某公路隧道衬砌结构计算书共18页文档
隧道标准断面衬砌类型通用数量计算书
第1页 共24页施工单合同号:XMTJ-监理单工程名一、Sma 型明二衬内轮1、Sma 型明2、Sma 型明3、4、Sma 型明编号规格单根长(mm)总长(m)单位重(Kg/m)总重(Kg)小计(Kg)N1Φ2228114140.57 2.98418.9N2Φ2223915119.58 2.98356.35N3Φ221164858.24 2.98173.56N4Φ221233161.66 2.98183.75N5Φ161000346 1.58546.68546.68N6φ8633462.090.396182.99N7φ8906126.840.39650.233461679.24730233.22140隧道设计数量计算书二衬外轮廓面积S2=π×(5.5+0.6)²/2+5.5×sin(108°14′33″-90°)×[5.5+0.6-5.5×cos(108°14′33″-90°)+1/2×5.5×cos(108°14′33″-90°)]×2=70.4609m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(5.5+0.6)²/2+(5.5+0.6)×2×[(1.6+1.45+0.6)-(18+0.6)×(1-cos14°4′8″)] +π×(18+0.6)²/360°×14°4′8″×2-(18+0.6)²×sin14°4′8″×cos14°4′8″-S2=29.0858m ²Sma型明洞仰拱填充C15混凝土每延米数量:[1.45-0.34-18×(1-cos(ASIN(7.75/2/18)))]×7.75+18²×ASIN(7.75/2/18)-18²×(7.75/2/18)×cos(ASIN(7.75/2/18))=7.52m ³根数合计(Kg)51132.56光圆钢筋:5233.2255带肋钢筋:施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书二、Smb 型明二衬内轮1、Smb 型明2、Smb 型明3、4、5、Smb 型明Smb型明洞仰拱填充C15混凝土每延米数量:[1.45-0.34-18×(1-cos(ASIN(7.75/2/18)))]×7.75+18²×ASIN(7.75/2/18)-18²×(7.75/2/18)×cos(ASIN(7.75/2/18))=7.52m ³Smb型明洞外边墙C20混凝土每延米数量:(0.6×2+9.7×0.3)×9.7/2+(1.55×2+0.524)×5.245/2+(1.55+0.524)²×tan(14°4′8″)+ π×(18+0.6)²/360°×(14°4′8″)-(18-1.45)²/cos(14°4′8″)×sin(14°4′8″)/2 +[1.6×2+(5.5+0.6+0.6)×cos60°]×(5.5+0.6+0.6)×sin60°/2-π×(5.5+0.6)²/360°×(108°14′33″-60°)-π×(1.2+0.6)²/360°×(57°41′19″)-[π×(18+0.6)²/360°×(14°4′8″)-(18-1.2)×(18-1.45-1.6)×sin(14°4′8″)]=27.89m ³二衬外轮廓面积S2=π×(5.5+0.6)²/360°×(108°14′33″+90°)+5.5×sin(108°14′33″-90°)× [5.5+0.6-5.5×cos(108°14′33″-90°)+1/2×5.5×cos(108°14′33″-90°)]=70.3789m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(5.5+0.6)²/360°×(108°14′33″+90°)+π×(1.2+0.6)²/360°×57°41′19″ +π×(18+0.6)²/360°×14°4′8″-1/2×(18-1.2)×(18-1.6-1.45)×sin14°4′8″+(5.5+0.6)×[(1.6+1.45+0.6)-(18+0.6)×(1-cos14°4′8″)]+π×(18+0.6)²/360°×14°4′8″ -1/2×(18+0.6)²×sin14°4′8″×cos14°4′8″-S2=28.122m ²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书三、Smc 型明二衬内轮1、Smc 型明2、Smc 型明3、二衬外轮廓面积S2=π×(5.5+0.6)²/360°×108°14′33″×2=70.2969m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(1.2+0.6)²/360°×57°41′19″×2+π×(18+0.6)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=27.1583m ²Smc型明洞仰拱填充C15混凝土每延米数量:[1.45-0.34-18×(1-cos(ASIN(7.75/2/18)))]×7.75+18²×ASIN(7.75/2/18)-18²×(7.75/2/18)×cos(ASIN(7.75/2/18))=7.52m ³施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书四、S5a 型复二衬内轮1、S5a 型洞2、S5a 型洞3、S5a 型洞4、S5a 型洞奇数排每偶数排每5、洞身开挖轮廓面积S5=π×(5.5+0.5+0.25)²/2+π×(3.5+5.5+0.5+0.25)²/360°×(10°53′32″)×2-3.5²×tan10°53′32″+π×1.7²/360°×(64°8′7″)×2+π×(18+0.5+0.25)²/360°×(14°58′21″)×2 -(18.75-1.7)×(18-1.45-1.6+3.5×tan10°53′32″)×sin14°58′21″=103.3585m ²S5a型洞身初支钢筋网每延米数量:[π×(6+0.23)+π×(3.5+6+0.23)/180°×(10°53′32″)×2]/0.15×0.396 +取整([π×(6+0.23)+π×(3.5+6+0.23)/180°×(10°53′32″)×2-0.15]/0.15+1)×0.396=122.81Kg二衬外轮廓面积S2=π×(5.5+0.5)²/360°×108°14′33″×2=68.0109m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(1.2+0.5)²/360°×57°41′19″×2+π×(18+0.5)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=25.8949m ²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书五、S5b 型复二衬内轮1、S5b 型洞2、S5b 型洞3、S5b 型洞4、S5b 型洞奇数排每偶数排每5、仰拱外轮廓面积S4=π×(1.2+0.5)²/360°×57°41′19″×2+π×(18+0.5)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=25.8949m ²洞身开挖轮廓面积S5=π×(5.5+0.5+0.25)²/2+π×(3.5+5.5+0.5+0.25)²/360°×(10°53′32″)×2-3.5²×tan10°53′32″+π×1.7²/360°×(64°8′7″)×2+π×(18+0.5+0.25)²/360°×(14°58′21″)×2 -(18.75-1.7)×(18-1.45-1.6+3.5×tan10°53′32″)×sin14°58′21″=103.3585m ²S5b型洞身初支钢筋网每延米数量:[π×(6+0.23)+π×(3.5+6+0.23)/180°×(10°53′32″)×2]/0.2×0.396 +取整([π×(6+0.23)+π×(3.5+6+0.23)/180°×(10°53′32″)×2-0.2]/0.2+1)×0.396=92.01Kg二衬外轮廓面积S2=π×(5.5+0.5)²/360°×108°14′33″×2=68.0109m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书六、S5c 型复二衬内轮1、S5c 型洞2、S5c 型洞3、S5c 型洞4、S5c 型洞奇数排每偶数排每5、二衬外轮廓面积S2=π×(5.5+0.6)²/360°×108°14′33″×2=70.2969m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(1.2+0.6)²/360°×57°41′19″×2+π×(18+0.6)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=27.1583m ²洞身开挖轮廓面积S5=π×(5.5+0.6+0.27)²/2+π×(3.5+5.5+0.6+0.27)²/360°×(10°58′52″)×2-3.5²×tan10°58′52″+π×1.8²/360°×(64°0′16″)×2+π×(18+0.6+0.27)²/360°×(15°0′52″)×2 -(18.87-1.8)×(18-1.45-1.6+3.5×tan10°58′52″)×sin15°0′52″=107.8486m ²S5c型洞身初支钢筋网每延米数量:[π×(6.1+0.25)+π×(3.5+6.1+0.25)/180°×10°58′52″×2]/0.15×0.396 +取整([π×(6.1+0.25)+π×(3.5+6.1+0.25)/180°×10°58′52″×2-0.15]/0.15+1)×0.396=125.19Kg施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书七、S4a 型复二衬内轮1、S4a 型洞2、S4a 型洞3、S4a 型洞4、S4a 型洞5、S4a 型洞奇数排每偶数排每二衬外轮廓面积S2=π×(5.5+0.45)²/360°×108°14′33″×2=66.8821m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(1.2+0.45)²/360°×57°41′19″×2+π×(18+0.45)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=25.2726m ²洞身开挖轮廓面积S5=π×(5.5+0.45+0.24)²/2+π×(3.5+5.5+0.45+0.24)²/360°×(10°45′29″)×2 -3.5²×tan10°45′29″+π×1.67²/360°×(64°19′58″)×2+π×(18+0.45+0.24)²/360°×(14°54′33″)×2-(18.69-1.67)×(18-1.45-1.6+3.5×tan10°45′29″)×sin14°54′33″=101.1397m ²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书八、S4b 型复二衬内轮1、S4b 型洞2、S4b 型洞3、S4b 型洞4、S4b 型洞5、S4b 型洞奇数排每偶数排每二衬外轮廓面积S2=π×(5.5+0.4)²/360°×108°14′33″×2=65.7628m ²仰拱内轮廓面积S3=π×1.2²/360°×57°41′19″×2+π×18²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=19.9537m ²仰拱外轮廓面积S4=π×(1.2+0.4)²/360°×57°41′19″×2+π×(18+0.4)²/360°×14°4′8″×2 -(18-1.2)×(18-1.6-1.45)×sin14°4′8″=24.6566m ²洞身开挖轮廓面积S5=π×(5.5+0.4+0.22)²/2+π×(3.5+5.5+0.4+0.22)²/360°×(15°3′46″)×2-3.5²×tan15°3′46″+(3.5+5.5+0.4+0.22-3.5/cos15°3′46″)²×cos15°3′46″×sin15°3′46″+π×(1.2+0.4)²/360°×【ACOS{[0.9+1.6-(5.5-1.2)×sin(108°14′33″-90°)]/(1.2+0.4)}-14°4′8″】×2-[0.9+1.6-(5.5-1.2)×sin(108°14′33″-90°)]²×【tanACOS{[0.9+1.6-(5.5-1.2)×sin(108°14′33″-90°)]/(1.2+0.4)}-tan14°4′8″】+π×(18+0.4)²/360°×(14°4′8″)×2-(18-1.45+0.9)²×tan14°4′8″=96.0949m ²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书九、S4c 型复1、S4c 型洞2、S4c 型洞3、S4c 型洞4、S4c 型洞奇数排每偶数排每5、6、S4c 型洞洞身开挖轮廓面积S3=π×(5.5+0.35+0.15)²/2+π×(3.5+5.5+0.35+0.15)²/360°×(15°30′28″)×2-3.5²×tan15°30′28″+(1.6+0.94-3.5×tan15°30′28″)×(9.5-3.5/cos15°30′28″)×sin(90-15°30′28″)-7.75×(0.94-0.1-0.24-0.15)=82.9601m ²二衬内轮廓面积S1=π×5.5²/360°×207°36′44″+(1.6-0.3)×√[5.5²-(1.6-0.3)²]/2+(1.6+0.94-0.415-0.7-0.1)×√[5.5²-(1.6+0.94-0.415-0.7-0.1)²]/2+(0.07+0.6+0.15+0.5+7.75/2)×0.1+(0.07+0.65+0.15+0.5+7.75/2)×0.1+(0.6+0.15+0.5+7.75/2)×0.7+(0.65+0.15+0.5+7.75/2)×0.5+[(1.6+0.94)/tan(25°44′1″)-0.415]×(0.415+0.64)-7.75×(0.94-0.1-0.24-0.15)=70.6693m ²二衬外轮廓面积S2=π×(5.5+0.35)²/360°×(180°+25°44′1″×2)+(1.6+0.94)×(5.5+0.35)×sin(90°-25°44′1″)-7.75×(0.94-0.1-0.24-0.15)=79.0251m ²S4c型洞身初支钢筋网每延米数量:取整{[π×(5.85+0.13)/180°×120°]/0.25+1}×1×0.888+[π×(5.85+0.13)/180°×120°]×4×0.888=89.76Kg(钢筋网仅布设拱顶120°范围内)施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理名隧道设计数量计算书十、S3a型复1、S3a型洞2、S3a型洞3、S3a型洞奇数排每偶数排每4、S3a型洞5、6、7、S3a二衬内轮廓面积S1=π×5.5²/360°×207°36′44″+(1.6-0.3)×√[5.5²-(1.6-0.3)²]/2+(1.6+0.94-0.415-0.7-0.1)×√[5.5²-(1.6+0.94-0.415-0.7-0.1)²]/2+(0.07+0.6+0.15+0.5+7.75/2)×0.1+(0.07+0.65+0.15+0.5+7.75/2)×0.1+(0.6+0.15+0.5+7.75/2)×0.7+(0.65+0.15+0.5+7.75/2)×0.5+[(1.6+0.94)/tan(25°44′1″)-0.415]×(0.415+0.64)-7.75×(0.94-0.1-0.24-0.15)=70.6693m ²二衬外轮廓面积S2=π×(5.5+0.35)²/360°×(180°+25°44′1″×2)+(1.6+0.94)×(5.5+0.35)×sin(90°-25°44′1″)-7.75×(0.94-0.1-0.24-0.15)=79.0251m ²洞身开挖轮廓面积S3=π×(5.5+0.35+0.12)²/2+π×(3.5+5.5+0.35+0.12)²/360°×(15°33′29″)×2-3.5²×tan15°33′29″+(1.6+0.94-3.5×tan15°33′29″)×(9.47-3.5/cos15°33′29″)×sin(90-15°33′29″)-7.75×(0.94-0.1-0.24-0.15)=82.2416m ²S3a型洞身防水层土工布每延米数量:π×(5.5+0.35)/180°×(180°+25°44′1″×2)=24.35m ²S3a型洞身PVC防水板每延米数量:π×(5.5+0.35)/180°×(180°+25°44′1″×2)=24.35m ²施工单合同号:XMTJ-监理名隧道设计数量计算书十一、1、S3b 型洞2、S3b 型洞3、S3b 型洞奇数排每偶数排每4、S3b 型洞5、6、7、S3bS3b型洞身防水层土工布每延米数量:π×(5.5+0.35)/180°×(180°+25°44′1″×2)=24.35m²S3b型洞身PVC防水板每延米数量:π×(5.5+0.35)/180°×(180°+25°44′1″×2)=24.35m²二衬内轮廓面积S1=π×5.5²/360°×207°36′44″+(1.6-0.3)×√[5.5²-(1.6-0.3)²]/2+(1.6+0.94-0.415-0.7-0.1)×√[5.5²-(1.6+0.94-0.415-0.7-0.1)²]/2 +(0.07+0.6+0.15+0.5+7.75/2)×0.1+(0.07+0.65+0.15+0.5+7.75/2)×0.1+(0.6+0.15+0.5+7.75/2)×0.7+(0.65+0.15+0.5+7.75/2)×0.5+[(1.6+0.94)/tan(25°44′1″)-0.415]×(0.415+0.64)-7.75×(0.94-0.1-0.24-0.15)=70.6693m²二衬外轮廓面积S2=π×(5.5+0.35)²/360°×(180°+25°44′1″×2)+(1.6+0.94)×(5.5+0.35)×sin(90°-25°44′1″)-7.75×(0.94-0.1-0.24-0.15)=79.0251m²洞身开挖轮廓面积S3=π×(5.5+0.35+0.1)²/2+π×(3.5+5.5+0.35+0.1)²/360°×(15°35′31″)×2-3.5²×tan15°35′31″+(1.6+0.94-3.5×tan15°35′31″)×(9.45-3.5/cos15°35′31″)×sin(90-15°35′31″)-7.75×(0.94-0.1-0.24-0.15)=81.7644m²施工单合同号:XMTJ-监理隧道设计数量计算书施工单合同号:XMTJ-监理隧道设计数量计算书。
衬砌结构计算
衬砌结构计算一、基本资料某公路隧道,结构断面尺寸如下图,内轮廓半径为5.4m,二衬厚度为0.45m。
围岩为V 级,重度为19kN/m3,围岩弹性抗力系数为1.6×510kN/m3,二衬材料为C25 混凝土,弹性模量为28.5GPa,重度为23 kN/m3x0y二、荷载确定1.根据式(1-21),围岩竖向均布压力:q=0.45*1-s2*γ*ω式中:s---围岩级别,此处s=5;γ---围岩重度,此处γ=19KN/m ³ω---跨度影响系数,ω=1+i(m l -5),毛洞跨度m l =(5.4+0.45)*2+2*0.06=11.82m,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1*(11.82-5)=1.682所以,有:q=0.45*1-52*19*1.682*0.5=115.04875(kPa) 此处超挖回填层重忽略不计2.围岩水平均布压力:e=0.4q=0.4*115.04875=46.0195(kPa)三.衬砌几何要素 1.衬砌几何尺寸 内轮廓线半径1r =5.4m 外轮廓线半径1R =5.85m 拱轴线半径'1r =5.625m2.半拱轴线长度S 及分段轴长△S半拱轴线长度S=°180θπ'1r =°180°104* *5.625=10.210(m) 将半拱轴线等分为8段,每段轴长为:△S=8S =8210.10=1.27625(m)3.各分块接缝(截面)中心几何要素i α=8104ii 1y ='1r (1-cos i α) i 1x ='1r sin i αE1Q1Q2Q3Q4Q5Q6Q7E2E3E4E5E6E7E8G3G4G1G5G6G2G7G8R4R5R6R7R8qb1b2b3b4b5b6b7b8h1h2h3h4h5h6h7h8附图 衬砌结构计算图示四.计算位移 1.单位位移用辛普生法近似计算,按计算列表进行。
某公路隧道衬砌结构计算书共18页文档
目录一基本资料 (1)二荷载确定 (1)2.1围岩竖向均布压力 (1)2.2围岩水平均布力 (1)三衬砌几何要素 (1)3.1衬砌几何尺寸 (1)3.2半拱轴线长度S及分段轴长△S (2)3.3割分块接缝重心几何要素 (2)四计算位移 (2)4.1单位位移 (2)4.2载位移——主动荷载在基本结构中引起的位移 (2)4.3载位移——单位弹性抗力及相应的摩擦力引起的位移 (8)4.4墙低(弹性地基上的刚性梁)位移 (12)五解力法方程 (12)σ=)分别产生的衬砌内力 (13)六计算主动荷载和被动荷载(1h七最大抗力值的求解 (14)八计算衬砌总内力 (14)九衬砌截面强度检算(检算几个控制截面) (15)9.1拱顶(截面0) (15)9.2截面(7) (18)9.3墙低(截面8)偏心检查 (18)十内力图18一 基本资料高速公路隧道,结构断面如图1所示,围岩级别为V 级,容重318kN /m ϒ=,围岩的弹性抗力系数630.1510kN /K m =⨯,衬砌材料C20混凝土,弹性模量72.9510kPa h E =⨯,容重323kN /m ϒ=。
图1 衬砌结构断面二 荷载确定2.1 围岩竖向均布压力: 10.452s q ωγ-=⨯式中:s ——围岩级别,此处s=5;ϒ——围岩容重,此处ϒ=18kN/㎡;ω——跨度影响系数,ω=1+i(B m -5),毛洞跨度B m =12.02m ,B m =5~15时,i=0.1,此处: ω=1+0.1×(12.02-5)=1.702所以,有:510.45218 1.702220.5792q kPa -=⨯⨯⨯=考虑到初期之处承担大部分围岩压力,而二次衬砌一般作为安全储备,故对围岩压力进行折减,对于本隧道按照45%折减,即q 45%0.45220.579299.2606q kPa =⨯=⨯=2.2 围岩水平均布力:e =0.4×q=0.4×99.2606=39.7043kPa三 衬砌几何要素3.1衬砌几何尺寸内轮廓半径 r 1=5.56m ;内径r 1 所画圆曲线的终点截面与竖直轴的夹角1ϕ=100°; 截面厚度d=0.45m 。
xxx隧道衬砌台车结构计算书
XXXXXXXXXX引水隧道项目衬砌台车计算书编制:校核:审核:2017年10月xxxxx项目衬砌台车计算书1.计算依据1、《xxxxx施工图设计》2、《衬砌台车结构设计图》3、《钢结构设计规范》(GB 50017-2003)4、《混凝土结构设计规范》(GB 50010-2002)2. 概况xxxxx隧道衬砌模板系统及台车布置图如下图2.1-2.2。
隧道二衬模板由一顶模、两侧模组成,模板均由6mm钢板按照二衬外轮廓线卷制而成。
顶模模板拱架环向主肋采用I10工字钢,加工成R=1447mm,L=3650mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm;侧模模板拱架环向肋板采用1524mm长的I14工字钢,侧模环向肋板在隧洞腰线以上部分加工成加工成R=1447mm,L=527mm的圆弧拱形,腰线以下加工成R=3327mm,L=997mm的圆弧拱形,拱架环向肋板间距1m,拱架纵肋采用∠45*45*6的角钢,间距30cm。
