机械设计课程设计轴的设计过程

合集下载

《机械设计基础课程设计》课程教学大纲

《机械设计基础课程设计》课程教学大纲

平面连杆机构的基本概念和类型
平面连杆机构的运动分析
了解平面连杆机构的基本组成、特点和应用 场景。
掌握平面连杆机构的位置、速度和加速度分 析方法,能够绘制运动曲线图。
平面连杆机构的力分析
平面连杆机构的设计方法
掌握平面连杆机构的受力分析方法,能够计 算各构件的受力情况。
了解平面连杆机构的设计步骤和方法,能够 根据实际需求进行机构设计。
螺纹连接结构设计
了解螺纹连接结构设计的原则和方法,能 够设计出满足使用要求的螺纹连接结构。
键连接设计
键连接类型与特点
了解常见键连接类型(如平键连接、半圆键连接、楔键连接等) 及其特点,掌握各类型键连接的适用场合。
键的选择与强度计算
熟悉常用键的标准和规范,能够根据实际需求选择合适的键,并 掌握键连接的强度计算方法。
《机械设计基础课程设计》 课程教学大纲
目录
• 课程概述与目标 • 机械设计基础知识 • 常用机构设计 • 传动系统设计 • 轴系零部件设计 • 连接与紧固件设计 • 课程设计与实践环节 • 总结与展望
01
课程概述与目标
课程背景与意义
机械设计是制造业的基础,对于 培养高素质工程技术人才具有重
要意义。
了解销孔的加工方法和装配要求,能够正确加工和装配销连接。
07
课程设计与实践环节
课程设计任务书解读与选题指导
解读任务书
详细解读课程设计任务书,明确设计目标、要求 和限制条件。
选题指导
提供选题建议,引导学生选择符合自身兴趣和专 业方向的课题。
课题分析
帮助学生分析课题,制定合理的设计方案和实施 计划。
02
机械设计基础知识
机械设计基本概念

机械课程设计轴计算

机械课程设计轴计算

五 轴的设计计算一、高速轴的设计1、求作用在齿轮上的力高速级齿轮的分度圆直径为d 151.761d mm =112287542339851.761te T F N d ⨯=== tan tan 2033981275cos cos1421'41"n re te F F N αβ=⋅=⨯=tan 3398tan13.7846ae te F F N β==⨯=。

2、选取材料可选轴的材料为45钢,调质处理。

3、计算轴的最小直径,查表可取0112A =331min 015.2811223.44576P d A mm n ==⨯=应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使d Ⅰ-Ⅱ 与带轮相配合,且对于直径100d mm ≤的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。

故取25d mm =Ⅰ-Ⅱ 。

4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)根据前面设计知大带轮的毂长为93mm,故取90L mm I-II =,为满足大带轮的定位要求,则其右侧有一轴肩,故取32d mm II-III =,根据装配关系,定35L mm II-III =(2)初选流动轴承7307AC ,则其尺寸为358021d D B mm mm mm ⨯⨯=⨯⨯,故35d mm d III-∨I ∨III-IX ==,III -I∨段挡油环取其长为19.5mm,则40.5L mm III-I∨=。

(3)III -I∨段右边有一定位轴肩,故取42d mm III-II =,根据装配关系可定100L mm III-II =,为了使齿轮轴上的齿面便于加工,取5,44L L mm d mm II-∨I ∨II-∨III II-∨III ===。

(4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s=8mm,故右侧挡油环的长度为19mm,则42L mm ∨III-IX =(5)计算可得123104.5,151,50.5L mm L mm L mm ===、(6)大带轮与轴的周向定位采用普通平键C 型连接,其尺寸为10880b h L mm mm mm⨯⨯=⨯⨯,大带轮与轴的配合为76H r ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6. 求两轴承所受的径向载荷1r F 和2r F带传动有压轴力P F (过轴线,水平方向),1614P F N =。

机械设计基础课程设计

机械设计基础课程设计

4. 完成减速器装配草图见P28~P40 1轴系零件的结构设计 a画齿轮结构 齿轮结构见P188~P192.齿轮啮合画法按参考样图. b画滚动轴承结构 滚动轴承简化画法见P67. c画套筒和轴端挡圈 在需要处画套筒,套筒结构根据需要设计. 轴端挡圈可略去不画. d画挡油盘和甩油盘 当轴承用脂润滑时,为防止润滑油冲掉润滑脂,需装挡油盘; 用油润滑时,为防止大量热油涌入轴承也需装挡油盘. 铸造挡油盘结构见P20图4-13和P29图5-10;冲压挡油盘见 P29图5-10.
11
二、轴的最小直径见P13
1.初算轴的最小直径
计算见机械设计基础P240.
高速轴Ⅰ:最小轴径轴段与皮带轮配合,一个键槽,得
dⅠ mi n
1.05 1173 pⅠ nⅠ
mm
低速轴Ⅱ :最小轴径轴段与联轴器配合,一个键槽,得
dⅡmi n
1.05 1063
pⅡ nⅡ
mm
PⅠ、 PⅡ:已计算轴功率,kW. nⅠ、 nⅡ :已计算轴转速,r/min. 2.轴的最小直径确定
高速轴最小轴径应由皮带轮孔径确定,也可参考电机轴径确
定.
低速轴最小轴径应由以下所选联轴器标准孔径确定.
应保证: 高速轴最小轴径<低速轴最小轴径
12
三、选择联轴器见P13
1.类型 推荐选用弹性套注销联轴器见P128表13-5.
L1
L
L
Z型轴孔
Y型轴孔
Z型轴孔:阶梯形圆锥轴孔. Y型轴孔:长圆柱轴孔. J型轴孔: 阶梯形圆柱轴孔. J1型轴孔:短圆柱轴孔.
3.各轴转矩
TⅠ=9550PⅠ/nⅠ N·m TⅡ=9550PⅡ/nⅡ N·m TⅠ, TⅡ:分别为高速轴,低速轴转矩.
9

轴的课程设计说明书

轴的课程设计说明书

轴的课程设计说明书
一、课程简介
本课程是针对工程机械专业的学生开设的轴的课程设计,课程旨在通过理论讲解和实践操作,使学生掌握轴的设计、制造和检测等方面的基本知识和技能,进一步提高学生的综合能力和实践操作水平。

二、课程目标
1.掌握轴的基本原理和设计方法;
2.熟悉轴的材料选择和热处理工艺;
3.掌握轴的制造工艺和加工方法;
4.熟练掌握轴的检测方法和应用;
5.培养学生的团队合作意识和实际操作能力。

