曲线与方程的关系

合集下载

高考一轮复习第8章解析几何第8讲曲线与方程

高考一轮复习第8章解析几何第8讲曲线与方程

第八讲曲线与方程知识梳理·双基自测知识梳理知识点一曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做__曲线__的方程;这条曲线叫做__方程__的曲线.知识点二求动点的轨迹方程的基本步骤重要结论1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.求轨迹问题常用的数学思想(1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y的方程及函数关系.(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合.(3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)方程x 2+xy =x 的曲线是一个点和一条直线.( × )(2)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (3)y =kx 与x =1ky 表示同一直线.( × )(4)动点的轨迹方程和动点的轨迹是一样的.( × ) 题组二 走进教材2.(必修2P 37T3)已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( D )A .双曲线B .椭圆C .圆D .抛物线[解析] 由已知|MF|=|MB|,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.3.(选修2-1P 37T1改编)已知A(-2,0),B(1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则点P 的轨迹方程是__x 2+y 2-4x =0(y≠0)__.[解析] 设P(x ,y),∵∠APO =∠BPO , ∴|PA||PB|=|OA||OB|=2, 即|PA|=2|PB|,∴(x +2)2+y 2=4[(x -1)2+y 2],(y≠0)化简整理得P 的轨迹方程为x 2+y 2-4x =0(y≠0). 题组三 走向高考4.(多选题)(2020·山东)已知曲线C :mx 2+ny 2=1.( ACD ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线[解析] A .若m >n >0,则1m <1n ,则根据椭圆定义,知x 21m +y21n =1表示焦点在y 轴上的椭圆,故A 正确;B .若m =n >0,则方程为x 2+y 2=1n ,表示半径为1n的圆,故B 错误;C .若m <0,n >0,则方程为x21m+y21n =1,表示焦点在y 轴的双曲线,故此时渐近线方程为y =±-m n x ,若m >0,n <0,则方程为x 21m +y 21n=1,表示焦点在x 轴的双曲线,故此时渐近线方程为y =±-mnx ,故C 正确;D .当m =0,n >0时,则方程为y =±1n表示两条直线,故D 正确;故选ACD . 5.(2019·北京卷)数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x|y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( C ) A .① B .② C .①②D .①②③[解析] 将x 换成-x 方程不变,所以图形关于y 轴对称, 当x =0时,代入得y 2=1,∴y =±1,即曲线经过(0,1),(0,-1); 当x >0时,方程变为y 2-xy +x 2-1=0,所以Δ=x 2-4(x 2-1)≥0,解得x ∈⎝⎛⎦⎥⎤0,233,所以x 只能取整数1,当x =1时,y 2-y =0, 解得y =0或y =1,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(-1,0),(-1,1), 故曲线一共经过6个整点,故①正确. 当x >0时,由x 2+y 2=1+xy 得x 2+y 2-1=xy≤x 2+y22,(当x =y 时取等),∴x 2+y 2≤2,∴x 2+y 2≤2,即曲线C 上y 轴右边的点到原点的距离不超过2,根据对称性可得:曲线C 上任意一点到原点的距离都不超过2;故②正确.在x 轴上图形面积大于矩形面积=1×2=2,x 轴下方的面积大于等腰直角三角形的面积=12×2×1=1,因此曲线C 所围成的“心形”区域的面积大于2+1=3,故③错误.故选C .考点突破·互动探究考点一 曲线与方程——自主练透例1 (多选题)关于x ,y 的方程x 2m 2+2+y 23m 2-2=1,⎝⎛⎭⎪⎫其中m 2≠23对应的曲线可能是( ABCD ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .圆[解析] 由题,若m 2+2>3m 2-2,解得-2<m <2,3m 2-2>0,解得m <-63或m >63,则当x ∈⎝ ⎛⎭⎪⎫-2,-63∪⎝ ⎛⎭⎪⎫63,2时,曲线是焦点在x 轴上的椭圆,A 正确;若3m 2-2>m 2+2,解得m <-2或m >2,此时曲线是焦点在y 轴上的椭圆,B 正确;若3m 2-2<0,解得-63<m <63,此时曲线是焦点在x 轴上的双曲线,C 正确;当m 2=2时,方程为x 2+y 2=4,所以D 正确.故选ABCD .〔变式训练1〕(多选题)(2021·山东青岛一中期末)已知点F(1,0)为曲线C 的焦点,则曲线C 的方程可能为( AD )A .y 2=4x B .x 2=4yC .x 2cos 2θ+y 2sin 2θ=1⎝ ⎛⎭⎪⎫0<θ<π2 D .x 2cos 2θ-y 2sin 2θ=1⎝⎛⎭⎪⎫0<θ<π2 [解析] y 2=4x 的焦点坐标为(1,0);x 2=4y 的焦点坐标为(0,1);当θ=π4时,sin 2θ=cos 2θ=12,x 2cos 2θ+y 2sin 2θ=1表示圆;双曲线x 2cos 2θ-y 2sin 2θ=1⎝⎛⎭⎪⎫0<θ<π2的焦点在x 轴上,且c =cos 2θ+sin 2θ=1,其焦点坐标为(1,0),(-1,0),故选AD .考点二 定义法求轨迹方程——自主练透例2 (1)(2021·长春模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( B )A .圆B .椭圆C .双曲线D .抛物线(2)(2021·福州模拟)已知圆M :(x +5)2+y 2=36,定点N(5,0),点P 为圆M 上的动点,点Q 在NP 上,点G 在线段MP 上,且满足NP →=2NQ →,GQ →·NP →=0,则点G 的轨迹方程是( A )A .x 29+y24=1B .x 236+y231=1 C .x 29-y24=1D .x 236-y231=1 (3)(2021·江苏南京二十九中调研)已知两圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2外切,则动圆圆心M 的轨迹方程为( D )A .x 2-y28=1B .x 28-y 2=1C .x 2-y28=1(x≥1)D .x 2-y28=1(x≤-1)[解析] (1)由题意知,|EA|+|EO|=|EB|+|EO|=r(r 为圆的半径)且r >|OA|,故E 的轨迹为以O ,A 为焦点的椭圆,故选B .(2)由NP →=2NQ →,GQ →·NP →=0知GQ 所在直线是线段NP 的垂直平分线,连接GN ,∴|GN|=|GP|,∴|GM|+|GN|=|MP|=6>25,∴点G 的轨迹是以M ,N 为焦点的椭圆,其中2a =6,2c =25,∴b 2=4,∴点G 的轨迹方程为x 29+y24=1,故选A .(3)设动圆M 的半径为r ,则|C 1M|=r +1,|C 2M|=3+r ,∴|C 2M|-|C 1M|=2<6=|C 1C 2|.∴动圆圆心M 的轨迹是以C 1、C 2为焦点的双曲线左支,且c =3,a =1,∴b 2=c 2-a 2=8,∴其轨迹方程为x 2-y28=1(x≤-1).故选D .[引申1]本例(3)中,若动圆M 与圆C 1内切,与圆C 2外切,则动圆圆心M 的轨迹方程为__x 24-y25=1(x≤-2)__.[引申2]本例(3)中,若动圆M 与圆C 1外切,与圆C 2内切,则动圆圆心M 的轨迹方程为__x 24-y25=1(x≥2)__.[引申3]本例(3)中,若动圆M 与圆C 1、圆C 2都内切,则动圆圆心M 的轨迹方程为__x 2-y28=1(x≥1)__.[引申4]本例3中,若动圆M 与圆C 1、圆C 2中一个内切一个外切,则动圆圆心M 的轨迹方程为__x 24-y25=1__.名师点拨定义法求轨迹方程及其注意点(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.〔变式训练2〕(1)动圆M 经过双曲线x 2-y23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( B )A .y 2=8x B .y 2=-8x C .y 2=4xD .y 2=-4x(2)(多选题)(2021·湖南娄底质检)在水平地面上的不同两点处竖有两根笔直的电线杆,假设它们都垂直于地面,则在水平地面上视它们上端仰角相等的点P 的轨迹可能是( AB )A .直线B .圆C .椭圆D .抛物线[解析] (1)双曲线x 2-y23=1的左焦点为F(-2,0),由题意可知点M 的轨迹是以F 为焦点、原点为顶点、对称轴为x 轴的抛物线,故其方程为y 2=-8x .故选B .(2)如图两根电杆AB ,CD ,①当|AB|=|CD|时,∵∠BPA =∠DPC ,∴|PA|=|PC|, ∴P 的轨迹是AC 的中垂线,②当|AB|=λ|CD|(λ≠1,λ>0)时, 由∠BPA =∠DPC 知Rt △ABP ∽Rt △CDP , ∴|AP||CP|=|AB||CD|=λ, 以AC 所在直线为x 轴,线段AC 的中垂线为y 轴建立平面直角坐标系, 记A(-1,0),C(1,0),P(x ,y), 则x +12+y 2x -12+y2=λ,即⎝ ⎛⎭⎪⎫x -λ2+1λ2-12+y 2=⎝ ⎛⎭⎪⎫2λλ2-12, 轨迹为圆,故选AB .考点三 直接法求轨迹方程——师生共研例3 (1)(2021·四川、云南、贵州、西藏四省四校联考)已知圆C 过点A(0,2)且与直线y =-2相切,则圆心C 的轨迹方程为( B )A .x 2=4y B .x 2=8y C .x 2=-4yD .x 2=-8y(2)(2021·山东菏泽模拟)已知动圆过定点A(4,0),且在y 轴上截得的弦MN 的长为8. ①求动圆圆心的轨迹C 的方程;②已知点B(-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.[解析] (1)设圆心C(x ,y), 由题意知x 2+y -22=|y +2|,化简得x 2=8y ,故选B .(2)①设动圆圆心P(x ,y),线段MN 的中点为E , 则|PA|2=|PE|2+42,即(x -4)2+y 2=x 2+16,化简得y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x . ②设直线l 的方程为y =kx +b ,联立⎩⎪⎨⎪⎧y 2=8x ,y =kx +b ,得k 2x 2+2kbx +b 2=8x ,k 2x 2-(8-2kb)x +b 2=0(其中Δ>0), 设P(x 1,kx 1+b),Q(x 2,kx 2+b), 则x 1+x 2=8-2kb k 2,x 1x 2=b 2k 2, 若x 轴是∠PBQ 的角平分线, 则k PB +k QB =kx 1+b x 1+1+kx 2+bx 2+1=kx 1+b x 2+1+kx 2+b x 1+1x 1+1x 2+1=2kx 1x 2+k +b x 1+x 2+2bx 1+1x 2+1=8k +bk2x 1+1x 2+1=0,即k =-b .故直线l 的方程为y =k(x -1),直线l 过定点(1,0).名师点拨直接法求曲线方程的一般步骤(1)建立合适的直角坐标系.(2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标表示为代数方程.(3)化简整理这个方程,检验并说明所求方程就是曲线的方程.