衬砌台车由顶拱支撑、台车门架结构、走行系统、顶升系统及侧模支撑系统组成,纵向共9m长。
顶拱支撑采用H200×200×8.0立柱,纵向焊接通长的∠45*45*6的角钢组成钢桁架,焊接于台车门市框架主横梁上,支撑顶模。
衬砌台车门式框架立柱采用H200×200×8.0型钢、横梁、纵梁均采用I20a工字钢焊接组成,其节点处焊接1cm厚的三角连接钢板缀片进行加固。
本衬砌台车与顶拱支撑焊接为一个整体。
进行顶模的安装及拆除时,在轨道两侧支垫20*20*60cm的枕木,枕木上安放千斤顶进行台车和顶拱支撑系统的整体升降。
侧模支撑系统的螺旋丝杆,每断面设置4个。
下部螺旋丝杆水平支承于台车的I20a 纵梁上,上部螺旋丝杆水平支撑于台车的I20a立柱上。
三角板与构件之间焊接为满焊,焊脚高度10mm;焊缝不允许出现咬边、未焊透、裂纹等缺陷。
公路隧道二衬结构计算算例
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊二次衬砌内力计算一.基本资料吴家院一级公路隧道,结构断面图如图1所示。
围岩类别为V级,容重320/kN mγ=,围岩的弹性抗力系数620.210/K kN m=⨯,衬砌材料为C25混凝土,弹性模量为72.910hE kPa=⨯,容重γh3= 29kN m。
图1 衬砌结构断面图二.荷载确定1.根据式,围岩竖向均布压力:10.452sqγω-=⨯式中:s——围岩类别,此处s=5γ——围岩容重,此处320/kN mγ=;ω——跨度影响系数,1(5)mi lω=+-,毛洞跨度11.6020.0611.72ml=+⨯=,其中0.06m为一侧平均超挖量,5~15ml m=时,0.1i=,此处10.1(11.725) 1.672ω=+⨯-=.┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊所以,有:0.451620 1.672240.768q Pa=⨯⨯⨯=此处超挖回填层重忽略不计。
2.围岩水平均布压力:0.250.25240.76860.192e q kPa==⨯=三.衬砌几何要素1.衬砌几何尺寸内轮廓线半径125.35,7.48;r m r m==内径12,r r所画圆曲线的终点截面与竖直轴的夹角1290,105.51ϕϕ==;拱顶截面厚度0.45;d m=墙底截面厚度0.45.nd m=此处墙底截面为自内轮廓半径2r的圆心向内轮廓墙底做连线并延长至与外轮廓相交,其交点到内轮廓墙底间的连线。
外轮廓线半径:1105.80R r d m=+=2207.93R r d m=+=拱轴线半径:'1100.5 5.575r r d m=+='2200.57.705r r d m=+=拱轴线各段圆弧中心角:1290,15.51θθ==2.半拱轴线长度S及分段轴长S∆分段轴线长度:'111903.14 5.5758.7527180180S r mθπ==⨯⨯='22215.513.147.705 2.0847180180S r mθπ==⨯⨯=半拱线长度:1210.8374S S S m=+=将半拱轴线等分为8段,每段轴长为:10.83741.354788SS m∆===3.各分块接缝(截面)中心几何要素(1)与竖直轴夹角iα113.928181α=227.856362α=341.784543α=455.712724α=569.640905α=┊┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊683.569086α= 795.426778α= 8105.508472α= 另一方面,8129015.51105.51αθθ=+=+= 角度闭合差0∆=。
隧道设计衬砌计算范例(结构力学方法)
1.1 工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约 260km , 西至康定约 97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。
二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长 8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。
1.2 工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。
隧道中部地势较高。
隧址区地形地貌与地层岩性及构造条件密切相关。
由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。
隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。
主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“ v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。
1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。
由于山系屏障,二郎山东西两侧气候有显著差异。
东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。
全年分早季和雨季。
夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。
隧道计算书
二、隧道断面布置本公路设计等级为高速公路双向四车道,由《公路隧道设计规范》(JTG D70-2004)4.3.2有:高速公路、一级公路的隧道应设计为上、下行分离的独立双洞。
对于Ⅲ类围岩,分离式独立双洞间的最小净距为2.0B ,B 为隧道开挖断面的宽度。
本隧道入口处桩号为:K151+818,出口处桩号为:K151+986,全长168米,为短隧道,不需设紧急停车带。
因围岩条件较好,选隧道断面形式为直墙式。
公路隧道建筑限界:本高速公路位于皖南山区,取设计时速为h km V k /100=,则建筑限界高度H =5.0m 。
且当h km V k /100=时,检修道J 的宽度不宜小于 1.00m ,取m 00.1==右左J J ,检修道高度h =0.5m 。
设检修道时,不设余宽,即:C=0。
取行车道宽度W=3.75m ×2=7.5m ,侧向宽度为:m L L R L 00.1==,建筑限界顶角宽度为:m E E R L 00.1==,隧道纵坡不应小于0.3%,不应大于3%,本处取2%。
具体建筑限界见图一所示。
图一 公路隧道建筑限界公路隧道建筑限界(单位:cm ) 由《公路隧道设计规范》(JTG D70-2004)4.4.6有:上、下行分离式独立双洞的公路隧道之间应设置横向通道。
本隧道长168m ,设置一处人行横道即可,人行横通道的断面建筑限界如下图二所示。
图二 人行横通道的断面建筑限界人行横通道的断面建筑限界(单位:mm ) 故:隧道限界净宽为:11.5m ;其中:行车道宽度:W=3.75m ×2=7.5m ;侧向宽度为:m L L R L 00.1==; 检修道宽度:m 00.1==右左J J ; 隧道限界净高:5m ;内轮廓形式:单心圆R=6.8m ;净高:7m ; 净宽:11.7m ;向外取衬砌厚度0.4m ,则:隧道开挖宽度m B t 5.12=;隧道开挖高度:m H t 4.7=; 取两分离式洞口之间左右间距为40m ;该段隧道的埋深H =67.087m 。
050隧道衬砌结构计算
第一节 概述
1、隧道结构设计应注意的问题 1)隧道结构是由周边围岩和支护结构两者组成共 同的并相互作用的结构体系 ,围岩具有自稳能力,在 很大程度上是隧道结构承载的主体。 2)净空断面的要求(总体设计),强度要求(结 构设计与计算) 3)对不同型式的衬砌结构物应用不同方法进行强 度计算