三、课程内容
1.轴的基本原理和设计方法
2.轴的材料选择和热处理工艺
3.轴的制造工艺和加工方法
4.轴的检测方法和应用
5.课程设计实践操作
四、课程教学方法
1.理论授课:通过讲解轴的基本原理和设计方法,使学生掌握轴的设计方法和技巧。

2.实验操作:通过轴的制造和检测等实验操作,强化学生的实际操作能力。

3.团队合作:学生将分成小组进行轴的设计和制造,培养团队合作精神和实际操作能力。

五、考核方式
1.课程设计报告:对课程设计实践操作的过程和结果进行综合评价。

2.实验操作考试:对学生在实验操作中的实际操作能力进行考核。

3.理论考试:对学生对轴的基本原理和设计方法的掌握程度进行考核。

六、教材及参考书目
教材:《轴承设计与制造》
参考书目:《轴承设计原理》、《轴承材料与热处理》、《轴承制造工艺
与加工方法》、《轴承检测方法与应用》。

七、结语
本课程设计旨在帮助学生掌握轴的设计、制造和检测等方面的基本知识和技能,为学生的未来职业发展打下坚实的基础,同时也期望能够培养学生的团队合作意识和实际操作能力,让学生在实践中不断提高自己的综合素质。

哈工大机械设计大作业轴系部件设计完美版

哈工大机械设计大作业轴系部件设计完美版

Harbin Institute of Technology课程设计说明书课程名称:机械设计设计题目:轴系部件设计院系:班级:设计者:学号:指导教师:郑德志设计时间:2014年11月哈尔滨工业大学目录一、选择轴的材料 (1)二、初算轴径 (1)三、轴承部件结构设计 (2)3.1轴向固定方式 (2)3.2选择滚动轴承类型 (2)3.3键连接设计 (2)3.4阶梯轴各部分直径确定 (3)3.5阶梯轴各部段长度及跨距的确定 (4)四、轴的受力分析 (5)4.1画轴的受力简图 (5)4.2计算支反力 (5)4.3画弯矩图 (6)4.4画转矩图 (6)五、校核轴的弯扭合成强度 (8)六、轴的安全系数校核计算 (9)七、键的强度校核 (10)八、校核轴承寿命 (11)九、轴上其他零件设计 (12)十、轴承座结构设计 (12)十一、轴承端盖(透盖) (13)参考文献 (13)一、 选择轴的材料通过已知条件和查阅相关的设计手册得知,该传动机所传递的功率属于中小型功率。

因此轴所承受的扭矩不大。

故选45号钢,并进行调质处理。

二、 初算轴径对于转轴,按扭转强度初算直径:d ≥√9.55×106P n10.2[τ]=C √P n13式中 d ——轴的直径;P ——轴传递的功率,kW ;n1——轴的转速,r/min;[τ]——许用扭转剪应力,MPa; C ——由许用扭转剪应力确定的系数;由大作业四知P =3.802kw所以:d ≥36.99mm本方案中,轴颈上有一个键槽,应将轴径增大5%,即d ≥36.99×(1+5%)=38.84mm按照GB2822-2005的a R 20系列圆整,取d =40 mm 。

根据GB/T1096—1990,键的公称尺寸b ×h =12×8,轮毂上键槽的尺寸 b=12mm ,1t =3.3mm 3、设计轴的结构3.1轴承机构及轴向固定方式因传递功率小,齿轮减速器效率高、发热小,估计轴不会长,故轴承部件的固定方式采用两端固定方式。

轮轴的机械加工工艺课程设计

轮轴的机械加工工艺课程设计

轮轴的机械加工工艺课程设计轮轴是机械制造中的重要零部件,广泛应用于各种运输工具和机械设备中。

它的加工工艺决定了轮轴的质量和使用寿命,因此轮轴的机械加工工艺十分重要。

轮轴的机械加工工艺通常分为以下几个步骤:第一步是材料准备。

轮轴的材料通常是碳素钢、合金钢等高强度金属材料。

在机械加工前,需要对材料进行化学成分分析和金相组织检查,以确保材料的质量符合标准要求。

第二步是粗加工。

粗加工包括车削、铣削、钻孔等工艺。

在这个阶段,需要根据轮轴的设计图纸,选取合适的切削工具和切削参数,进行切削加工。

粗加工的目的是将轮轴的外形和尺寸加工到靠近最终尺寸的程度,为后续的精加工做好准备。

第三步是热处理。

热处理是指通过加热、保温和冷却等工艺,改变金属材料的组织结构和性能,使其满足使用要求。

轮轴的热处理通常采用淬火和回火的工艺,以提高轮轴的强度和韧性。

第四步是精加工。

精加工是指在粗加工的基础上,对轮轴进行高精度的加工。

精加工包括磨削、滚齿、拉削等工艺。

精加工的目的是将轮轴的尺寸和表面质量达到设计要求,保证轮轴的精度和可靠性。

第五步是表面处理。

表面处理是指对轮轴的表面进行清洗、除锈、喷涂等处理,以提高轮轴的表面光洁度和抗腐蚀性能。

表面处理的质量直接影响轮轴的外观和使用寿命。

轮轴的机械加工工艺需要严格按照设计要求和加工工艺规范进行。

在加工过程中,需要注意以下几个方面的问题:第一是切削参数的选择。

切削参数的合理选择可以提高加工效率和加工质量,同时也能延长切削刀具的使用寿命。

第二是机床的选型和调整。

机床的选型和调整对加工质量和效率具有重要影响,需要根据轮轴的加工要求选择合适的机床,并进行精确的调整和校准。

第三是切削工具的选择和维护。

切削工具的质量和使用寿命直接影响加工质量和效率。

需要根据轮轴的材料和加工要求选择合适的切削工具,并进行及时的维护和更换。

第四是工艺流程的控制。

工艺流程的控制是保证轮轴加工质量的关键。

需要严格按照加工工艺流程进行加工,避免出现偏差和错误。

机械设计轴的设计.

机械设计轴的设计.

