条件概率矩阵(即最小失真的条件)为
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=010110P
对应的最小失真为
16
1
021*******),(min )(D 3
1min =⨯+⨯+⨯=
=
∑=i
j i b a d ai p 最大失真首先计算每列的平均失真,即
∑==
3
1
),()()(i
j i i j b a d a p b d 将数据代入,得
165
021*******)(1=
⨯+⨯+⨯=
b d 16
11
1214341041)(2=
⨯+⨯+⨯=
b d 最大失真为
16
5}16
11))(1(165)(min{)}()()()(min{D 212211max =⨯-+⨯=⨯+⨯=b p b p b d b p b d b p
4.7 二元信源的概率空间为
失真矩阵为
求信源的最大平均失真
,最小平均失真
和信息率失真函数。
解:由于失真矩阵的每行元素中最小值为0,所以最小失真为Dmin=0;
2
21021)(1αα=⨯+⨯=
b d
2
02121)(1αα=⨯+⨯=
b d 所以最大失真为
2
α。
根据信息率失真计算方法可知,
1)],(exp[)(2
1
=∑=j i i j j
b a Sd b p λ
当i=1时
1]exp[)()(2211=+αλλS a p a p
i=2时
1)(]exp[)(2211=+λαλa p S a p
令p a p =)(1,p a p -1)(2=
])exp[1(1
1αλS p +=
])
exp[1)(-1(1
2αλS p +=
解下列方程
i
j i j j
b a Sd b p λ1
)],(exp[)(2
1
=
∑=
i=1时
1
211
]exp[)()(λα=
+S b p b p
2
221
)(]exp[)(λα=
+b p S b p
将参数1λ、2λ的值代入上述方程组,可以求得
[]]exp[)1(]
[exp -11
)(1ααS p p S b p --=
[]]exp[-)1(]
[exp -11
)(2ααS p p S b p -=
将参数代入求解信道转移概率
)]b ,exp[Sd(a )()|(j i i j λb p a b p i j =
即[]]exp[)1(])
[exp -1(1
)()|(2
i 111ααλS p p S p b p a b p --=
= []]exp[-)1(])
[exp -1(]
exp[)()|(2
1212αααλS p p S p S b p a b p -=
= []]exp[)1(])[exp -1()-1(]
exp[)()|(2
2121αααλS p p S p S b p a b p --=
= []]exp[-)1(])
[exp -1()-1(1
)()|(2
2222ααλS p p S p b p a b p -=
= 失真的参数S 表示
]
[exp 1]exp[D S S αα+=
即[])D -1(log -logD 1
S α
=
代入∑=+=2
1log )(R(D)i
i i a p SD λ 整理得: [])(H )
D -1(log )D -(DlogD 1
R(D)p +-=α
α
综合起来
[]⎪⎪⎪⎩
⎪⎪⎪⎨⎧
=≥=<<+-===2D 02D 0)(H )D -1(log )D -(DlogD 1
0)(R(D)max max min αααα
D D p D D X H
4.8 二元信源的概率空间为
其中
,失真矩阵为
(1)求信源的最大平均失真,最小平均失真
和信息率失真函数。
(2)求出达到
的正向试验信道的转移概率。
解:解题思路如上题,0最小失真为
,最大失真为2
1
⎪⎪⎪
⎩
⎪
⎪⎪⎨⎧=≥=<<+-===21D 02D 0)(H )(0)(R(D)max max min D D D H D D X H αα 4.9 离散无记忆信源的概率空间为
失真矩阵为
求信息率失真函数。
4.10 离散无记忆信源的概率空间为
失真矩阵为
求信息率失真函数。