直接法求曲线方程时最关键的就是把几何条件或等量关系“翻译”为代数方程,要注意“翻译”的等价性.(4)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略. 〔变式训练3〕(1)已知两定点A(-2,0),B(1,0),如果动点P 满足|PA|=2|PB|,则动点P 的轨迹是( B ) A .直线 B .圆 C .椭圆D .双曲线(2)(2021·湖南湘潭模拟)在平面直角坐标系xOy 中,已知点Q(1,0),直线l :x =2.若动点P 在直线l 上的射影为R ,且|PR →|=2|PQ →|,设点P 的轨迹为C .①求C 的轨迹方程;②设直线y =x +n 与曲线C 相交于A 、B 两点,试探究曲线C 上是否存在点M ,使得四边形MAOB 为平行四边形,若存在,求出点M 的坐标;若不存在,请说明理由.[解析] (1)设P(x ,y), 则x +22+y 2=2x -12+y 2,化简得x 2+y 2-4x =0,即(x -2)2+y 2=4, 其表示以(2,0)为圆心,4为半径的圆,故选B . (2)①设P(x ,y),由|PR →|=2|PQ →|, 得|2-x|=2·x -12+y 2,平方化简得C 的轨迹方程为x 22+y 2=1.②设A(x 1,y 1),B(x 2,y 2),M(x 3,y 3), 联立⎩⎪⎨⎪⎧y =x +n x 22+y 2=1,得x 2+2(x +n)2-2=0,即3x 2+4nx +2n 2-2=0,所以x 1+x 2=-4n 3,y 1+y 2=x 1+x 2+2n =2n3.假设存在点M 使得四边形MAOB 为平行四边形, 则OM →=OA →+OB →,所以(x 3,y 3)=(x 1,y 1)+(x 2,y 2), 所以x 3=x 1+x 2=-4n 3,y 3=y 1+y 2=2n3.由点M 在曲线C 上得x 232+y 23=1,代入得8n 29+4n29=1,解得n 2=34,n =±32.所以当n =±32时,曲线C 上存在点M 使得四边形MAOB 为平行四边形, 此时点M 的坐标为⎝ ⎛⎭⎪⎫-233,33或者M ⎝ ⎛⎭⎪⎫233,-33,当n≠±32,曲线C 上不存在点M 使得四边形MAOB 为平行四边形. 考点四 代入法(相关点法)求轨迹方程——师生共研例4 (2021·河南新乡模拟)在直角坐标系xOy 中,点M(-2,0),N 是曲线x =14y 2+2上的任意一点,动点C 满足MC →+NC →=0.(1)求点C 的轨迹方程;(2)经过点P(1,0)的动直线l 与点C 的轨迹交于A ,B 两点,在x 轴上是否存在定点D(异于点P),使得∠ADP =∠BDP ?若存在,求出D 的坐标;若不存在,请说明理由.[解析] (1)设C(x ,y),N(x 0,y 0), 则MC →=(x +2,y),NC →=(x -x 0,y -y 0), MC →+NC →=(2x -x 0+2,2y -y 0).又MC →+NC →=0,则⎩⎪⎨⎪⎧2x -x 0+2=0,2y -y 0=0,即⎩⎪⎨⎪⎧x 0=2x +2,y 0=2y.因为点N 为曲线x =14y 2+2上的任意一点,所以x 0=14y 20+2,所以2x +2=14(2y)2+2,整理得y 2=2x ,故点C 的轨迹方程为y 2=2x . (2)设存在点D(t,0),使得∠ADP =∠BDP , 所以k DA +k DB =0.由题易知,直线l 的倾斜角不可能为0°, 故设直线l 的方程为x =my +1,将x =my +1代入y 2=2x ,得y 2-2my -2=0. 设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=2m ,y 1y 2=-2. 因为k DA +k DB =y 1x 1-t +y 2x 2-t =y 1my 1+1-t +y 2my 2+1-t =0,所以2my 1y 2+(1-t)(y 1+y 2)=0, 即-4m +2m·(1-t)=0,所以t =-1. 故存在点D(-1,0),使得∠ADP =∠BDP .名师点拨代入法(相关点法)求轨迹方程(1)当题目中的条件同时具有以下特征时,一般可以用相关点法求其轨迹方程: ①某个动点P 在已知方程的曲线上移动; ②另一个动点M 随P 的变化而变化;③在变化过程中P 和M 满足一定的规律.(2)代入法(相关点法)的基本步骤①设点:设被动点坐标为(x ,y),主动点坐标为(x 1,y 1);②求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧ x 1=f x ,y ,y 1=g x ,y ;③代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程;④检验:注意检验所求方程是否符合题意.〔变式训练4〕(2021·河北石家庄模拟)已知点Q 在椭圆C :x 216+y 210=1上,点P 满足OQ →=12(OF 1→+OP →)(其中O 为坐标原点,F 1为椭圆C 的左焦点),则点P 的轨迹为( D )A .圆B .抛物线C .双曲线D .椭圆 [解析] 设P(x ,y),Q(x 0,y 0),椭圆C 的左焦点F 1(-2,0),由题意知⎩⎪⎨⎪⎧ x 0=x -22,y 0=y 2 又x 2016+y 2010=1,∴x -2264+y 240=1,故选D . 考点五,参数法求轨迹方程——师生共研例5 (2021·河北衡水中学调研)已知圆C 1:x 2+y 2=2,圆C 2:x 2+y 2=4,如图,C 1,C 2分别交x 轴正半轴于点E ,A .射线OD 分别交C 1,C 2于点B ,D ,动点P 满足直线BP 与y 轴垂直,直线DP 与x 轴垂直.(1)求动点P 的轨迹C 的方程;(2)过点E 作直线l 交曲线C 与点M ,N ,射线OH ⊥l 于点H ,且交曲线C 于点Q .问:1|MN|+1|OQ|2的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.[分析] 显然点P(x ,y)的变动由∠AOD 的大小α(或k OD )决定,故可通过α(或k OD )建立x ,y 间的关系,即点P 的轨迹方程.[解析] (1)解法一:如图设∠BOE =α,则B(2cos α,2sin α),D(2cos α,2sin α),所以x P =2cos α,y P =2sin α.所以动点P 的轨迹C 的方程为x 24+y 22=1. 解法二:当射线OD 的斜率存在时,设斜率为k ,OD 方程为y =kx ,由⎩⎪⎨⎪⎧ y =kx x 2+y 2=2得y 2P =2k 21+k 2, 同理得x 2P =41+k 2, 所以x 2P +2y 2P=4即有动点P 的轨迹C 的方程为x 24+y 22=1. 当射线OD 的斜率不存在时,点(0,±2)也满足.(2)由(1)可知E 为C 的焦点,设直线l 的方程为x =my +2(斜率不为0时)且设点M(x 1,y 1),N(x 2,y 2),由⎩⎨⎧x =my +2x 2+2y 2=4,得(m 2+2)y 2+22my -2=0, 所以⎩⎪⎨⎪⎧y 1+y 2=-22m m 2+2y 1y 2=-2m 2+2, 所以1|MN|=11+m 2|y 1-y 2|=m 2+24m 2+1, 又射线OQ 方程为y =-mx , 代入椭圆C 的方程得x 2+2(mx)2=4, 即x 2Q =41+2m 2,y 2Q =4m 21+2m 2,1|OQ|2=1+2m 24m 2+1, 所以1|MN|+1|OQ|2=m 2+24m 2+1+1+2m 24m 2+1=34, 又当直线l 的斜率为0时,也符合条件.综上,1|MN|+1|OQ|2为定值,且为34.名师点拨(1)在选择参数时,参数可以具有某种物理或几何意义,如时间、速度、距离、角度、直线的斜率、点的横(纵)坐标等,也可以没有具体的意义,但要特别注意它的取值范围对动点坐标取值范围的影响.(2)参数法求轨迹方程的适用条件动点所满足的条件不易得出或不易转化为等式,也没有明显的相关点,但却较易发现(或经过分析可发现)这个动点的运动与某一个量或某两个变量(角、斜率、比值、截距等)有关.〔变式训练5〕若过点P(1,1)且互相垂直的两条直线l 1,l 2分别与x 轴、y 轴交于A 、B 两点,则AB 中点M 的轨迹方程为__x +y -1=0__.[解析] 当直线l 1的斜率存在时,l 2的斜率也存在,设直线l 1的方程是y -1=k(x -1),则直线l 2的方程是y -1=-1k (x -1),所以直线l 1与x 轴的交点为A ⎝ ⎛⎭⎪⎫1-1k ,0,l 2与y 轴的交点为B ⎝⎛⎭⎪⎫0,1+1k ,设AB 的中点M 的坐标为(x ,y),则有⎩⎪⎨⎪⎧ x =12⎝ ⎛⎭⎪⎫1-1k ,y =12⎝ ⎛⎭⎪⎫1+1k ,两式相加消去k ,得x +y =1⎝ ⎛⎭⎪⎫x ≠12,即x +y -1=0(x≠12),所以AB 中点M 的轨迹方程为x +y -1=0⎝ ⎛⎭⎪⎫x ≠12. 当直线l 1(或l 2)的斜率不存在时,点M 的坐标为⎝ ⎛⎭⎪⎫12,12,此点在直线x +y -1=0上. 综上,AB 中点M 的轨迹方程为x +y -1=0.另解:由题意易知|MP|=|MO|,∴M 的轨迹为线段OP 的中垂线,其方程为y -12=-⎝ ⎛⎭⎪⎫x -12, 即x +y -1=0.名师讲坛·素养提升高考中的轨迹问题例6 (2019·课标Ⅱ)已知点A(-2,0),B(2,0),动点M(x ,y)满足直线AM 与BM 的斜率之积为-12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连接QE 并延长交C 于点G .①证明:△PQG 是直角三角形;②求△PQG 面积的最大值.[解题思路] (1)由题直译得关系→化简,观察方程形式得结论(2)①设直线PQ :y =kx →与C 的方程联立得P ,Q 两点坐标→得直线QG 的方程→与C 的方程联立得G 的坐标→求PG 的斜率→得结论 ②利用公式求面积→得关于k 的函数→判断单调性求最值→得结论 [解析] (1)由题设得y x +2·y x -2=-12, 化简得x 24+y 22=1(|x|≠2), 所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)①证明:设直线PQ 的斜率为k ,则其方程为y =kx(k >0),由⎩⎪⎨⎪⎧ y =kx ,x 24+y 22=1得x =±21+2k 2. 记u =21+2k 2,则P(u ,uk),Q(-u ,-uk),E(u,0).于是直线QG 的斜率为k 2,方程为y =k 2(x -u). 由⎩⎪⎨⎪⎧ y =k 2x -u x 24+y 22=1, 得(2+k 2)x 2-2uk 2x +k 2u 2-8=0.①设G(x G ,y G ),则-u 和x G 是方程①的解,故x G =u 3k 2+22+k 2,由此得y G =uk 32+k 2.从而直线PG 的斜率为uk 32+k 2-uk u 3k 2+22+k 2-u =-1k . 所以PQ ⊥PG ,即△PQG 是直角三角形.②由①得|PQ|=2u 1+k 2,|PG|=2uk k 2+12+k 2, 所以△PQG 的面积S =12|PQ||PG|= 8k 1+k21+2k 22+k 2=8⎝ ⎛⎭⎪⎫1k +k 1+2⎝ ⎛⎭⎪⎫1k +k 2. 设t =k +1k,则由k >0得t≥2,当且仅当k =1时取等号, 因为S =8t 1+2t2在[2,+∞)单调递减,所以当t =2, 即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. [解题关键] ①利用方程思想得出点P 、Q 的坐标,进而利用换元法及整体代换法简化运算过程是顺利解决本题的关键;②正确利用基本不等式及函数单调性是求解△PQG 面积最值的关键.〔变式训练6〕(2020·新课标Ⅲ)在平面内,A ,B 是两个定点C 是动点,若OC →·BC →=1,则点C 的轨迹为( A )A .圆B .椭圆C .抛物线D .直线[解析] 不妨以AB 所在直线为x 轴,AB 的中点为原点,建立平面直角坐标系,设C(x ,y),A(-c,0),B(c,0),c >0,则AC →=(x +c ,y),BC →=(x -c ,y),由AC →·BC →=1,得(x +c)(x -c)+y·y=1,即x 2+y 2=c 2+1>0,∴点C 的轨迹为圆.故选A .。