潘存云教授研制
潘存云教授研制
潘存云教授研制
键槽应设计成 同一加工直线
三、各轴段直径和长度的确定 轴段直径大小取决于作用在轴上的载荷大小; 确定轴段直径大小的基本原则: 1. 按轴所受的扭矩估算轴径,作为轴的最小轴径dmin。 2. 有配合要求的轴段,应尽量采用标准直径。 3. 安装标准件的轴径,应满足装配尺寸要求。 4. 有配合要求的零件要便于装拆。
孔径d 30 32 35 38 40 42 45 48 50 55 65 82 60 112 84 60 63 65… 142 107
长度 长系列 L 短系列
便于零件的装配,减少配合表面的擦伤的措施: 1) 在配合段轴段前应采用较小的直径; 2) 配合段前端制成锥度; 3) 配合段前后采用不同的尺寸公差。 为了便于轴上零件的拆卸,轴肩 高度不能过大。
发动机
传动轴
后桥
潘存云教授研制
11.1


一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。 分类: 转轴---传递扭矩又承受弯矩 按承受载荷分有: 传动轴---只传递扭矩 类 心轴---只承受弯矩 型 按轴的形状分有:
车厢重力
潘存云教授研制
自行车 前轮轴
前叉
潘存云教授研制
200 250
……





用于不重要或 载荷不大的轴 有较好的塑性 和适当的强度, 可用于一般曲 轴、转轴。

轴的常用材料及其主要力学性能
材料牌号 热处理 毛坯直径 mm 硬度 HBS 屈服强 弯曲疲 度极限 劳极限 σ-1 σs MPa 400~420 225 170 375~390 215 590 295 255 570 285 245 640 355 275 735 540 355 685 490 335 900 735 430 785 570 370 735 590 365 685 540 345 930 785 440 835 685 410 785 590 375 抗拉强 度极限 σb 640 835 530 490 600 800 390 635 195 305 395 190 180 215 290 剪切疲 许用弯 劳极限 曲应力 [σ-1] σ-1 105 140 135 155 200 185 260 210 210 195 280 270 220 160 230 115 110 185 250 40 55 60

《机械设计》实验四(轴系结构实验)

《机械设计》实验四(轴系结构实验)

综合性实验指导书实验名称:轴系结构实验实验简介:轴系主要包括轴、轴承和轴上零件,它是机器的重要组成部分。

轴的主要功用是支持旋转零件和传递扭矩。

轴的设计一方面要保证具有足够的工作能力,即满足强度、刚度和振动稳定性等要求。

另一方面,要根据制造、装拆使用等要求定出轴的合理外形和全都结构尺寸,即进行轴的结构设计。

轴承是轴的支承,分为滚动轴承和滑动轴承两大类。

滚动轴承已标准化,设计时只需根据工作条件选择合适的类型和尺寸,并进行轴承装置的设计。

通过本实验学生将进一步定性地对轴系设计结构理论进行深入了解。

适用课程:机械设计实验目的:了解并正确处理轴、轴承和轴上零件间的相关关系,如轴与铀承及轴上零件的定位、固定、装拆及调整方式等,以建立对抽系结构的感性认识并加深对轴系结构设计理论的理解。

面向专业:机械类实验项目性质:综合性(课内必做)计划学时: 2学时实验要求:A预习《机械设计》等课程的相关知识点内容;B预习《机械设计实验指导书》中实验目的、原理、设备、操作步骤或说明,并写出预习报告;实验前没有预习报告者不能够进行实验;C 进行实验时衣着整齐,遵守实验室管理规定、学生实验守则、仪器设备操作规定等相关规定,服从实验技术人员或实验教师的指导与管理。

知识点:A《机械设计》课程传动轴内容;B 《机械设计》课程键、螺纹连接内容;C《机械设计》课程滚动轴承内容;D 《机械设计》课程齿轮传动内容; E 《机械设计》课程蜗轮蜗杆传动内容;F《机械设计》课程润滑、密封内容;G《机械制图》课程相关知识内容。

实验分组:1人/组《机械设计》课程实验实验四轴系结构实验一、概述轴系主要包括轴、轴承和轴上零件,它是机器的重要组成部分。

轴的主要功用是支持旋转零件和传递扭矩。

它与轴承孔配合的轴段称为轴颈,安装传动件轮毂的轴段称为轴头,联接轴颈和轴头的轴段称为轴身。

轴颈和轴头表面都是配合表面,须有相应的加工精度和表面粗糙度。

轴的设计一方面要保证具有足够的工作能力,即满足强度、刚度和振动稳定性等要求。

机械设计课程设计内容及要求

机械设计课程设计内容及要求

机械设计课程设计1、机械设计课程设计的性质、任务及要求课程性质:考查课设计内容:二级齿轮减速器需完成的工作:1)二级齿轮减速器装配图1张2)零件图2张3)设计计算说明书1份设计时间:三周考核方式:检查图纸、说明书+ 平时考核+ 答辩要求:1)在教室里进行设计。

2)按照规定时间完成阶段性任务。

3)未经指导教师允许,不得用AutoCAD绘图。

4)按照规定的格式和要求的内容书写说明书。

2、课程设计的内容和步骤例图:1)传动装置的总体设计(周一)①选择电动机P电=P工/η建议同步转速取1000 rpm或1500rpm②分配传动比i总=i1i2i链对于二级圆柱齿轮减速器i1 =1.3~1.4 i2③各轴的传动参数计算P k= P k-1/ηk n k= n k-1/i k T k=9550*P k/n k2)传动零部件的设计计算(周二)包括:带传动的设计计算; 链传动的设计计算;齿轮传动的设计计算等,设计方法主要参照教科书。

(注意:齿轮传动的中心距应为尾数为0 或5 的整数,故最好选用斜齿传动。

3)装配草图的绘制(周三~下周一)①轴系零部件的结构设计初估轴的最小直径;轴的结构设计;轴上零件的选择(如键、轴承、联轴器等)。

②确定箱体尺寸按照经验公式确定箱体尺寸。

③主要轴系部件的强度校核(轴、轴承、键等)。

④确定润滑方式⑤绘制装配草图并确定减速器附件。

4)绘制装配图(0#或1#图纸)(周二~周五)5)绘制零件图(周一)6)编写设计计算说明书(周二)7)答辩(周三~周五)4、设计计算说明书的内容及次序设计任务书;目录(标题及页次);1.电动机的选择计算1.1计算电动机功率工作机功率1.2确定工作机转速2.分配传动比2.1总传动比2.2减速器外各传动装置的确定2.3减速器传动比2.3.1减速器高速级传动比2.3.2低速级传动3.传动装置的运动与动力参数的选择和计算(计算减速器各轴的功率P、转速n和扭矩) 3.1电动机轴的参数3.2减速器高速轴的参数3.3减速器中间轴的参数3.4减速器低速轴的参数3.5………………………………4.传动零件的设计计算4.1减速器外部零件的设计计算4.1.1带传动的设计计算4.1.2链传动的设计计算4.1.3 ………………………………4.2减速器内部传动零件的设计计算4.2.1高速级齿轮的设计计算(1)齿轮轮的受力分析(2)齿轮的弯曲强度计算(3)齿轮的接触强度计算4.2.2低速级齿轮的设计计算(1)齿轮轮的受力分析(2)齿轮的弯曲强度计算(3)齿轮的接触强度计算5.轴的设计计算5.1高速轴的设计5.1.1高速轴的结构设计(1)初估直径(2)确定各轴段的尺寸。