第一节 概述
+温度作用力 ● 结构自重+土压力+附加恒载+地震作用
附加恒载:伴随隧道运营的各种设备设施的荷载 等。
第二节 半衬砌的计算
半衬砌:拱圈直接支承 在坑道围岩侧壁
常用于坚硬、较完整的 围岩(Ⅱ、Ⅲ级)。
用先拱后墙法施工时, 在拱圈已做好,但马口 尚未开挖前,拱圈也处 于半衬砌工作状态
第二节 半衬砌的计算
S
ip E
MiMp0 EJ
5、拱脚位移计算
⑴ 单位力矩作用时
1
Ma Wa
6
b ha2
1
1
ka
6 kabha2
ha
a
a
a a
ha
1
1
ha
ka1b2ha3
1 kaJa
2
ua 0
ha 为拱脚截面厚度;Wa 为拱脚截面的截面模量; ka 是拱脚围岩基底弹性抗力系数; J a 为拱脚
截面惯性矩; b 为拱脚截面纵向单位宽度,取 1 米。
a10
1p
0 ap
a20 2p fa0p ua0p
则任意截面处的内力为
Mi X1 X2yi Mi0p
Ni X2 cosi Ni0p
x
第三节 曲墙式衬砌计算
● 常用于Ⅳ~Ⅵ级围岩;
● 拱圈和曲边墙作为一个整体按无铰 拱计算;
● 施工时仰拱是在无铰拱业已受力之 后修建的,不考虑仰拱对衬砌内力的 影响 ;
隧道设计衬砌计算范例(结构力学方法)24页
1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。
二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。
1.2工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。
隧道中部地势较高。
隧址区地形地貌与地层岩性及构造条件密切相关。
由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。
隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。
主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。
1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。
由于山系屏障,二郎山东西两侧气候有显著差异。
东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。
全年分早季和雨季。
夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。
隧道二衬结构计算书全文
3 蓁山隧道二衬结构计算3.1 基本参数1.二衬参数表二次衬砌采用现浇模筑混凝土,利用荷载结构法进行衬砌内力计算和验算。
二次衬砌厚度设置见表3.1。
表3.1 二次衬砌参数表2.计算断面参数确定隧道高度h=内轮廓线高度+衬砌厚度+预留变形量隧道跨度b=内轮廓线宽度+衬砌厚度+预留变形量各围岩级别计算断面参数见表3.2。
表3.2 计算断面参数(单位:m)3.设计基本资料围岩容重:3/5.20m kN s =γ 二衬材料:C30、C35混凝土 弹性抗力系数:3/250000m kN K = 材料容重:3/25m kN h =γ 弹性模量:kPa E h 7103⨯=二衬厚度:35/40/45/50/55/60/65/70cm 铁路等级:客运专线 行车速度:200km/h隧道建筑限界:双线,按200km/h 及以上的客运专线要求设计 线间距:4.4m曲线半径:1800m ,4000m 牵引种类:电力列车类型:动车组列车运行控制方式:自动控制 运输调度方式:综合调度集中3.2 各级围岩的围岩压力计算按深埋隧道,《规范》公式垂直围岩压力 w q s 1245.0-⨯=γ)]5(1-+=B i w水平围岩压力有垂直围岩压力乘以水平围岩压力系数可得,水平围岩压力系数见表3.3。
各部位垂直围岩压力和水平围岩压力计算结果见表3.4。
表3.3 水平围岩压力系数表3.4 垂直围岩压力及水平围岩压力计算表注:二衬按承担70%的围岩压力进行计算。
3.3 衬砌内力计算衬砌内力计算的原理采用荷载结构法。
该方法用有限元软件MIDAS/GTS实现。
3.3.1 计算简图蓁山隧道衬砌结构为复合式衬砌,二衬结构为带仰拱的三心圆曲墙式衬砌。
典型的计算图式如图3.1所示。
荷载结构模型计算图式如图3.2所示。
围岩用弹簧代替,用弹簧单元模拟,结构用梁单元模拟。
图3.1 三心圆曲墙式衬砌结构图3.2 荷载结构模型计算图式3.3.2 计算过程下面以Ⅱ级围岩为例进行说明。
隧道衬砌计算资料
隧道衬砌计算第五章隧道衬砌结构检算5.1结构检算一般规定为了保证隧道衬砌结构的安全,需对衬砌进行检算。
隧道结构应按破损阶段法对构件截面强度进行验算。
结构抗裂有要求时,对混凝土应进行抗裂验算。
5.2 隧道结构计算方法本隧道结构计算采用荷载结构法。
其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。
计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。
5.3 隧道结构计算模型本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。
取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定:①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。
②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。
计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。
图5-1 受拉弹簧单元的迭代处理过程③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。
④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。
⑤衬砌结构材料采用理想线弹性材料。
⑥衬砌结构单元划分长度小于0.5m。
隧道结构计算模型及荷载施加后如图5-2所示。
5.4 结构检算及配筋本隧道主要验算明洞段、Ⅴ级围岩段和Ⅳ级围岩段衬砌结构。
根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段和深埋段。
Ⅳ级围岩段为深埋段。
根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力图、建立图和弯矩图。
从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。
5.4.1 材料基本参数 (1)Ⅴ级围岩围岩重度318.5/kN m γ=,弹性抗力系数300/k MPa m =,计算摩擦角045ϕ=,泊松比u=0.4。
隧洞衬砌结构计算书