曲线与方程

曲线与方程

曲线与方程一、曲线与方程的关系:一般地,在坐标平面内的一条曲线C 与一个二元方程(,)0F x y =之间, 如果具有以下两个关系:1.曲线C 上的点的坐标,都是 的解;2.以方程(,)0F x y =的解为坐标的点,都是 的点,那么,方程(,)0F x y =叫做这条曲线C 的方程;曲线C 叫做这个方程(,)0F x y =的曲线.二、求轨迹方程的常用方法有:直接法,定义法,待定系数法,参数法,相关点法(代入法),交轨法等.三、求曲线的方程的步骤:①建立适当的坐标系,用(,)M x y 表示曲线上的任意一点的坐标;②写出适合条件P 的点M 的集合{|()}P M p M =;③用坐标表示条件P ,列出方程(,)0f x y =;④将方程(,)0f x y =化为最简形式;⑤说明以化简后的方程的解为坐标的点都在曲线上.四、直线系 具有某种共同属性的一类直线的集合,称为直线系.它的方程称直线系方程.(1)共点直线系:过已知点 P (x 0 , y 0 ) 的直线系方程 y − y 0 = k (x − x 0 ) (k 为参数) (2)平行直线系:斜率为 k 的直线系方程 y = kx + b (b 是参数)与已知直线 Ax + By + C = 0 平行的直线系方程 Ax + By + λ = 0 (λ 为参数)(3)垂直直线系:与已知直线 Ax + By + C = 0 垂直的直线系方程Bx − Ay + λ = 0(λ 为参数)(4)过直线 l 1 :A 1 x + B 1 y + C 1 = 0 与 l 2 :A 2 x + B 2 y + C 2 = 0 的交点的直线系方程:A 1 x + B 1 y + C 1 + λ(A 2 x + B 2 y + C 2 ) = 0(λ 为参数),此直线系不含直线 l 2例1: “ 以方程 f(x, y) = 0 的解为坐标的点都在曲线 C 上” 是 “ 曲线 C 的方程是 f(x,y) = 0 ” 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件下列方程各表示什么曲线?① 29y x -=② 0324222=++-+y x y x 0)9)(2(22=-+-+y x y x例2: 设圆 C : (x − 1)2 + y 2 = 1 ,过原点 O 作圆的任意弦,求所作弦的中点的轨迹方程.练习1:(直接法)已知线段AB 的长度为10,它的两个端点分别在x 轴,y 轴上滑动,求AB 的中点P 的轨迹方程。