机械课程设计:曲轴

机械课程设计:曲轴

机械课程设计:曲轴摘要本文主要介绍机械课程设计中的曲轴设计。

首先介绍曲轴的定义和作用,然后讨论曲轴的设计要点和设计流程。

接下来详细介绍曲轴的设计步骤,包括曲轴的几何参数计算、受力分析和校核。

最后,通过一个实例演示了曲轴的设计过程。

1. 引言曲轴是一种常见的机械传动元件,主要用于将往复运动转换为旋转运动。

在许多机械系统中,曲轴承担着重要的传动和支撑作用。

因此,曲轴的设计对机械系统的性能和寿命具有重要影响。

2. 曲轴的定义和作用曲轴是一种能将往复直线运动转变为旋转运动的机械传动装置。

曲轴一般由一根直杆和两个或多个偏心轮组成。

曲轴可以将往复直线运动转换为旋转运动,通过连杆和活塞将燃烧室内的高压气体产生的力转换为旋转动力,从而驱动汽车的轮胎、飞机的螺旋桨等。

曲轴在机械系统中的主要作用是将发动机的燃烧能量转化为机械能,并将其传递给其他机械装置。

曲轴还起到了平衡连杆转动惯量的作用,使连杆的运动平稳,减少振动和冲击力,提高机械系统的工作效率和安全性。

3. 曲轴设计要点在进行曲轴设计时,需要注意以下几个要点:3.1 转动惯量曲轴的转动惯量对机械系统的平衡性和工作效率有重要影响。

过大或不均匀的转动惯量会导致机械系统的振动和冲击力增大,从而影响机械系统的稳定性和寿命。

因此,在设计曲轴时需要合理控制曲轴的转动惯量。

3.2 轴承支撑曲轴在机械系统中需要通过轴承来支撑和转动。

轴承的选择和安装对曲轴的工作性能和寿命有重要影响。

因此,在设计曲轴时需要考虑轴承的类型、尺寸和安装方式,确保曲轴能够正常运转并具有良好的工作性能。

3.3 受力分析曲轴在工作过程中会承受来自往复运动的力和转动惯量的作用力。

受力分析是曲轴设计的重要环节,通过分析曲轴在工作过程中所受的力和力矩,可以确定曲轴的受力情况,为曲轴的结构和尺寸设计提供依据。

3.4 材料选择曲轴一般由高强度的合金钢制成,以满足其在工作过程中的高强度和抗疲劳性能要求。

合适的材料选择对曲轴的工作性能和寿命具有重要影响。

机械设计课程设计轴套

机械设计课程设计轴套

机械设计课程设计轴套一、教学目标本节课的教学目标是让学生掌握轴套的基本设计原理和步骤,能够运用相关知识分析和解决实际问题。

具体目标如下:1.知识目标:(1)了解轴套的定义、作用和分类;(2)掌握轴套设计的的基本原则;(3)熟悉轴套设计的步骤和方法。

2.技能目标:(1)能够运用轴套设计的原则和方法,独立完成轴套设计;(2)能够分析并解决轴套设计过程中遇到的问题;(3)具备一定的创新能力和团队合作能力。

3.情感态度价值观目标:(1)培养学生对机械设计的兴趣和热情;(2)培养学生严谨、细致、合作的学术态度;(3)培养学生关注现实、解决实际问题的意识。

二、教学内容本节课的教学内容主要包括以下几个部分:1.轴套的定义、作用和分类;2.轴套设计的基本原则;3.轴套设计的步骤和方法;4.轴套设计实例分析。

教学过程中,将结合具体教材和学生的实际情况,合理安排教学内容和进度。

三、教学方法为了达到本节课的教学目标,将采用以下几种教学方法:1.讲授法:讲解轴套的定义、作用、分类和设计原则;2.案例分析法:分析具体轴套设计实例,引导学生运用所学知识解决实际问题;3.讨论法:分组讨论轴套设计过程中遇到的问题,培养学生的团队合作能力;4.实验法:安排实验环节,让学生亲自动手操作,提高学生的实践能力。

四、教学资源为了支持本节课的教学内容和教学方法,将准备以下教学资源:1.教材:机械设计相关教材,为学生提供理论知识的学习;2.参考书:提供丰富的轴套设计实例和案例,方便学生查阅和借鉴;3.多媒体资料:制作PPT、视频等,为学生提供直观的学习材料;4.实验设备:准备相关的实验设备和工具,为学生提供实践操作的机会。

五、教学评估为了全面、客观、公正地评估学生的学习成果,本节课的评估方式将包括以下几个方面:1.平时表现:评估学生在课堂上的参与度、提问回答、小组讨论等,以了解学生的学习状态和进步。

2.作业:布置与轴套设计相关的作业,评估学生的理解程度和应用能力。

机械制造技术基础课程设计--长轴讲解

机械制造技术基础课程设计--长轴讲解

湖南科技大学《机械设计制造技术基础》课程设计课题名称:长传动轴机械加工工艺规程设计班级:机械设计制造及其自动化姓名:学号:指导老师:成绩:学院2015 年7月目录一.课程设计的目的生产纲领的计算与生产类型的确定.。

.。

..1.课程设计的目的。

.。

..。

....。

..。

.。

.。

.。

.。

.。

.。

.。

2.生产类型的确定生产纲领的计算。

...。

.。

....。

.。

....。

.。

..二.长传动轴的工艺分析...。

.。

......。

.。

..。

.....。

..。

....。

.。

.1长传动轴的用途。

.。

.。

.。

...。

....。

..。

.。

...。

....。

2长传动轴的技术要求。

.。

.。

.。

...。

...。

.。

..。

.。

..。

.。

..。

3审查长传动轴的工艺性...。

.。

.。

..。

..。

.。

..。

..。

.。

.。

..。

.。

三. 确定毛坯、绘制毛坯简图。

.。

..。

.。

..。

.。

...。

...1选择毛坯。

.。

....。

..。

.。

.。

..。

..。

...。

.。

.。

...。

.......2确定毛胚的尺寸公差及机械加工余量。

....。

.。

.。

...。

.。

.。

3绘制长传动轴锻造毛坯简图。

..。

..。

..。

.。

.......。

.。

..。

.。

四。

拟定长传动轴工艺路线。

.....。

....。

..。

.。

..。

.。

.。

1定位基准的选择。

..。

..。

.。

.。

.。

....。

.。

....。

..。

...。

2各表面加工方案的确定.。

.。

.。

...。

.。

.。

...。

..。

.。

.。

.。

.。

3加工阶段的划分。

.....。

..。

.。

..。

..。

.。

...。

.。

..4工序的集中与分散....。

....。

.。

..。

....。

...。

....。

5工序顺序的安排.。

.。

.....。

..。

...。

.。

...。

......。

.......6机床设备及工艺装备的选用。

.。

.。

.....。

.。

.....。

...。

7确定工艺路线..。

...。

.。

...。

.。

.。

...。

..。

.。

机械制造课程设计(阶梯轴的工艺规程)