隧洞衬砌结构计算书项目名称_____________日期_____________设计者_____________校对者_____________一、示意图:二、基本资料:1.依据规范及参考书目:《水工隧洞设计规范》(DL/T 5195-2004,以下简称《规范》)《水工混凝土结构设计规范》(SL 191-2008),以下简称《砼规》《隧洞》(中国水利水电出版社,熊启钧编著)《水工隧洞和调压室水工隧洞部分》(水利电力出版社,潘家铮编著)2.几何参数:半跨宽度L1=0.925 m;顶拱半中心角α=90.00°拱顶厚度D1=0.250 m;拱脚厚度D2=0.250 m侧墙厚度D3=0.250 m;侧墙高度H2=1.325 m隧洞衬砌断面形式:圆拱直墙形底板厚度D4=0.250 m3.荷载信息:内水压力水头H i=0.00 m外水压力水头Ho =3.00 m;外水压力折减系数β=0.40顶部山岩压力端部值Q1=46.25kN/m;顶部山岩压力中间值Q2=46.25kN/m侧向山岩压力上侧值Q3=18.77kN/m;侧向山岩压力下侧值Q4=39.06kN/m底部山岩压力端部值Q5=0.00kN/m;底部山岩压力中间值Q6=0.00kN/m顶拱围岩弹抗系数K1=75.0 MN/m3侧墙围岩弹抗系数K2=75.0 MN/m3底板围岩弹抗系数K3=75.0 MN/m3顶拱灌浆压力P d=0.00 kPa;P d作用半中心角αp=0.00°其他部位灌浆压力P e=0.00 kPa4.分项系数:建筑物级别:4级;荷载效应组合:基本组合;钢筋混凝土构件的承载力安全系数K =1.15衬砌自重分项系数γQ1=1.10;山岩压力分项系数γQ2=1.10内水压力分项系数γQ4=1.00;外水压力分项系数γQ5=1.10灌浆压力分项系数γQ3=1.005.材料信息:混凝土强度等级:C25轴心抗压强度标准值f ck=16.70 N/mm2;轴心抗拉强度标准值f tk=1.78 N/mm2轴心抗压强度设计值f c=11.90 N/mm2;轴心抗拉强度设计值f t=1.27 N/mm2混凝土弹性模量E c=2.80×104 N/mm2纵向受力钢筋种类:Ⅱ级钢筋强度设计值f y=300 N/mm2;弹性模量E s=2.00×105 N/mm2钢筋合力点到衬砌内、外边缘的距离a =0.050 m三、内力计算:N -- 衬砌计算截面的轴向力,kN,以拉为正;Q -- 衬砌计算截面的剪力,kN,以逆时针转动为正;M -- 衬砌计算截面的弯矩,kN·m,以内边受拉为正u -- 衬砌计算截面的切向位移,mm;v -- 衬砌计算截面的法向位移,mm;ψ-- 衬砌计算截面的转角位移,度;k -- 衬砌计算截面的围岩抗力,kPa计算节点编号顺序为:底板或底拱、底圆按照从左到右编号;顶板板或顶拱、顶圆按照从右到左编号;其余部位按照从下到上编号;1.承载能力极限状态下的内力计算:经过4次迭代运算后,各点设定抗力条件和法向位移一致。
计算书
目录1设计资料 (1)1.1结构尺寸及地层示意图 (1)2荷载计算 (2)2.1自重 (2)2.2竖向均布地层荷载 (2)2.3水平均布地层荷载 (3)2.4按三角形分布的水平均布地层压力 (3)2.5拱底反力 (4)2.6侧向土层抗力 (4)2.7荷载示意图 (5)3衬砌内力计算 (5)4标准管片配筋计算 (5)4.1环向钢筋计算 (6)4.1.1按最大负弯矩配筋计算 (6)4.1.2按最大正弯矩配筋计算 (7)4.1.3环向弯矩平面承载力计算 (9)4.1.4箍筋计算 (10)5隧道抗浮验算 (10)6纵向接缝验算 (11)6.1接缝强度验算 (11)6.1.1.负弯矩接头(105°截面) (11)6.1.2正弯矩接头(10°截面) (12)6.2接缝张开裂度验算 (13)7裂缝张开验算 (15)8环向接缝验算 (15)9管片局部抗压验算 (17)10构造说明 (18)11参考文献 (19)1设计资料1.1结构尺寸及地层示意图如图所示,为一软土地区地铁盾构隧道的横断面,由一块封顶块K ,两块邻结块L ,两块标准块B 以及一块封底块D 六块管片组成,衬砌外径6200mm ,厚度为350mm ,采用通缝拼装,混凝土强度为C50,环向螺栓为5.8级,地层基床系数34/102m kN k ⨯=。
管片裂缝宽度允许值为0.2mm,接缝张开允许值为3mm 。
地面超载为20KPa 。
试计算衬砌受到的荷载,并用荷载结构法,按均质圆环计算衬砌的内力,画出内力图,并进行隧道抗浮,管片局部抗压,裂缝,接缝张开等验算及一块标准管片配筋计算。
q=20kN/m2ϕ=7.2ϕ=8.9图一:结构尺寸及地层示意图如图,按照课程设计要求,调整灰色淤泥质粉质粘土上层厚度(ABC=103):1355+103×80=9595mm2荷载计算2.1自重自重:3/8.750.3525m KN G h =⨯=⨯=δγ 式中:h γ-钢筋混凝土重度,一般采用3/25m KN h =γδ-管片厚度2.2竖向均布地层荷载①竖向地层荷载:211/133.3189.5957.85.31.9181185.0mKN h q ini i=⨯+⨯+⨯+⨯+⨯==∑=γ②地面超载:22/20m KN q=③近似均布拱背土压力:2223/070.51.321606.71.343.0243.02m KN R b R R G i q =⨯⨯⨯⨯===γ其中:2/606.728.1645.11.728.10.8645.1m KN i=+⨯+⨯=γ竖向均布地层荷载:2321158.38KN/m 070.520133.31=++=++=q q q q2.3水平均布地层荷载)245(tan 2)245(tan 221ϕϕ---=c q P其中:γ-衬砌圆环侧向各个土层土壤重度的加权平均值ϕ-衬砌圆环侧向各个土层土壤内摩擦角的加权平均值C -衬砌圆环侧向各个土层土壤粘聚力的加权平均值3/353.785.5205.41.7645.18m KN =⨯+⨯=γ000678.785.5205.42.7645.19.8=⨯+⨯=ϕkPa c 128.1285.5205.41.12645.12.12=⨯+⨯=则水平地层均布荷载:KPa P 99.803)2678.745tan(128.122)2678.745(tan 158.38000021=-⨯⨯--⨯=2.4按三角形分布的水平均布地层压力KPa R PH 876.32)2678.745(tan 353.7925.22)245(tan 20222=-⨯⨯⨯=-=ϕγ其中:m RH925.2235.01.31.3=-+=2.5拱底反力KPa g q wH R R P 171.2310925.22175.8158.3821=⨯⨯-⨯+=-+=ππγ 2.6侧向土层抗力)cos 21(α-=ky PK其中:由《混凝土结构设计规范》知:C50,Kpa EJ 71045.3⨯=衬砌圆环抗弯刚度:237625.123265120.35×0.1103.45EJ m KN ⋅=⨯⨯= 衬砌圆环抗弯刚度折减系数:3.0=η 地层基床系数:34/102m KN k ⨯=圆环水平直径处受荷载后最终半径变形值:m k EJ g q y R R P P H H 34444421106.273)925.2102045.0625.1232653.0(24925.2)75.8875.3299.803158.382()045.0(24)2(-⨯=⨯⨯⨯+⨯⨯⨯⨯+--⨯=+⨯+--=πηπ则侧向土层抗力:KPa ky Pk 25.4610-110273.6102)cos 21(34max=⨯⨯⨯⨯=-=-)(,α KPa ky P k 967.51)21(10898.9102)cos 21(34min-=-⨯⨯⨯⨯=-=-α, 取KPa P K 73.493=2.7荷载示意图图一:结构尺寸及地层示意图3衬砌内力计算用荷载-结构法按均质圆环计算衬砌内力。
隧道设计衬砌计算范例(结构力学方法)
隧道设计衬砌计算范例(结构力学方法)1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。
二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。
1.2工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。
隧道中部地势较高。
隧址区地形地貌与地层岩性及构造条件密切相关。
由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。
隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。
主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。
1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。
由于山系屏障,二郎山东西两侧气候有显著差异。