高三数学复习(理):第8讲 曲线与方程

高三数学复习(理):第8讲 曲线与方程

第8讲 曲线与方程[学生用书P192]1.曲线与方程在平面直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都在曲线上.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎨⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解,若此方程组无解,则两曲线无交点.3.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简.(5)证明——证明所求方程即为符合条件的动点轨迹方程. 常用结论1.“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)“f(x0,y0)=0”是“点P(x0,y0)在曲线f(x,y)=0上”的充要条件.()(2)方程x2+xy=x的曲线是一个点和一条直线.()(3)动点的轨迹方程和动点的轨迹是一样的.()(4)方程y=x与x=y2表示同一曲线.()(5)y=kx与x=1k y表示同一直线.()答案:(1)√(2)×(3)×(4)×(5)×二、易错纠偏常见误区|K(1)混淆“轨迹”与“轨迹方程”出错;(2)忽视轨迹方程的“完备性”与“纯粹性”.1.(1)平面内与两定点A(2,2),B(0,0)距离的比值为2的点的轨迹是________.(2)设动圆M与y轴相切且与圆C:x2+y2-2x=0相外切,则动圆圆心M的轨迹方程为_________________________________________________.解析:(1)设动点坐标为(x,y),则(x-2)2+(y-2)2x2+y2=2,整理得3x2+3y2+4x+4y-8=0,所以满足条件的点的轨迹是圆.(2)若动圆在y轴右侧,则动圆圆心到定点C(1,0)与到定直线x=-1的距=1,所以其方程为y2=4x(x>0);若动圆在y轴离相等,其轨迹是抛物线,且p2左侧,则圆心轨迹是x轴负半轴,其方程为y=0(x<0).故动圆圆心M的轨迹方程为y2=4x(x>0)或y=0(x<0).答案:(1)圆(2)y2=4x(x>0)或y=0(x<0)2.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则P点的轨迹方程是________.解析:由角的平分线性质定理得|P A|=2|PB|,设P(x,y),则(x+2)2+y2=2(x-1)2+y2,整理得(x-2)2+y2=4(y≠0).答案:(x-2)2+y2=4(y≠0)3.已知⊙O的方程为x2+y2=4,过M(4,0)的直线与⊙O交于A,B两点,则弦AB的中点P的轨迹方程为________.解析:根据垂径定理知:OP⊥PM,所以P点的轨迹是以OM为直径的圆且在⊙O内的部分.以OM为直径的圆的方程为(x-2)2+y2=4,它与⊙O的交点为(1,±3).结合图形可知所求轨迹方程为(x-2)2+y2=4(0≤x<1).答案:(x-2)2+y2=4(0≤x<1)[学生用书P192]直接法求轨迹方程(师生共研)已知△ABC的三个顶点分别为A(-1,0),B(2,3),C(1,22),定点P (1,1).(1)求△ABC 外接圆的标准方程;(2)若过定点P 的直线与△ABC 的外接圆交于E ,F 两点,求弦EF 中点的轨迹方程.【解】 (1)由题意得AC 的中点坐标为(0,2),AB 的中点坐标为⎝ ⎛⎭⎪⎫12,32,k AC =2,k AB =1,故AC 中垂线的斜率为-22,AB 中垂线的斜率为-1,则AC的中垂线的方程为y -2=-22x ,AB 的中垂线的方程为y -32=-⎝ ⎛⎭⎪⎫x -12.由⎩⎪⎨⎪⎧y -32=-⎝ ⎛⎭⎪⎫x -12,y -2=-22x , 得⎩⎪⎨⎪⎧x =2,y =0.所以△ABC 的外接圆圆心为(2,0),半径r =2+1=3,故△ABC 外接圆的标准方程为(x -2)2+y 2=9.(2)设弦EF 的中点为M (x ,y ),△ABC 外接圆的圆心为N ,则N (2,0), 由MN ⊥MP ,得NM →·PM →=0, 所以(x -2,y )·(x -1,y -1)=0, 整理得x 2+y 2-3x -y +2=0,所以弦EF 中点的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -122=12.(1)若曲线上的动点满足的条件是一些几何量的等量关系,则可用直接法,其一般步骤是:设点→列式→化简→检验.求动点的轨迹方程时要注意检验,即除去多余的点,补上遗漏的点.(2)若是只求轨迹方程,则把方程求出,把变量的限制条件附加上即可;若是求轨迹,则要说明轨迹是什么图形.已知坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP |=5|MQ |.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,若过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.解:(1)由|MP |=5|MQ |,得(x -26)2+(y -1)2=5(x -2)2+(y -1)2,化简得x 2+y 2-2x -2y -23=0,所以点M 的轨迹方程是(x -1)2+(y -1)2=25,轨迹是以(1,1)为圆心,5为半径的圆.(2)当直线l 的斜率不存在时,l :x =-2,此时所截得的线段长度为2×52-32=8,所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0, 圆心(1,1)到l 的距离d =|3k +2|k 2+1,由题意,得⎝ ⎛⎭⎪⎪⎫|3k +2|k 2+12+42=52,解得k =512, 所以直线l 的方程为512x -y +236=0, 即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.定义法求轨迹方程(师生共研)已知圆C 与两圆x 2+(y +4)2=1,x 2+(y -2)2=1外切,圆C 的圆心轨迹为L ,设L 上的点与点M (x ,y )的距离的最小值为m ,点F (0,1)与点M (x ,y )的距离为n .(1)求圆C 的圆心轨迹L 的方程;(2)求满足条件m =n 的点M 的轨迹Q 的方程.【解】 (1)两圆半径都为1,两圆圆心分别为C 1(0,-4),C 2(0,2),由题意得|CC 1|=|CC 2|,可知圆心C 的轨迹是线段C 1C 2的垂直平分线,C 1C 2的中点为(0,-1),直线C 1C 2的斜率不存在,所以圆C 的圆心轨迹L 的方程为y =-1.(2)因为m =n ,所以M (x ,y )到直线y =-1的距离与到点F (0,1)的距离相等,故点M 的轨迹Q 是以y =-1为准线,点F (0,1)为焦点,顶点在原点的抛物线,而p2=1,即p =2,所以,轨迹Q 的方程是x 2=4y .定义法求轨迹方程(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.1.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________________.解析:设A (x ,y ),由题意可知D ⎝ ⎛⎭⎪⎫x 2,y 2.又因为|CD |=3,所以⎝ ⎛⎭⎪⎫x 2-52+⎝ ⎛⎭⎪⎫y 22=9,即(x -10)2+y 2=36,由于A ,B ,C 三点不共线,所以点A 不能落在x 轴上,即y ≠0,所以点A 的轨迹方程为(x -10)2+y 2=36(y ≠0).答案:(x -10)2+y 2=36(y ≠0)2.如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M ,求曲线M 的方程.解:由题知|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点).设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-⎝ ⎛⎭⎪⎫|AB |22=3,所以曲线M 的方程为x 24+y 23=1(y ≠0).相关点法(代入法)求轨迹方程(师生共研)如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.【解】 (1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px (p >0),解得p =1. (2)由(1)知抛物线E :y 2=2x .设C ⎝ ⎛⎭⎪⎫y 212,y 1,D ⎝ ⎛⎭⎪⎫y 222,y 2,y 1≠0,y 2≠0,切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝ ⎛⎭⎪⎫x -y 212,代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0,由Δ=0,解得k =1y 1, 所以l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立⎩⎪⎨⎪⎧y =1y 1x +y 12,y =1y 2x +y 22,解得⎩⎨⎧x =y 1·y 22,y =y 1+y 22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎪⎨⎪⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x 0,代入⎩⎨⎧x =y 1·y 22,y =y 1+y 22,可得M (x ,y )满足⎩⎪⎨⎪⎧x =-8x 0,y =-y 0x 0,可得⎩⎪⎨⎪⎧x 0=-8x ,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1,考虑到x 0∈[2,22],知x ∈[-4,-22],所以动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].1.如图,已知P 是椭圆x 24+y 2=1上一点,PM ⊥x 轴于点M .若PN →=λNM →. (1)求N 点的轨迹方程;(2)当N 点的轨迹为圆时,求λ的值.解:(1)设点P ,点N 的坐标分别为P (x 1,y 1),N (x ,y ), 则M 的坐标为(x 1,0),且x =x 1, 所以PN →=(x -x 1,y -y 1)=(0,y -y 1), NM →=(x 1-x ,-y )=(0,-y ), 由PN →=λNM →得(0,y -y 1)=λ(0,-y ). 所以y -y 1=-λy ,即y 1=(1+λ)y .因为P (x 1,y 1)在椭圆x 24+y 2=1上, 则x 214+y 21=1,所以x 24+(1+λ)2y 2=1, 故x 24+(1+λ)2y 2=1为所求的N 点的轨迹方程. (2)要使点N 的轨迹为圆,则(1+λ)2=14,解得λ=-12或λ=-32.故当λ=-12或λ=-32时,N 点的轨迹是圆.2.已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝ ⎛⎭⎪⎫33,0的直线l 与曲线E 交于点A ,B ,且MB →=-2MA →.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),因为B (0,2),M ⎝ ⎛⎭⎪⎫33,0,故MB →=⎝ ⎛⎭⎪⎫-33,2,MA →=⎝ ⎛⎭⎪⎫x 0-33,y 0.由于MB →=-2MA →,所以⎝ ⎛⎭⎪⎫-33,2=-2⎝ ⎛⎭⎪⎫x 0-33,y 0.所以x 0=32,y 0=-1,即A ⎝ ⎛⎭⎪⎫32,-1.因为A ,B 都在曲线E 上,所以⎩⎨⎧a ·02+b ·22=1,a ·⎝ ⎛⎭⎪⎫322+b ·(-1)2=1,解得⎩⎨⎧a =1,b =14. 所以曲线E 的方程为x 2+y24=1.[学生用书P407(单独成册)][A 级 基础练]1.方程(x -y )2+(xy -1)2=0表示的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点D .以上答案都不对解析:选C.(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.故⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1.2.(2020·新高考卷Ⅰ改编)已知曲线C :mx 2+ny 2=1.以下结论正确的个数是( )①若m >n >0,则C 是椭圆,其焦点在y 轴上;②若m =n >0,则C 是圆,其半径为n ;③若mn <0,则C 是双曲线,其渐近线方程为y =± -mn x ;④若m=0,n >0,则C 是两条直线.A .1B .2C .3D .4解析:选C.对于①,因为m >n >0,所以0<1m <1n ,方程mx 2+ny 2=1可变形为x 21m +y 21n =1,所以该方程表示焦点在y 轴上的椭圆,正确;对于②,因为m=n >0,所以方程mx 2+ny 2=1可变形为x 2+y 2=1n ,该方程表示半径为1n 的圆,错误;对于③,因为mn <0,所以该方程表示双曲线,令mx 2+ny 2=0⇒y =± -mn x ,正确;对于④,因为m =0,n >0,所以方程mx 2+ny 2=1变形为ny 2=1⇒y =±1n ,该方程表示两条直线,正确.3.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A -B -C 运动时,在映射f 的作用下,动点P ′的轨迹是( )解析:选D.当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y 2(0≤y ≤1),故y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),所以y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 项图象所示,故选D.4.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=-8xB .y 2=8xC .y 2=-4xD .y 2=4x解析:选A.设P (x ,y ).因为M (-2,0),N (2,0),所以MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ),由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理得y 2=-8x .故选A.5.动点M 在圆x 2+y 2=25上移动,过点M 作x 轴的垂线段MD ,D 为垂足,则线段MD 中点的轨迹方程是( )A.4x 225+y 225=1 B .x 225+4y 225=1 C.4x 225-y 225=1D.x 225-4y 225=1解析:选B.如图,设线段MD 的中点为P (x ,y ),M (x 0,y 0),D (x 0,0),因为P 是MD 的中点,所以⎩⎪⎨⎪⎧x 0=x ,y 0=2y .又M 在圆x 2+y 2=25上,所以x 20+y 20=25,即x 2+4y 2=25,x 225+4y 225=1,所以线段MD 的中点P 的轨迹方程是x 225+4y 225=1.故选B.6.设D 为椭圆y 25+x 2=1上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD |=|BD |,则点P 的轨迹方程为________.解析:设点P 坐标为(x ,y ).因为D 为椭圆y 25+x 2=1上任意一点,且A ,B 为椭圆的焦点,所以|DA |+|DB |=2 5.又|PD |=|BD |,所以|P A |=|PD |+|DA |=|DA |+|DB |=25,所以x 2+(y +2)2=25,所以x 2+(y +2)2=20,所以点P 的轨迹方程为x 2+(y +2)2=20.答案:x 2+(y +2)2=207.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t ,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t ,得点C 的轨迹方程为y =2x -2.答案:y =2x -28.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.解析:如图,△ABC 与内切圆的切点分别为G ,E ,F .则|AG |=|AE |=8,|BF |=|BG |=2,|CE |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,轨迹方程为x 29-y 216=1(x >3).答案:x 29-y 216=1(x >3)9.如图所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).解:(1)根据题意,知|PA |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点的轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r , 因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4.因此其轨迹方程为y 2=-8x .10.已知动圆P 恒过定点⎝ ⎛⎭⎪⎫14,0,且与直线x =-14相切.(1)求动圆P 圆心的轨迹M 的方程;(2)在正方形ABCD 中,AB 边在直线y =x +4上,另外C ,D 两点在轨迹M 上,求该正方形的面积.解:(1)由题意得动圆P 的圆心到点⎝ ⎛⎭⎪⎫14,0的距离与它到直线x =-14的距离相等,所以圆心P 的轨迹是以⎝ ⎛⎭⎪⎫14,0为焦点,直线x =-14为准线的抛物线,且p =12,所以动圆P 圆心的轨迹M 的方程为y 2=x . (2)由题意设CD 边所在直线方程为y =x +t . 联立⎩⎪⎨⎪⎧y =x +t ,y 2=x ,消去y ,整理得x 2+(2t -1)x +t 2=0.因为直线CD 和抛物线交于两点,所以Δ=(2t -1)2-4t 2=1-4t >0,解得t <14. 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=1-2t ,x 1x 2=t 2. 所以|CD |=2[(x 1+x 2)2-4x 1x 2]=2[(1-2t )2-4t 2]=2(1-4t ).又直线AB 与直线CD 之间的距离为|AD |=|t -4|2,|AD |=|CD |,所以2(1-4t )=|t -4|2,解得t =-2或t =-6,经检验t =-2和t =-6都满足Δ>0. 所以正方形边长|AD |=32或|AD |=52, 所以正方形ABCD 的面积S =18或S =50.[B 级 综合练]11.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)解析:选A.设A (a ,0),B (0,b ),a >0,b >0.由BP →=2P A →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).12.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1D .x 2=16y解析:选B.因为M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),满足题意,为“好曲线”;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),满足题意,为“好曲线”;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以Δ>0,满足题意,为“好曲线”.13.(2021·四川成都石室中学模拟)已知两定点F 1(-1,0),F 2(1,0)和一动点P ,给出下列结论:①若|PF 1|+|PF 2|=2,则点P 的轨迹是椭圆; ②若|PF 1|-|PF 2|=1,则点P 的轨迹是双曲线; ③若|PF 1||PF 2|=λ(λ>0,且λ≠1),则点P 的轨迹是圆;④若|PF 1|·|PF 2|=a 2(a ≠0),则点P 的轨迹关于原点对称;⑤若直线PF 1与PF 2的斜率之积为m (m ≠0),则点P 的轨迹是椭圆(除长轴两端点).其中正确的是________.(填序号)解析:对于①,由于|PF 1|+|PF 2|=2=|F 1F 2|,所以点P 的轨迹是线段F 1F 2,故①不正确.对于②,由于|PF 1|-|PF 2|=1,故点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,故②不正确.对于③,设P (x ,y ),由题意得(x +1)2+y 2(x -1)2+y 2=λ,整理得(1-λ2)x 2+(1-λ2)y 2+(2+2λ2)x +1-λ2=0.因为λ>0,且λ≠1,所以x 2+y 2+(2+2λ2)1-λ2x +1-λ21-λ2=0,所以点P 的轨迹是圆,故③正确.对于④,设P (x ,y ),则|PF 1|·|PF 2|=(x +1)2+y 2·(x -1)2+y 2=a 2.又点P (x ,y )关于原点的对称点为P ′(-x ,-y ),因为(-x +1)2+(-y )2·(-x -1)2+(-y )2=(x +1)2+y 2·(x -1)2+y 2=a 2,所以点P ′(-x ,-y )也在曲线(x +1)2+y 2·(x -1)2+y 2=a 2上,即点P 的轨迹关于原点对称,故④正确.对于⑤,设P (x ,y ),则k PF 1=y x +1,k PF 2=y x -1,由题意得k PF 1·k PF 2=y x +1·yx -1=y 2x 2-1=m (m ≠0),整理得x 2-y 2m =1,此方程不一定表示椭圆,故⑤不正确. 综上,正确结论的序号是③④. 答案:③④14.如图,已知椭圆C :x 218+y 29=1的短轴端点分别为B 1,B 2,点M 是椭圆C 上的动点,且不与B 1,B 2重合,点N 满足NB 1⊥MB 1,NB 2⊥MB 2.(1)求动点N 的轨迹方程;(2)求四边形MB 2NB 1面积的最大值.解:(1)方法一:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② ①×②得y 2-9=x 20y 20-9x 2.又因为x 2018+y 209=1,所以y 2-9=18⎝ ⎛⎭⎪⎫1-y 209y 20-9x 2=-2x 2,整理得动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法二:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② 联立①②,解得⎩⎪⎨⎪⎧x =y 20-9x 0,y =-y 0.又x 2018+y 209=1,所以x =-x 02,故⎩⎪⎨⎪⎧x 0=-2x ,y 0=-y ,代入x 2018+y 209=1,得y 29+x 292=1. 所以动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法三:设直线MB 1:y =kx -3(k ≠0), 则直线NB 1:y =-1k x -3,①直线MB 1与椭圆C :x 218+y 29=1的交点M 的坐标为⎝ ⎛⎭⎪⎪⎫12k 2k 2+1,6k 2-32k 2+1. 则直线MB 2的斜率为k MB 2=6k 2-32k 2+1-312k 2k 2+1=-12k .所以直线NB 2:y =2kx +3.②由①②得点N 的轨迹方程为y 29+x 292=1(x ≠0).(2)由(1)方法三得直线NB 1:y =-1k x -3,① 直线NB 2:y =2kx +3,②联立①②解得x =-6k2k 2+1,即x N =-6k2k 2+1,故四边形MB 2NB 1的面积S =12|B 1B 2|(|x M |+|x N |)=3×⎝ ⎛⎭⎪⎫12|k |2k 2+1+6|k |2k 2+1=54|k |2k 2+1=542|k |+1|k |≤2722,当且仅当|k |=22时,S 取得最大值2722.[C 级 提升练]15.在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP →=λRQ →(λ>1),求证:NF →=λFQ →.解:(1)依题意知,直线A 1N 1的方程为y =m6(x +6),①直线A 2N 2的方程为y =-n6(x -6),②设M (x ,y )是直线A 1N 1与A 2N 2的交点,①×②得y 2=-mn6(x 2-6),又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1.(2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q (x 2,y 2),则N (x 1,-y 1),由⎩⎨⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*) 所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3.由RP →=λRQ →,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2, 由(1)得F (2,0),要证NF →=λFQ →,即证(2-x 1,y 1)=λ(x 2-2,y 2), 只需证2-x 1=λ(x 2-2),只需证x 1-3x 2-3=-x 1-2x 2-2,即证2x 1x 2-5(x 1+x 2)+12=0,又x 1x 2=(ty 1+3)(ty 2+3)=t 2y 1y 2+3t (y 1+y 2)+9,x 1+x 2=ty 1+3+ty 2+3=t (y 1+y 2)+6,所以2t 2y 1y 2+6t (y 1+y 2)+18-5t (y 1+y 2)-30+12=0,即2t 2y 1y 2+t (y 1+y 2)=0,而2t 2y 1y 2+t (y 1+y 2)=2t 2·3t 2+3-t ·6tt 2+3=0成立,得证.。