机械制造课程设计(阶梯轴的工艺规程)

机械制造课程设计(阶梯轴的工艺规程)机械制造课程设计(阶梯轴的工艺规程) 一、零件的分析1.1 轴的作用轴的主要作用是支承回转零件及传递运动和动力。

按照轴的承受载荷不同,轴可分为转轴、心轴和传动轴三类。

工作中既承受弯矩又承受扭矩的轴成为转轴,只承受弯矩的轴称为心轴,只承受扭矩而不承受弯矩的轴称为传动轴。

1.2 轴的工艺分析该轴主要采用40Cr钢能承受一定的载荷与冲击。

此轴为阶梯轴类零件,尺寸精度,形位精度要求均较高。

Φ21,φ22.5,φ24,Φ22.55为主要配合面,精度均要求较高,需通过磨削得到。

轴线直线度为φ0.01,两键槽有同轴度要求。

在加工过程中须严格控制。

(1)该轴采用合金结构钢40Cr,中等精度,转速较高。

经调质处理后具有良好的综合力学性能,具有较高的强度、较好的韧性和塑性。

(2)该轴为阶梯轴,其结构复杂程度中等,其有多个过渡台阶,根据表面粗糙度要求和生产类型,表面加工分为粗加工、半精加工和精加工。

加工时应把精加工、半精加工和粗加工分开,这样经多次加工以后逐渐减少了零件的变形误差。

(3)零件毛坯采用模锻,锻造后安排正火处理。

(4)该轴的加工以车削为主,车削时应保证外圆的同轴度。

(5)在精车前安排了热处理工艺,以提高轴的疲劳强度和保证零件的内应力减少,稳定尺寸、减少零件变形。

并能保证工件变形之后能在半精车时纠正。

(6)同一轴心线上各轴孔的同轴度误差会导致轴承装置时歪斜,影响轴的同轴度和轴承的使用寿命。

在两端面钻中心孔进行固定装夹可以有效防止径向圆跳动、保证其同轴度。

零件图如下轴的各表面粗糙度、公差及偏差见表一加工表面尺寸及偏差(mm)公差及精度等级表面粗糙度Ra(µm)形位公差轴段1 IT6 1.6 轴线直线度为轴段2 IT8 1.6 轴线直线度为轴段2端面3.2 轴段3 30 未注12.5 轴线直线度为轴段3端面 3.2 轴段4 IT6 1.6 轴线直线度为轴段4端面 3.2 轴段5 未注 1.6 轴线直线度为键槽2 IT7 3.2 键槽5 IT7 3.2 表一二、工艺规程设计 2.1 确定毛坯的制造形式阶梯轴材料为40Cr钢,要求强度较高,且工件的形状比较简单,毛坯精度低,加工余量大,因年产5000件,所以达到批量生产水平。

机械课程设计轴的校核

机械课程设计轴的校核

机械课程设计轴的校核一、课程目标知识目标:1. 理解轴的基本概念、分类及在机械系统中的作用;2. 掌握轴的受力分析及强度、刚度校核的基本原理;3. 学会运用相关公式和标准进行轴的设计计算。

技能目标:1. 能够分析机械系统中轴的受力情况,并进行简单的强度、刚度校核;2. 能够运用所学知识,完成轴的设计计算,提高解决实际问题的能力;3. 能够熟练运用相关工具和软件进行轴的设计与校核。

情感态度价值观目标:1. 培养学生严谨的科学态度,注重理论与实践相结合;2. 增强学生对机械工程领域的兴趣,激发创新意识;3. 培养学生的团队合作精神,提高沟通与协作能力。

课程性质:本课程为机械设计基础课程,旨在培养学生轴的设计与校核能力。

学生特点:学生在前期课程中已学习过力学、材料力学等基础知识,具备一定的理论素养。

教学要求:结合课本内容,注重实际应用,引导学生运用所学知识解决实际问题,提高学生的动手操作能力和创新能力。

将课程目标分解为具体的学习成果,以便后续的教学设计和评估。

二、教学内容1. 轴的基本概念与分类- 轴的功能和结构特点- 轴的分类及应用场景2. 轴的受力分析- 轴的受载类型及计算方法- 轴的弯扭组合受力分析3. 轴的强度校核- 轴的扭转强度校核- 轴的弯曲强度校核- 轴的疲劳强度校核4. 轴的刚度校核- 轴的扭转刚度校核- 轴的弯曲刚度校核5. 轴的设计计算- 轴的材料选择与尺寸确定- 轴的设计计算步骤与方法- 轴的校核计算实例分析教学安排与进度:1. 第1周:轴的基本概念与分类2. 第2周:轴的受力分析3. 第3周:轴的强度校核4. 第4周:轴的刚度校核5. 第5周:轴的设计计算及实例分析教材章节:1. 《机械设计基础》第3章:轴的设计与校核2. 《材料力学》第6章:扭转与弯曲教学内容与课程目标紧密相连,确保学生掌握轴的设计与校核的基本原理和方法,培养解决实际问题的能力。

同时,注重理论与实践相结合,提高学生的动手操作能力和创新能力。

机械制造基础课件-轴的设计

机械制造基础课件-轴的设计
1、 轴向定位 、
承受很小的轴向力 紧定螺钉
第二节 轴的结构设计
1、 轴向定位 、
第二节 轴的结构设计
2、周向定位

花 键
弹性环
第二节 轴的结构设计
2、周向定位 、

成形联接
过盈配合
第二节 轴的结构设计
四、轴上各轴段的尺寸确定 1)直径确定依据 ) ①满足强度和刚度要求 ②轴颈直径必须符合相配轴承的内径 ③安装联轴器、离合器等零件的轴头直径应与相应孔径范 安装联轴器、 围相适应 ④与齿轮等零件相配合的其它轴头直径,应采用标准直径 与齿轮等零件相配合的其它轴头直径, ⑤轴上需车制螺纹的部分,其直径必须符合外螺纹大径的 轴上需车制螺纹的部分, 标准系列