东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。
全年分早季和雨季。
夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。
隧道二次衬砌计算书
主体结构计算书赵东平2010-2-10目录1 参考规范............................................................................................................... - 1 -2 计算模型............................................................................................................... - 1 -3 计算参数............................................................................................................... - 2 -4 荷载计算............................................................................................................... - 3 - 4.1 结构自重............................................................................................................ - 3 -4.2 围岩压力............................................................................................................ - 3 -5 结构内力及安全系数........................................................................................... - 3 -6 衬砌配筋及裂缝验算........................................................................................... - 8 -7 结论....................................................................................................................... - 9 -隧道二次衬砌结构检算1 参考规范本次计算主要依据如下设计规范:(1)《公路隧道设计规范》(JTG D70—2004)(2)《混凝土结构设计规范》(GB50010—2002)(3)《城市桥梁荷载设计标准》(CJJ77—98)(4)《公路桥涵设计通用规范》(JTG D60—2004)(5)《混凝土结构耐久性设计规范》(GB/T 50476—2008)(6)《建筑边坡工程技术规范》(GB 50330-2002)2 计算模型衬砌结构计算采用荷载—结构法,荷载结构法原理认为,隧道开挖后地层的主要作用是对衬砌结构产生荷载,衬砌应能安全可靠地承受地层压力等荷载的作用。
道路工程隧道主体结构二次衬砌计算书
道路工程隧道主体结构二次衬砌计算书目录1 参考规范............................................................................................................... - 1 -2 计算模型............................................................................................................... - 1 -3 计算参数............................................................................................................... - 2 -4 荷载计算............................................................................................................... - 3 - 4.1 结构自重............................................................................................................ - 3 -4.2 围岩压力............................................................................................................ - 3 -5 结构内力及安全系数........................................................................................... - 3 -6 衬砌配筋及裂缝验算........................................................................................... - 8 -7 结论....................................................................................................................... - 9 -隧道二次衬砌结构检算1 参考规范本次计算主要依据如下设计规范:(1)《公路隧道设计规范》(JTG D70—2004)(2)《混凝土结构设计规范》(GB50010—2002)(3)《城市桥梁荷载设计标准》(CJJ77—98)(4)《公路桥涵设计通用规范》(JTG D60—2004)(5)《混凝土结构耐久性设计规范》(GB/T 50476—2008)(6)《建筑边坡工程技术规范》(GB 50330-2002)2 计算模型衬砌结构计算采用荷载—结构法,荷载结构法原理认为,隧道开挖后地层的主要作用是对衬砌结构产生荷载,衬砌应能安全可靠地承受地层压力等荷载的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一基本资料 (1)二荷载确定 (1)2.1围岩竖向均布压力 (1)2.2围岩水平均布力 (1)三衬砌几何要素 (1)3.1衬砌几何尺寸 (1)3.2半拱轴线长度S及分段轴长△S (2)3.3割分块接缝重心几何要素 (2)四计算位移 (2)4.1单位位移 (2)4.2载位移——主动荷载在基本结构中引起的位移 (2)4.3载位移——单位弹性抗力及相应的摩擦力引起的位移 (8)4.4墙低(弹性地基上的刚性梁)位移 (12)五解力法方程 (12)σ=)分别产生的衬砌内力 (13)六计算主动荷载和被动荷载(1h七最大抗力值的求解 (14)八计算衬砌总内力 (14)九衬砌截面强度检算(检算几个控制截面) (15)9.1拱顶(截面0) (15)9.2截面(7) (18)9.3墙低(截面8)偏心检查 (18)十内力图18一 基本资料高速公路隧道,结构断面如图1所示,围岩级别为V 级,容重318kN /m ϒ=,围岩的弹性抗力系数630.1510kN /K m =⨯,衬砌材料C20混凝土,弹性模量72.9510kPa h E =⨯,容重323kN /m ϒ=。