is曲线和lm方程

is曲线和lm方程

is曲线和lm方程
IS曲线和LM曲线是宏观经济学中描述货币市场和商品市场的两条曲线,常用于分析和解释货币政策对经济的影响。

IS曲线代表商品市场的均衡,它描述了货币供应量(M)与利率(r)之间的关系。

在IS曲线上,货币供应量等于货币需求量,即M=L=L1(Y)+L2(r)。

其中,L1(Y)表示与收入Y相关的货币需求,L2(r)表示与利率r相关的货币需求。

IS曲线的斜率取决于货币需求的利率弹性和投资的利率敏感性。

如果货币需求的利率弹性越大,IS曲线越陡峭;如果投资的利率敏感性越大,IS曲线越平缓。

LM曲线代表货币市场的均衡,它描述了货币供应量(M)与价格水平(P)之间的关系。

在LM曲线上,货币供应量等于货币需求量,即M=L=M1(P)+M2(r)。

其中,M1(P)表示与价格水平P相关的货币需求,M2(r)表示与利率r相关的货币需求。

LM曲线的斜率取决于货币需求的物价弹性和货币的流通速度。

如果货币需求的物价弹性越大,LM曲线越陡峭;如果货币的流通速度越快,LM曲线越平缓。

IS-LM模型是宏观经济学的核心模型之一,它通过IS曲线和LM曲线的交点来确定经济的均衡状态,从而分析和解释货币政策对经济的影响。

当货币政策改变时,IS曲线和LM曲线的位置会发生变化,导致均衡状态发生变化。

曲线与方程圆的方程

曲线与方程圆的方程

曲线与方程、圆的方程1.曲线C的方程为:f(x,y)=o 曲线C上任意一点P (X o,y o)的坐标满足方程f(x,y)=O,即f(x o,y o)=0 ;且以f(x,y) =0的任意一组解(x o,y o)为坐标的点P (x o,y o)在曲线C上。

依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。

求动点P(x,y)的轨迹方程即求点P的坐标(x,y)满足的方程(等式)。

求动点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都是方程的解,且以方程的解为坐标的点都满足条件。

解析:原方程等价于: x y 1 0 2 2 2 2 ',或x y 4;x y 4其中当x y 1 0需;x2y24有意义,等式才成立,即x2y24,此时它表示直线x y 1 0上不在圆x2y? 4内的部分,这是极易出错的一个环节。