绘制出合成弯矩图。 3)计算出合成弯矩 M = M 2 + M 2 ,绘制出合成弯矩图。 H V 作出扭矩( ) 4)作出扭矩(T)图。 式中α为考虑弯曲应力与扭转切 5)计算当量弯矩 M e = M + (αT ) ,式中 为考虑弯曲应力与扭转切 应力循环特性的不同而引入的修正系数。 应力循环特性的不同而引入的修正系数。
(二)轴的结构设计内容 轴的合理外形和全部结构尺寸
第二节 轴的结构设计
三、 轴上零件的固定
定位: 定位:指零件在轴上安装到位 位置准确) (位置准确) 固定: 固定:指工作时零件与轴之间相对 位置保持不变(位置不动) 位置保持不变(位置不动)
第二节
1、轴向定位 、 轴肩和轴环
轴的结构设计
特点: 特点:能承受较大的轴向力 常用于齿轮、 常用于齿轮、链轮等轴向定位
传动轴
点击图动画演示
汽车中联接变速箱与后桥之间的轴
第一节 概述
轴的应用和分类 轴的应用

机械设计课程设计 轴的设计

机械设计课程设计 轴的设计

第四章轴的设计机器上所安装的旋转零件,例如带轮、齿轮、联轴器和离合器等都必须用轴来支承,才能正常工作,因此轴是机械中不可缺少的重要零件。

本章将讨论轴的类型、轴的材料和轮毂联接,重点是轴的设计问题,其包括轴的结构设计和强度计算。

结构设计是合理确定轴的形状和尺寸,它除应考虑轴的强度和刚度外,还要考虑使用、加工和装配等方面的许多因素。

4.1 轴的分类按轴受的载荷和功用可分为:1.心轴:只承受弯矩不承受扭矩的轴,主要用于支承回转零件。

如.车辆轴和滑轮轴。

2.传动轴:只承受扭矩不承受弯矩或承受很小的弯矩的轴,主要用于传递转矩。

如汽车的传动轴。

3.转轴:同时承受弯矩和扭矩的轴,既支承零件又传递转矩。

如减速器轴。

4.2轴的材料主要承受弯矩和扭矩。

轴的失效形式是疲劳断裂,应具有足够的强度、韧性和耐磨性。

轴的材料从以下中选取:1. 碳素钢优质碳素钢具有较好的机械性能,对应力集中敏感性较低,价格便宜,应用广泛。

例如:35、45、50等优质碳素钢。

一般轴采用45钢,经过调质或正火处理;有耐磨性要求的轴段,应进行表面淬火及低温回火处理。

轻载或不重要的轴,使用普通碳素钢Q235、Q275等。

2. 合金钢合金钢具有较高的机械性能,对应力集中比较敏感,淬火性较好,热处理变形小,价格较贵。

多使用于要求重量轻和轴颈耐磨性的轴。

例如:汽轮发电机轴要求,在高速、高温重载下工作,采用27Cr2Mo1V、38CrMoAlA等。

滑动轴承的高速轴,采用20Cr、20CrMnTi 等。

3. 球墨铸铁球墨铸铁吸振性和耐磨性好,对应力集中敏感低,价格低廉,使用铸造制成外形复杂的轴。

例如:内燃机中的曲轴。

4.3 轴的结构设计如图所示为一齿轮减速器中的的高速轴。

轴上与轴承配合的部份称为轴颈,与传动零件配合的部份称为轴头,连接轴颈与轴头的非配合部份称为轴身,起定位作用的阶梯轴上截面变化的部分称为轴肩。

轴结构设计的基本要求有:(1)、便于轴上零件的装配轴的结构外形主要取决于轴在箱体上的安装位置及形式,轴上零件的布置和固定方式,受力情况和加工工艺等。

机械制造课程设计《输出轴》

机械制造课程设计《输出轴》

机械制造课程设计《输出轴》题目名称:班级:姓名:学号:指导教师:目录一.零件的工艺分析及生产类型的确定 (3)1技术要求分析 (3)2零件的工艺分析 (3)3轴类零件的装夹 (3)二.选择毛坯,确定毛坯尺寸,设计毛坯图 (3)1选择毛坯 (3)2毛坯尺寸的确定 (4)三.选择加工方法,制定加工艺路线 (4)1定位基准的选择 (5)2零件表面加工方法的选择 (5)3制定艺路线 (5)四.工序设计 (6)1选择机床根据工序选择机床 (6)2选用夹具 (7)3选用刀具 (7)4确定工序尺寸 (6)五.夹具设计 (9)1定位方案 (9)2分度设计 (9)3定位误差分析 (9)输出轴加工工艺及夹具设计学生:指导老师:一·零件的工艺分析及生产类型的确定1技术要求分析题目所给定的零件输出轴,其要紧作用:一是传递转矩,使主轴获得旋转的动力;二是工作过程中承受载荷;三是支撑传动零部件。

零件的材料为45钢,是最常用中碳调质钢,综合力学性能良好,淬透性低,淬火时易生裂纹。

综合技术要求等文件,选用铸件。

由因此大批量生产,故使用模锻。

2零件的工艺分析结构比较简单,其要紧加工的面有φ55、φ60、φ65、φ75、φ176的外圆柱面,φ50、φ80、φ104的内圆柱表面,10个φ20的通孔,图中所给的尺寸精度高,大部分是IT6级;粗糙度方面表现在键槽两侧面、φ80内圆柱表面为Ra3.2um,大端端面为Ra3.2um,其余为Ra12.5um,要求不高;位置要求较严格表现在φ55的左端面、φ80内孔圆柱面对φ75、φ60外圆轴线的跳动量为0.04mm, φ20孔的轴线对φ80内孔轴线的位置度为φ0.05mm,键槽对φ55外圆轴线的对称度为.0.08mm;热处理方面需要调质处理,到200HBS,保持均匀。

通过分析该零件,其布局合理,方便加工,我们通过径向夹紧可保证其加工要求,整个图面清晰,尺寸完整合理,能够完整表达物体的形状与大小,符合要求。

机械课程设计轴的计算

机械课程设计轴的计算

五 轴的设计计算一、高速轴的设计1、求作用在齿轮上的力高速级齿轮的分度圆直径为d 151.761d m m =112287542339851.761te T F Nd ⨯===tan tan 2033981275cos cos1421'41"n re te F F Nαβ=⋅=⨯=tan 3398tan 13.7846ae te F F Nβ==⨯=。