图1 衬砌结构断面二 荷载确定2.1 围岩竖向均布压力: 10.452s q ωγ-=⨯式中:s ——围岩级别,此处s=5;ϒ——围岩容重,此处ϒ=18kN/㎡;ω——跨度影响系数,ω=1+i(B m -5),毛洞跨度B m =12.02m ,B m =5~15时,i=0.1,此处: ω=1+0.1×(12.02-5)=1.702所以,有:510.45218 1.702220.5792q kPa -=⨯⨯⨯=考虑到初期之处承担大部分围岩压力,而二次衬砌一般作为安全储备,故对围岩压力进行折减,对于本隧道按照45%折减,即q 45%0.45220.579299.2606q kPa =⨯=⨯=2.2 围岩水平均布力:e =0.4×q=0.4×99.2606=39.7043kPa三 衬砌几何要素3.1衬砌几何尺寸内轮廓半径 r 1=5.56m ;内径r 1 所画圆曲线的终点截面与竖直轴的夹角1ϕ=100°; 截面厚度d=0.45m 。
外轮廓线半径:R 1=5.56+0.45=6.01m 拱轴线半径:1r '=5.56+0.45×0.45=5.7625 拱轴线各段圆弧中心角:1θ=100°3.2 半拱轴线长度S 及分段轴长△S分段轴线长度:1111005.762510.0575180180S r m θππ'==⨯⨯=︒半拱轴线长度为:S=S 1=10.0575m 将半拱轴线等分为8段,每段轴长为:3.3 割分块接缝重心几何要素(1)与竖直轴夹角i α角度闭合差=0。
各接缝中心点坐标可由图1中直接量出。
四 计算位移图2 衬砌结构计算图4.1 单位位移用辛普生法近似计算,按计算列表进行。
单位位移的计算见表1 单位位移计算如下: 计算精度校核为: 闭合差0∆=。
4.2 载位移——主动荷载在基本结构中引起的位移(1)每一楔块上的作用力竖向力:Q i iqb式中:b i ——衬砌外缘相邻两截面之间的水平投影长度,由图2量得:单位位移计算表表1注:1. I—截面惯性矩,3bI,12db=取单位长度。
2.不考虑轴力的影响第 5 页自重力:i d 10.1833i h G S γ=⨯∆⨯=式中:d i ——接缝i 的衬砌截面厚度,本设计为等厚度衬砌; 作用在各楔体上的力均列入表2,各集中力均通过相应的图形的行心。
(2)外荷载在基本结构中产生的内力。
楔体上各集中力对下一接缝的力臂由图2中量得,分别记为,,q e g a a a 内力按照下式计算(见图3)。
弯矩:001,11()ip i p i i q g e i i M M x Q G y E Qa Qa Qa X ---=-∆+-∆---∑∑轴力:0sin ()cos ipi i iiN a Q G a E =+-∑∑式中:,i i x y ∆∆--相邻两接缝中心点的坐标增值00,2.ip ip M N 的计算见表及表3 图3内力00ip ipM N 、计算图示 载位移0p N 计算表 表3载位移0M的计算表表2 p第 7 页基本结构中,主动荷载产生弯矩的校核为:8802208880000888812.019812.0198M ()99.2606(5.6982)1606.6483242439.7043M 6.0501726.6623 ,M ()925.426322M M +M +M 1606.6483726.6623925.4263=3258.7369q e g i i gi p q e g B B qx e H G x x a =--=-⨯⨯-=-=-=-⨯=-=---=-==----∑ 另一方面,从表2中得到08M 5014.8882p =-闭合差5014.88823258.7369100%0.35%5014.8882-∆=⨯=(3)主动荷载位移(计算过程见表4)。
主动荷载位移计算表 表4计算精度校核:1p 2p 0.13110.56270.6938∆+∆=--=- 闭合差: 0∆=4.3 载位移——单位弹性抗力及相应的摩擦力引起的位移(1)各接缝处的抗力强度抗力上零点假定在接缝3,337.5b αα=︒= 最大抗力值假定在接缝6,675h αα=︒=最大抗力值以上各截面抗力强度按下式计算:查表1,算得 34560,0.3845,0.7401,;h h h σσσσσσσ==== 最大抗力值以下各截面抗力强度按下式计算: 式中:由图2中量得:''78y 1.4171,y 2.8241;m m == 则:22'78'(1)0.8274,0;i h h hy yσσσσ=-==按比例将所求得抗力绘于图2上。
(2)各楔体上抗力集中力'i R 按下式计算:'1()2i ii i R S σσ-+=∆外式中:i S ∆外—表示楔体i 外缘长度,可以通过量取夹角,用弧长公式求得,'i R 的方向垂直于衬砌外缘,并通过楔体上抗力图形的形心。
(3)抗力集中力玉摩擦力的合力i R按下式计算:i R R =式中:μ—围岩于衬砌间的摩擦系数,此处取0.2μ= 。
则:'1.0198i i R R =其作用方向与抗力集中力的夹角0arctan 11.0399βμ==;由于摩擦力的方向与衬砌位移方向相反,其方向向上。
将i R 得方向线延长,使之交于竖直轴,量取夹角,将i R 分解为水平和竖直两个分力:sin ,cos ;H i k V i k R R R R ψψ==以上计算结果列入表5中。
弹性抗力及摩擦力计算表 表5(4)计算单位抗力及其相应的摩擦力在基本结构中产生的内力弯矩:0i j ji M R r σ=-∑ 轴力:0sin cos i i v i H N R R σαα=-∑∑式中:ji r —力j R 至接缝中心点i k 的力臂,由图2量得。
计算见表6及表7.N σ计算表 表7M计算表表6 σ第 11 页(5)单位抗力及相应摩擦力产生的载位移。
计算见表8.单位抗力及相应摩擦力产生的载位移计算表 表8校核为: 闭合差:0;∆=4.4 墙低(弹性地基上的刚性梁)位移单位弯矩作用下的转角:4681131.6872 8.7791100.1510a KI β-==⨯⨯ 主动荷载作用下的转角:单位抗力及相应摩擦力作用下的转角:五 解力法方程衬砌矢高计算力法方程的系数为:以上将单位抗力及相应摩擦力产生的位移乘以h σ,即为被动荷载的载位移。
求解方程为:式中:11296.21, 2.1743;p X X σ==- 式中:2481.12p X =,2 2.0401X σ=以上解的12,X X 值应带入原方程,校核计算。
六计算主动荷载和被动荷载(1hσ=)分别产生的衬砌内力计算公式为:计算过程列入表9、10。
主、被动荷载作用下衬砌弯矩计算表表9y[M)y[()hMσσ0.0000 294.2073 0.0000 -2.4743主、被动荷载作用下衬砌轴力计算表表10cos)α2.0421七 最大抗力值的求解首先求出最大抗力方向内的位移。
考虑到接缝5的径向位移与水平方向有一定的偏离,因此修正后有: 计算过程列入表11,位移值为: 最大抗力值为:最大抗力位移修正计算表 表11八 计算衬砌总内力按下式计算衬砌总内力:p h p h M M M N N N σσσσ=+⎧⎪⎨=+⎪⎩计算过程列入表12.计算精度的校核为以下内容:根据拱顶切开点的相对转角和相对水平位移应为零的条件来检查: 式中:844.344810(5320.483) 2.680310h S ME I--∆=⨯⨯-=-⨯∑ 闭合差:0∆=式中:8343a 4.344810(40530.909) 1.8163107.6179 2.482710 1.816310h S MyE I f β----∆=⨯⨯-=-⨯=⨯⨯=⨯∑闭合差:0∆=九 衬砌截面强度检算(检算几个控制截面)9.1 拱顶(截面0)e=0.0880m<0.45d=0.2025m (可) 又有:e=0.0880m<0.2d=0.09m0.08800.19544,0.45e d ==可得 式中:R α—混凝土极限抗压强度,取41.910kPa⨯衬砌总内力计算表表12第 17 页9.2 截面(7)e=0.0051m<0.2d=0.09m9.3 墙低(截面8)偏心检查其他各截面偏心距均小于0.45d .十内力图将内力计算结果按比例绘制成弯矩图M与轴力图N,如图4所示。
图4 衬砌结构内力图。