选[举例2]已知点A (- 1 , 0), B (2, 0),动点M满足2 / MAB2 MBA求点M的轨迹方程。

解析:如何体现动点M满足的条件2/ MAB M MBA是解决本题的关键。

用动点M的坐标体现2 / MAB M MBA 的最佳载体是直线MA MB的斜率。

设M(x, y), / MAB=,则/ MBA=2,它们是直线MA MB的倾角还是倾角的补角,与点M在x轴的上方还是下方有关;以下讨论:① 若点M在x轴的上方,(00,900), y 0 ,此时,直线MA的倾角为,MB的倾角为-2 ,tan k MA xV an( 2)七(2 900)[举例1]方程(x y 1). x2y2 4 0所表示的曲线是:( )[巩固2]已知点R (-3, 0),点P 在y 轴上,点 Q 在x 轴的正半轴上,点 M 在直线PQ 上, PM =0 , 2 PM +3MQ =0,当点P 移动时,求M 点的轨迹方程。

曲线与方程的概念

曲线与方程的概念

2015.12
一、曲线与方程 :
考查函数y 2x 2(1 x 2)(方程)的图像(曲线)
①曲线C上点的坐标( x0, y0 )都是方程 2 y 2 x (1 x 2)的解.
②以方程y 2 x 2(1 x 2)的解( x0, y0 )为坐标 的点都在曲线上;
如: ①方程y | x |的曲线是一、二象限的角平分线; ②以点(1, 0)、 ( 1, 0)、 (0, 1)、 (0, 1)为顶点的 四边形的边框的方程是 | x | | y | 1; ③四个象限的角平分线方程是 | x || y | .
2015.12
二、练习:(1)如果曲线C上的点满足方程 F(x,y)=0,则以下说法正确的是( D ) A.曲线C的方程是F(x,y)=0 B.方程F(x,y)=0的曲线是C C.坐标满足方程F(x,y)=0的点在曲线C上 D.坐标不满足方程F(x,y)=0的点不在曲线C上 (2)判断下列结论的正误,并说明理由。 ① 过A(3,0)且垂直于x轴的直线方程为x=3; √ ( ) ② 到x轴距离为2的点的轨迹方程为y = - 2; ( ╳ ) ③ 到两坐标轴距离积为1的点的轨迹方程为xy=1; (╳ ) ④ △ABC的顶点A(0,-3),B(1,0),C(-1,0), D为BC的中点,则中线AD的方程为x=0。 ( ╳ )
2015.12
7. “以方程F ( x , y ) 0的解为坐标的点 都在曲线C 上”是“曲线C的方程为 F ( x , y ) 0”的
必要非充分
条件。
例.证明以坐标Biblioteka 点为圆心,半径等于4的圆 的方程是x2+y2=16,并判断点M1(2,-2), M2(-3,4)是否在这个圆上。

曲线与方程圆的方程

曲线与方程圆的方程

x y O B A M曲线与方程、圆的方程1.曲线C 的方程为:f(x,y)=0⇔曲线C 上任意一点P (x 0,y 0)的坐标满足方程f(x,y)=0,即f (x 0,y 0)=0;且以f(x,y)=0的任意一组解(x 0,y 0)为坐标的点P (x 0,y 0)在曲线C 上。

依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。

求动点P(x,y)的轨迹方程即求点P 的坐标(x,y)满足的方程(等式)。

求动点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都是方程的解,且以方程的解为坐标的点都满足条件。

[举例1] 方程04)1(22=-+-+y x y x 所表示的曲线是: ( )A B C D解析:原方程等价于:⎩⎨⎧≥+=--40122y x y x ,或422=+y x ; 其中当01=--y x 需422-+y x 有意义,等式才成立,即422≥+y x ,此时它表示直线01=--y x 上不在圆422=+y x 内的部分,这是极易出错的一个环节。

选D 。

[举例2] 已知点A (-1,0),B (2,0),动点M 满足2∠MAB=∠MBA ,求点M 的轨迹方程。

解析:如何体现动点M 满足的条件2∠MAB=∠MBA是解决本题的关键。

用动点M 的坐标体现2∠MAB=∠MBA 的最佳载体是直线MA 、MB 的斜率。

设M (x ,y ),∠MAB=α,则∠MBA=2α,它们是直线 MA 、MB 的倾角还是倾角的补角,与点M 在x 轴的上方 还是下方有关;以下讨论:① 若点M 在x 轴的上方, ,0),90,0(00>∈y α此时,直线MA 的倾角为α,MB 的倾角为π-2α, ,2)2tan(,1tan -=-+==∴x y x y k MA απα (2090≠α),2tan )2tan(ααπ-=-Θ,)1(112222+-+•=--∴x y x yx y得: 1322=-y x ,∵1,>∴>x MB MA . 当2090=α时, α=450,MAB ∆为等腰直角三角形,此时点M 的坐标为(2,3),它满足上述方程. ②当点M 在x 轴的下方时, y <0,同理可得点M 的轨迹方程为)1(1322≥=-x y x , ③当点M 在线段AB 上时,也满足2∠MAB=∠MBA,此时y=0(-1<x<2). 综上所求点的轨迹方程为)21(0)1(1322<<-=≥=-x y x y x 或. [巩固1]右图的曲线是以原点为圆心,1为半径的圆的一部分,则它的方程是A .(21y x -+)·(21x y -+)=0B .(21y x --)·(21x y --)=0C .(21y x -+)·(21x y --)=0D .(21y x --)·(21x y -+)=0[巩固2]已知点R (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足·=,2+3MQ =,当点P 移动时,求M 点的轨迹方程。

曲线和方程知识要点

曲线和方程知识要点

曲线和方程的概念【知识要点】定义 一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系:(1)曲线C 上的点的坐标都是方程0),(=y x F 的解;(2)以方程0),(=y x F 的解为坐标的点都在曲线C 上. 我们就把0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线.注意:要建立曲线与方程间的对应关系,仅有条件“曲线C 上的点的坐标都是方程0),(=y x F 的解”是不够的,因为可能有满足方程0),(=y x F 的点不在曲线C 上;仅有条件“以方程0),(=y x F 的解为坐标的点都在曲线C 上”也是不够的,因为曲线C 上可能有不满足方程0),(=y x F 的点.只有同时具备这两个条件时,才能说方程0),(=y x F 是曲线C 的方程,曲线C 是方程0),(=y x F 的曲线.求曲线的方程【知识要点】1 求曲线的方程的步骤:①建立适当的直角坐标系(如果已给出,本步骤省略).②设曲线上任意一点的坐标为),(y x ,写出已知点的坐标,设出相关点的坐标.③根据曲线上点所适合的条件,写出等式.④用坐标表示这个等式(方程),并化简.⑤证明以化简后的方程的解为坐标的点都是曲线上的点(在本教材不作要求).(6)检验,该说明的要说明.2 求曲线方程的常用方法:定义法、直接法、代入法、参数法等.(1)定义法:根据题意可以得出或推出动点的轨迹是直线或圆或椭圆或双曲线或抛物线.根据所学知识可以写出或求出轨迹方程.若方程形式知道,往往用待定系数法求.(2)直接法:根据题设条件直接写出动点的坐标),(y x 所满足的关系式,即方程0),(=y x F .(3)相关点法(代入法):是所求轨迹上的动点),(y x P 随着另一个已知曲线上的动点),(11y x M 的运动而运动时,一般用代入法求动点P 的轨迹方程.其方法是根据题设条件求得两动点坐标),(y x 与),(11y x 之间的关系式,从中解出),(),,(11y x g y y x f x ==,由于),(11y x M 在已知曲线上,故),(11y x M 满足已知曲线方程,将11,y x 的表达式代入已知曲线方程,从而求得动点P 的轨迹方程.(4)参数法:根据题意得出动点P 的坐标y x ,用其他点的坐标或长度、角、斜率、时间等参数来表示.常用到的公式有两点间的距离公式、中点坐标公式、斜率公式、夹角公式、点到直线的距离公式.曲线的交点【知识要点】1 要求两条曲线的交点的坐标,只需解由这两条曲线的方程所组成的方程组.如果方程组没有实数解,那么这两个方程的曲线就没有交点.反过来,曲线有没有交点也可用来说明方程组有没有实数解.即可用几何图形的性质说明代数方程(组)有没有实数解.2 一般地,斜率为k 的直线b kx y l +=:与曲线C 相交于两点),(),,(2211y x B y x A ,则 ]4))[(1())(1()()(2122122212221221x x x x k x x k y y x x AB -++=-+=-+-=. 或]4))[(11())(11(2122122212y y y y k y y k AB -++=-+=.。

曲线与方程 知识讲解(非常有用)

曲线与方程  知识讲解(非常有用)

曲线与方程编稿:辛文升审稿:孙永钊【考纲要求】1.了解轨迹的背景、含义和概念2.能根据所给的条件,选择恰当的直角坐标系求出曲线的轨迹方程,画出某些简单方程所表示的曲线;3.在形成概念的过程中,培养分析、抽象和概括等思维能力,4.掌握形数结合、函数与方程、化归与转化等数学思想,以及坐标法、待定系数法等常用的数学方法;渗透数形结合思想。

【知识网络】轨迹数学思想与方法求轨迹方程的常用方法轨迹的概念、意义【考点梳理】【高清课堂:曲线与方程408396知识要点】考点一:曲线与方程的定义1.“曲线的方程”、“方程的曲线”的定义:在直角坐标系中,如果某曲线C 上的点与一个二元方程0),(=y x f 的实数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解(轨迹的纯粹性);(2)以这个方程的解为坐标的点都是曲线上的点(轨迹的完备性);那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线。

2.定义的理解:设P={具有某种性质(或适合某种条件)的点},{(,)|(,)0}Q x y f x y ==,若设点00(,)M x y ,用集合的观点,上述定义中的两条可以表述为:(1)00(,)M P x y Q ∈⇒∈,即P Q ⊆;(2)00(,)x y Q M P ∈⇒∈,即Q P ⊆。