2、选取材料可选轴的材料为45钢,调质处理。

3、计算轴的最小直径,查表可取0112A =331m in 015.2811223.44576P d A m mn ==⨯=应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使d Ⅰ-Ⅱ 与带轮相配合,且对于直径100d m m ≤的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。

故取25d mm =Ⅰ-Ⅱ 。

4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)根据前面设计知大带轮的毂长为93mm,故取90L m m I -II =,为满足大带轮的定位要求,则其右侧有一轴肩,故取32d mm II -III =,根据装配关系,定35L mmII -III =(2)初选流动轴承7307AC ,则其尺寸为358021d D B m m m m m m ⨯⨯=⨯⨯,故35d mm d III -∨I ∨III -IX ==,III -I ∨段挡油环取其长为19.5mm,则40.5L mmIII -I ∨=。

(3)III -I ∨段右边有一定位轴肩,故取42d m m III -II =,根据装配关系可定100L m m III -II =,为了使齿轮轴上的齿面便于加工,取5,44L L m m d m m II -∨I∨II-∨IIII I -∨I I I===。

(4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s=8mm,故右侧挡油环的长度为19mm,则42L m m ∨III -IX =(5)计算可得123104.5,151,50.5L m m L m m L m m ===、(6)大带轮与轴的周向定位采用普通平键C 型连接,其尺寸为10880b h L m m m m m m⨯⨯=⨯⨯,大带轮与轴的配合为76H r ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6. 求两轴承所受的径向载荷1r F 和2r F带传动有压轴力P F (过轴线,水平方向),1614P F N =。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七 轴的设计计算(一)高速轴的设计计算 1.确定轴的最小直径先按教材式(15-2)初步估算轴的最小直径。

选轴的材料为40Cr 调质处理。

根据教材表15-3,取1060=A ,于是得mm n P A d 74.1496058.210633110min =⨯==,由于开了一个键槽,所以mm d 77.15)07.01(74.14min =+⨯轴的最小直径显然是安装联轴器处轴的直径。

为了使轴的直径和联轴器的孔径相适应,故需同时选联轴器的型号。

联轴器的计算转矩1T K T A ca =,查教材表14-1取3.1=A K ,又N T 4110567.2⨯=代入数据得mm N T ca .1034.34⨯=查《机械设计课程设计》表9-21(GB/T4323-1984),选用TL4型弹性柱销联轴器。

联轴器的孔径d=22mm,所以mm d 22min = 2.轴的机构设计(1)根据轴向定位的要求确定轴上各段直径和长度1)为了满足联轴器的轴向定位要求,在12段的右边加了一个轴套,所以mm d d 22min 12==2)初步选取轴承,因同时受到径向力和轴向力,故选用圆锥滚子轴承,根据轴的结构和最小轴的直径大小 查《机械设计课程设计》表9-16(GB/T297-1994)选用30205型轴承mm mm mm T D d 25.165225⨯⨯=⨯⨯所以,mm d 2523=,根据轴承的右端采用轴肩定位,从表中可知mm d 3034=,45断的直径为齿轮的齿顶圆直径,所以mm d 66.4145=,mm d d mm d d 25,3023673456====。

半联轴器与轴配合的毂孔长度mm L 381=,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,所以长度应取短些,先取mm L 361=。

轴承的端盖的总宽为25mm,取端盖的外端面与半联轴器的距离为25mm ,所以12段上的轴套长mm L 5025252=+=,所以mm L 882365012=++=在确定轴承的位置时应距离箱体内壁S=8mm ,取齿轮距离箱体内壁a=12mm 。

所以,25.2428225.1623=-+-=L mm 取24mm ,34L 可由中间轴算出来mm L 8321126521234=--++-=,mm B L 45145==,轴肩的高度d h 07.0 ,轴环的宽度h b 4.1≥,所以取56段1的长度为mm L 1056=,所以25.2628)1012(25.1667=++-+=L ,取26mm 。

(二)中间轴的设计计算 1.确定轴的最小直径先按教材式(15-2)初步估算轴的最小直径。

选轴的材料为40Cr 调质处理。

根据教材表15-3,取1060=A ,于是得mm n P A d 77.2419245.210633110min =⨯==,由于开了一个键槽,所以mm d 5.26)07.01(77.24min =+⨯ 2.轴的机构设计(1)各段的直径:因为轴的最小轴与轴承相配合,所以应该先确定轴承的型号从而确定轴的最小值,因同时受到径向力和轴向力,故选用圆锥滚子轴承。

查《机械设计课程设计》表9-16(GB/T297-1994),根据上面计算的mm d 5.26min ,选择轴承的型号为30206,其尺寸为mm mm mm T D d 25.176230⨯⨯=⨯⨯ 所以,mm d d 306712==轴肩高度1.207.0==d h 所以23段的直径mm h d 3530223=+=,mm d d 352356==,34段的直接即为齿轮的齿顶圆直径mm d 84.5934=,45段的轴肩高mm h 45.23507.0=⨯=,所以mm d h d 4025645=+=。

(2)确定各段的长度先确定23段的长度:轴环的宽度h b 4.1 ,取b 为10mm 即mm L 1023=。

确定12段的长度:因为安装轴承应距离箱体内壁为8mm ,齿轮距离箱体内壁的距离为16mm ,所以mm L 25.27)1012(825.1712=-++=,取mm L 2712=。

确定34的长度:34的长度等于齿轮的宽度,所以mm B L 65134==。

确定45段的长度:轴环的宽度h b 4.1 ,取b 为10mm 即mm L 1045=。

确定56段的长度:56的长度原本应该等于齿轮的宽度B ,但为了定位作用该段的轴应小于齿宽B ,mm L 3734056=-= 确定67段的长度:75.432/)4045(312825.1767=-++++=L 取mm L 4767=(三)输出轴的设计计算1.确定轴的最小直径先按教材式(15-2)初步估算轴的最小直径。

选轴的材料为45钢,调质处理。

根据教材表15-3,取105,于是得mm n P A d 1.3968.4326.210533110min =⨯==,由于开了两个键槽,所以mm d 7.43)12.01(1.39min =+⨯轴的最小直径显然是安装联轴器处轴的直径。