以上两条还可以转化为它们的等价命题(逆否命题):(1)00(,)x y Q M P ∉⇒∉;(2)00(,)M P x y Q ∉⇒∉。

显然,当且仅当P Q ⊆且Q P ⊆,即Q P =时,才能称方程0),(=y x f 为曲线C 的方程;曲线C 为方程0),(=y x f 的曲线(图形).要点诠释:在领会定义时,要牢记关系(1)、(2)两者缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件.两者满足了,“曲线的方程”和“方程的曲线”才具备充分性.只有符合关系(1)、(2),才能将曲线的研究转化为方程来研究,即几何问题的研究转化为代数问题.这种“以数论形”的思想是解析几何的基本思想和基本方法考点二:求曲线方程的一般步骤求简单的曲线方程的一般步骤:(1)建立适当的坐标系,用有序实数对表示曲线上任意一点M 的坐标;(2)写出适合条件P 的点M 的集合()P M ;(3)用坐标表示条件()P M ,列出方程0),(=y x f ;(4)化方程0),(=y x f 为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程。

曲线与方程 课件(共35张PPT)

曲线与方程  课件(共35张PPT)
曲线与方程
最新考纲展示
1.了解方程的曲线与 曲线的方程的对应关系.
2.了解解析几何的基本 思想和利用坐标法研究几 何问题的基本方法.
3.能够根据所给条件选 择适当的方法求曲线的轨 迹方程.
一、曲线与方程的定义 一般地,在直角坐标系中,如果某曲线C上的点与一个二元方
程f(x,y)=0的实数解建立如下的对应关系:
(2)证明:设 E(xE,yE),F(xF,yF),依题意,
y=k1x+3,
由y92+x2=1
⇒(k21+9)x2+6k1x=0,①
解得 x=0 或 x=-k216+k19. 所以 xE=-k216+k19,yE=k1-k216+k19+3=2k721-+39k21, ∴E-k126+k19,2k721-+39k21. ∵k1k2=-9,∴k2=-k91.用 k2=-k91替代①中的 k1, 同理可得 Fk126+k19,3kk2121- +297. 显然 E,F 关于原点对称,∴直接 EF 必过原点 O.
曲线的交点问题(师生共研)
例 2 (2015 年南京模拟)设 0<θ<π2,曲线 x2sin θ+y2cos θ=1 和 x2cos θ-y2sin θ=1 有 4 个不同的交点.
(1)求θ的取值范围; (2)证明:这4个点共圆,并求圆的半径的取值范围.
解 析 (1) 两 曲 线 的 交 点 坐 标 (x , y) 满 足 方 程 组 x2sin θ+y2cos θ=1, x2=sin θ+cos θ, x2cos θ-y2sin θ=1, 即y2=cos θ-sin θ.
D.以上答案都不对
(2)(2015年广州模拟)下列说法正确的是( )
A.△ABC中,已知A(1,1),B(4,1),C(2,3),则AB边上的高的方

曲线的参数方程和与普通方程的互化

曲线的参数方程和与普通方程的互化

当点P在圆上运动时,求线段PA中点M的轨迹方程,
并说明点M的轨迹图形是什么?
解:取xOP,则圆的参数方程为:
xy22csoins.,(为参数)
设点M的坐标为x( , y),则点P的坐标
为(2cos,2sin),由中点公式可得:
x 2 c o 6 s c o 3 s ,y 2 s i n s in
解: 椭圆的参数方程为:
xy 42csoins.,(为参数)
设点M的坐标为x( , y),则点P的坐标
为(4cos,2sin),由中点公式可得:
x 4 co 6 s 2 co 3 ,y s 2 si n 2 si 1 n
2
2
所以,点M的轨迹的参数方程是
xy2scinos1.3( , 为参数)
求 M到 直 线 x+2y-10=0的 最 小 距 离 。
双曲线的参数方程
a x2 2-y b2 2=1(a>0,b>0)的 参 数 方 程 为 :
xyabstaenc(为参数)
说明:
双se曲c2线的参1 数t方an程2可相以比由较方而程得到,ax 22所 以by 22双曲1 线与的三参角数恒方等程式
(2) xy53csionstt(t为参数)
(3)x1 3cos (为参数) y2 5sin
椭圆的参数方程:
x轴:x2 a2
y2 b2
1,
x a cos y bsin
y轴:x2 b2
y2 a2
1,
x b cos y a sin
中心在 C(x0, y0)的椭圆的
参数方程是 yx
x0 y0
x,y范围与y=x2中x,y的范围相同,
x t
且以