为了使轴的直径和联轴器的孔径相适应,故需同时选联轴器的型号。

联轴器的计算转矩1T K T A ca =,查教材表14-1取5.1=A K ,又N T 51100942.5⨯=代入数据得mm N T ca .106413.75⨯=查《机械设计课程设计》表9-21(GB/T4323-1984),选用HL4型弹性柱销联轴器。

联轴器的孔径d=45mm,所以mm d 45min = 2.轴的机构设计(1)根据轴向定位的要求确定轴上各段直径和长度1)为了满足联轴器的轴向定位要求,在67段的左边加了一个轴套,所以mm d d 45min 67==2)初步选取轴承,因同时受到径向力和轴向力,故选用圆锥滚子轴承,根据轴的结构和最小轴的直径大小 查《机械设计课程设计》表9-16(GB/T297-1994)选用30210型轴承mm mm mm T D d 75.219050⨯⨯=⨯⨯所以,mm d 5012=,根据轴承的右端采用轴肩定位,从表中可知mm d 5523=,轴肩的高度85.307.0=≥d h 取4mm ,所以mm d 6334=,mm d d mm d d 50,5512562345====。

半联轴器与轴配合的毂孔长度mm L 847=,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,所以长度应取短些,先取mm L 821=。

轴承的端盖的总宽为20mm,取端盖的外端面与半联轴器的距离为30mm ,所以12段上的轴套长mm L 5030206=+=,所以mm L 135230208267=+++= 在确定轴承的位置时应距离箱体内壁S=8mm ,取齿轮距离箱 体内壁a=16mm 。

23段的长度原本等于齿轮的宽,但为了齿轮能够轴向定位应短一些,所以mm L 5736023=-=,所以mm L 25.472/)6065(12875.2112=-+++=取mm L 4712= 轴环的宽h b 4.1≥取b=11mm 即mm L 1034=45L 可由中间轴确定mm L 551022/)4045(2/)6065(12401045=---+-+++= mm L 75.2922875.2156=-++=取mm L 3056=八 轴的校核(一)输入轴的校核NF F N F F N d T F t a n t r t 331tan 498cos tan ,132********1======ββα1.画轴的空间受力图将齿轮所受载荷简化为集中力,并通过轮毂中截面作用于轴上。

轴的支点反力也简化为集中力通过载荷中心作用于轴上;2.作垂直平面受力图和水平平面受力图求出作用于轴上的载荷。

并确定可能的危险截面。

将计算出的危险截面处的M M M V H ,,的值列入下表:3.按弯矩合成应力校核轴的强度已知材料为40Cr 钢调质,由教材表15—1查得[]MPa 701=-σ,由已知条件,对轴上承受最大弯矩和扭矩的截面的强度进行校核。

根据教材式15-5以上表中的数据,并取6.0=α 轴的计算应力MPaMPa WT M ca 7023.1491.341.0)256706.0(56258)(3222221 =⨯⨯+=⋅+=ασ 结论:按弯矩合成应力校核轴的强度,轴的强度足够。

(二) 中间轴的校核N F F N F F N F F a a r r t t 331498,1328121212======N F F NF N D TF t a n r t 1088tan 1638cos tan ,43652333======ββα 1.画轴的空间受力图将齿轮所受载荷简化为集中力,并通过轮毂中截面作用于轴上。

轴的支点反力也简化为集中力通过载荷中心作用于轴上;2.作垂直平面受力图和水平平面受力图求出作用于轴上的载荷。

并确定可能的危险截面。

将计算出的危险截面处的M M M V H ,,的值列入下表:3.按弯矩合成应力校核轴的强度已知材料为40Cr 钢调质,由教材表15—1查得[]MPa 701=-σ,由已知条件,对轴上承受最大弯矩和扭矩的截面的强度进行校核。

根据教材式15-5以上表中的数据,并取6.0=αMPaMPa WT M ca 7096.1384.551.0)1218606.0(139840)(32222213 =⨯⨯+=⋅+=ασ MPaMPa WT M ca 701.39351.0)1218606.0(139840)(32222213 =⨯⨯+=⋅+=ασ 结论:按弯矩合成应力校核轴的强度,轴的强度足够 (三)输出轴的校核N F F N F F N F F a a r r t t 10881638,4365343434======1.画轴的空间受力图将齿轮所受载荷简化为集中力,并通过轮毂中截面作用于轴上。

轴的支点反力也简化为集中力通过载荷中心作用于轴上;2.作垂直平面受力图和水平平面受力图求出作用于轴上的载荷。

并确定可能的危险截面。

将计算出的危险截面处的M M M V H ,,的值列入下表:3.按弯矩合成应力校核轴的强度已知材料为45钢调质,由教材表15—1查得[]MPa 601=-σ,由已知条件,对轴上承受最大弯矩和扭矩的截面的强度进行校核。

根据教材式15-5以上表中的数据,并取6.0=αMPaMPa WT M ca 608.22551.0)5094206.0(224650)(3222221 =⨯⨯+=⋅+=ασ 结论:按弯矩合成应力校核轴的强度,轴的强度足够九 轴承的校核轴承的预期计算寿命h L h 480083002'=⨯⨯= 1 输入轴上轴承的校核 (1)求两个轴承受到的径向载荷 由轴的校核过程可知N F ae 331=NF N F N F N F NV NV NH NH 320,178937,3912121====所以N F F F NV NH r 6.4291783912221121=+=+= N F F F NV NH r 1.9903209372222222=+=+=(2)计算轴承的轴向力查《机械设计课程设计》表9-16(GB/T297-1994)得30205型号轴承N C Y e r 32200,6.1,37.0=== 所以N Y F F r d 25.134)6.12(6.429)2(11=⨯==N Y F F r d 41.309)6.12(1.990)2(22=⨯==NF F F F NF F F F ae d d a d ae d a 41.309),max(41.64041.309331),max(122211=-==+=+= (3)求轴承的动载荷e F F e F F r a r a 31.01.99041.30949.16.42941.6402211====查教材表13-5得 对轴承1 6.1,4.011==Y X对轴承2 0,122==Y X查教材表13-6取冲击载荷因数2.1=p f(四)计算轴的寿命N F Y F X f P a r p 9.1423)41.6406.16.4294.0(2.1)(11111=⨯+⨯⨯=+=N F Y F X f P a r p 12.11881.99012.1)(22222=⨯⨯=+= 所以h h L h P C n L '595016)9.142332200(9606010)(60103106161 =⨯===ε h h L h P C n L '1230847)12.118832200(9606010)(60103106162 =⨯===ε 所以轴承满足寿命要求。

相关文档
最新文档