§9.8 曲线与方程

§9.8 曲线与方程

§9.8曲线与方程1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:(1)曲线上点的坐标都是________________.(2)以这个方程的解为坐标的点都是______________.那么这个方程叫做____________,这条曲线叫做_____________________________________________.2.求动点的轨迹方程的一般步骤(1)建系——建立适当的坐标系.(2)设点——设轨迹上的任一点P(x,y).(3)列式——列出动点P所满足的关系式.(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为x,y的方程式,并化简.(5)证明——证明所求方程即为符合条件的动点轨迹方程.3.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的__________,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点,方程组________,两条曲线就没有交点.(2)两条曲线有交点的________条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.[难点正本疑点清源]1.求轨迹方程的常用方法(1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0;(2)待定系数法:已知所求曲线的类型,求曲线方程——先根据条件设出所求曲线的方程,再由条件确定其待定系数;(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(4)代入转移法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而变化,并且Q(x0,y0)又在某已知曲线上,则可先用x,y的代数式表示x0,y0,再将x0,y0代入已知曲线得要求的轨迹方程;(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x,y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.2.曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.1.与两条坐标轴的距离的积是常数k (k >0)的点的轨迹方程是______________. 2.直角坐标平面xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是____________.3.已知点A (-2,0)、B (3,0),动点P (x ,y )满足P A →·PB →=x 2-6,则点P 的轨迹方程是__________.4.已知两定点A (-2,0)、B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积为________.5.方程(2x +3y -1)(x -3-1)=0表示的曲线是( )A .两条直线B .两条射线C .两条线段D .一条直线和一条射线题型一 直接法求轨迹方程例1 已知M (4,0),N (1,0),若动点P 满足MN →·MP →=6|NP →|. (1)求动点P 的轨迹C 的方程;(2)设Q 是曲线C 上任意一点,求Q 到直线l :x +2y -12=0的距离的最小值. 探究提高 (1)用直接法求轨迹方程的步骤:建系,设标,列方程化简.其关键是根据条件列出方程来.(2)求轨迹方程时,最后要注意它的完备性与纯粹性,多余的点要去掉,遗漏的点要补上.(2011·课标全国)在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB →∥OA →,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C . (1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值. 题型二 相关点法(坐标转移法)求轨迹方程例2 已知△ABC ,A (-2,0),B (0,-2),第三个顶点C 在曲线y =3x 2-1上移动,求△ABC 的重心的轨迹方程.探究提高 在上述问题中,动点C (主动点)在已知曲线上运动,动点G (被动点)依赖点C 的运动而运动,这种求轨迹问题所应用的方法称为“相关点法”. 其基本步骤为:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y );(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.已知长为1+2的线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,P是AB 上一点,且AP →=22PB →,求点P 的轨迹C 的方程.题型三 定义法求轨迹方程例3 已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.探究提高 求曲线的轨迹方程时,应尽量地利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量,提高解题速度与质量.如图,点A 为圆形纸片内不同于圆心C 的定点,动点M 在圆周上,将纸片折起,使点M 与点A 重合,设折痕m 交线段CM 于点N .现 将圆形纸片放在平面直角坐标系xOy 中,设圆C :(x+1)2+y2=4a2 (a>1),A(1,0),记点N 的轨迹为曲线E . (1)证明曲线E 是椭圆,并写出当a=2时该椭圆的标准方程;(2)设直线l 过点C 和椭圆E 的上顶点B ,点A 关于直线l 的对称点为点Q ,若椭圆E 的离心率e ∈ ,求点Q 的纵坐标的取值范围.23.参数法求轨迹方程试题:(14分)已知抛物线y 2=4px (p >0),O 为顶点,A 、B 为抛物线上的两动点,且满足OA ⊥OB ,如果OM ⊥AB 于M 点,求点M 的轨迹方程.审题视角 (1)点M 的运动是由A 点的运动引起的,而A 的变动又和OA 的斜率有关.(2)若OA 的斜率确定,A 的坐标确定,M 的坐标也确定,所以可选OA 的斜率为参数. 规范解答解 设点M 的坐标为(x ,y),直线OA 的方程为y=kx , [1分] 显然k ≠0,则直线OB 的方程为y =-1kx . [2分]由⎩⎪⎨⎪⎧y =kx ,y 2=4px , 解得A 点的坐标为⎝⎛⎭⎫4p k 2,4p k ,类似地可得B 点的坐标为(4pk 2,-4pk ), [6分]从而知当k ≠±1时,k AB =4p ⎝⎛⎭⎫1k +k 4p ⎝⎛⎭⎫1k 2-k 2=11k -k.故得直线AB 的方程为y +4pk =11k-k (x -4pk 2),即⎝⎛⎭⎫1k -k y +4p =x , ① [9分]直线OM 的方程为y =-⎝⎛⎭⎫1k -k x . ② [10分] 可知M 点的坐标同时满足①②, 由①及②消去k 得4px =x 2+y 2, 即(x -2p )2+y 2=4p 2 (x ≠0),[12分]当k =±1时,容易验证M 点的坐标仍适合上述方程.故点M 的轨迹方程为(x -2p )2+y 2=4p 2(x ≠0),它表示以点(2p,0)为圆心,以2p 为半径的圆.[14分]批阅笔记 (1)本题通过引入参数、用参数法求解较为简捷.但很多考生找不到破解问题的切入口,无从入手.(2)个别考生由于参数选取不恰当,造成计算繁杂冗长,难以求出最终结论.(3)应用参数法求轨迹方程时,首先要选择恰当的参数,参数必须能刻画动点的运动变化,而且与动点坐标有直接的内在联系.如果需要,还应顾及消去参数的方便,选定参数之后,即可当作已知数,运用轨迹条件,求出动点的坐标,即得轨迹的参数方程,消去参数即得轨迹的普通方程.方法与技巧 求轨迹的方法: (1)直接法如果动点满足的几何条件本身就是一些几何量(如距离与角)的等量关系,或这些几何条件简单明了且易于表达,我们只需把这种关系转化为x 、y 的等式就得到曲线的轨迹方程. (2)定义法其动点的轨迹符合某一基本轨迹(如直线与圆锥曲线)的定义,则可根据定义采用设方程,求方程系数得到动点的轨迹方程.在判断轨迹符合哪一个基本轨迹时,常常用几何性质列出动点满足的距离关系后,可判断轨迹是否满足圆锥曲线的定义.定义法与其它求轨迹方程的思维方法不同之处在于:此方法通过曲线定义直接判断出所求曲线轨迹类型,再利用待定系数法求轨迹方程. (3)相关点法当所求动点M 是随着另一动点P (称之为相关点)而运动.如果相关点P 所满足某一曲线方程,这时我们可以用动点坐标表示相关点坐标,再把相关点代入曲线方程,就把相关点所满足的方程转化为动点的轨迹方程,这种求轨迹的方法叫做相关点法或坐标转移法. 失误与防范1.求曲线方程时有已知曲线类型与未知曲线类型,一般当已知曲线类型时一般用待定系数法求方程;当未知曲线类型时常用求轨迹方程的方法求曲线方程. 2.求出方程后,一定要分析轨迹与方程是否具备纯粹性和完备性.§9.8 曲线与方程(时间:60分钟)A 组 专项基础训练题组 一、选择题1.f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是 ( )A.x 29-y 216=1B.x 216-y 29=1C.x 29-y 216=1 (x >3)D.x 216-y 29=1 (x >4) 3.动点P 为椭圆x 2a 2+y2b 2=1 (a >b >0)上异于椭圆顶点(±a,0)的一点,F 1、F 2为椭圆的两个焦点,动圆C 与线段F 1P 、F 1F 2的延长线及线段PF 2相切,则圆心C 的轨迹为( ) A .椭圆B .双曲线C .抛物线D .直线 4.有一动圆P 恒过定点F (a,0) (a >0)且与y 轴相交于点A 、B ,若△ABP 为正三角形,则点P 的轨迹为( )A .椭圆B .双曲线C .抛物线D .圆二、填空题5.过点P (1,1)且互相垂直的两条直线l 1与l 2分别与x 、y 轴交于A 、B 两点,则AB 中点M 的轨迹方程为____________.6.点P 到点(1,1)和到直线x +2y =3的距离相等,则点P 的轨迹方程为____________. 7.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是_______________________________________________________________________. 三、解答题8.有一种大型商品,A 、B 两地都有出售,且价格相同,某地居民从两地之一购得商品后,回运的费用是:每单位距离A 地的运费是B 地运费的3倍,已知A 、B 两地间的距离为10千米,顾客选A 或选B 购买这件商品的标准是:包括运费和价格的总费用较低,求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点. B 组 专项能力提升题组 一、选择题1.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1 (x >1)B .x 2-y28=1 (x <-1)C .x 2+y 28=1 (x >0) D .x 2-y 210=1 (x >1)2.(2010·重庆)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A .直线B .椭圆C .抛物线D .双曲线 3.点P 是以F 1、F 2为焦点的椭圆上一点,过焦点作∠F 1PF 2外角平分线的垂线.垂足为M ,则点M 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线二、填空题4.已知⊙O 的方程是x 2+y 2-2=0,⊙O ′的方程是 x 2+y 2-8x +10=0,若由动点P 向⊙O 和⊙O ′所引的切线长相等,则动点P 的轨迹方程是___________________. 5.如图所示,正方体ABCD —A1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13AB ,点P 在平面ABCD上,且动点P 到直线A 1D 1的距离的平方与P 到点 M 的距离的平方差为1,在平面直角坐标系 xAy 中,动点P 的轨迹方程是____________.6. P 是椭圆x 2a 2+y 2b2=1上的任意一点,F 1、F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是________________________________________. 三、解答题7.已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C . (1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P 、Q ,交直线l 1于点R ,求RP →·RQ →的最小值. 8.(2011·陕西)如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.答案要点梳理1.(1)这个方程的解 (2)曲线上的点 曲线的方程 方程的曲线 3.(1)公共解 无解 (2)充要 基础自测1.xy =±k 2.x +2y -4=0 3.y 2=x 4.4π 5.D 题型分类·深度剖析例1 解 (1)设动点P (x ,y ), 则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ),由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,即x 24+y 23=1.∴点P 的轨迹方程是椭圆C :x 24+y 23=1.(2)由几何性质意义知,椭圆C 与平行于l 的切线l ′的距离等于Q 与l 的距离的最小值.设l ′:x +2y +D =0.将其代入椭圆方程消去x ,化简得:16y 2+12Dy +3(D 2-4)=0. ∴Δ=144D 2-192(D 2-4)=0⇒D =±4,l ′和l 的距离的最小值为|12±4|5.∴点Q 与l 的距离的最小值为855.变式训练1 解 (1)设M (x ,y ),由已知得B (x ,-3).又A (0,-1), 所以MA →=(-x ,-1-y ),MB →=(0,-3-y ),AB →=(x ,-2). 再由题意可知(MA →+MB →)·AB →=0,即(-x ,-4-2y )·(x ,-2)=0.所以曲线C 的方程为y =14x 2-2.(2)设P (x 0,y 0)为曲线C :y =14x 2-2上一点.因为y ′=12x ,所以l 的斜率为12x 0.因此直线l 的方程为y -y 0=12x 0(x -x 0),即x 0x -2y +2y 0-x 20=0.所以O 点到l 的距离d =|2y 0-x 20|x 20+4.又y 0=14x 20-2,所以d =12x 20+4x 20+4=12⎝ ⎛⎭⎪⎫x 20+4+4x 20+4≥2. 当x 0=0时取等号,所以O 点到l 距离的最小值为2.例2 解 设△ABC 的重心G 的坐标为(x ,y ),顶点C 的坐标为(x 1,y 1),∴y 1=3x 21-1.①由三角形的重心坐标公式 ⎩⎨⎧x =x 1-23,y =y 1-23,∴⎩⎪⎨⎪⎧x 1=3x +2,y 1=3y +2. 代入①中,并整理,得y =9x 2+12x +3. ∴△ABC 的重心的轨迹方程为 y =9x 2+12x +3.变式训练2 解 设A (x 0,0),B (0,y 0), P (x ,y ),AP →=22PB →, 又AP →=(x -x 0,y ),PB →=(-x ,y 0-y ),所以x -x 0=-22x ,y =22(y 0-y ),得x 0=⎝⎛⎭⎫1+22x ,y 0=(1+2)y .因为|AB |=1+2,即x 20+y 20=(1+2)2,所以⎣⎡⎦⎤⎝⎛⎭⎫1+22x 2+[(1+2)y ]2=(1+2)2,化简得x 22+y 2=1.∴点P 的轨迹方程为x22+y 2=1.例3 解 如图所示,以O1O2的中点O 为原点, O1O2所在直线为x 轴建立平面直角坐标系.由|O1O2|=4,得O1(-2,0)、O2(2,0).设动圆M 的 半径为r ,则由动圆M 与圆O1内切,有|MO1|=r-1; 由动圆M 与圆O2外切,有|MO2|=r+2.∴|MO2|-|MO1|=3.∴点M 的轨迹是以O1、O2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29-4y 27=1 (x ≤-32).变式训练3 (1)证明 依题意,直线m 为线段 AM 的垂直平分线,∴|NA|=|NM|. ∴|NC|+|NA| =|NC|+|NM|=|CM|=2a>2,∴N 的轨迹是以C 、A 为焦点,长轴长为2a ,焦距为2的椭圆. 当a=2时,长轴长为2a=4,焦距为2c=2, ∴b2=a2-c2=3.∴椭圆的标准方程为x 24+y 23=1.(2)解 设椭圆的标准方程为x 2a 2+y 2b2=1 (a >b >0).由(1)知:a 2-b 2=1.又C (-1,0),B (0,b ),∴直线l 的方程为x -1+yb=1.即bx -y +b =0.设Q (x ,y ),因为点Q 与点A (1,0)关于直线l 对称,∴⎩⎨⎧yx -1·b =-1,b ·x +12-y2+b =0.消去x 得y =4bb 2+1.∵离心率e ∈⎣⎡⎦⎤12,32,∴14≤e 2≤34,即14≤1a 2≤34.∴43≤a 2≤4. ∴43≤b 2+1≤4,即33≤b ≤3, ∵y =4b b 2+1=4b +1b≤2,当且仅当b =1时取等号.又当b =3时,y =3;当b =33时,y =3,∴3≤y ≤2.∴点Q 的纵坐标的取值范围是[3,2]. 课时规范训练 A 组1.C 2.C 3.D 4.B 5.x +y -1=0 6.2x -y -1=0 7.x 2+y 2=4 (x ≠±2) 8.解 如图所示,以AB 所确定的直线为 x 轴,AB 中点O 为坐标原点建立平面直角坐标系,则A (-5,0),B (5,0).设某地P 的坐标为(x ,y ),且P 地居民选择A 地购 买商品便宜,并设A 地的运费为3a 元/千米, B 地的运费为a 元/千米. ∴价格+x A 地运费≤价格+x B 地运费, 即3a (x +5)2+y 2≤a (x -5)2+y 2. ∵a >0,∴3(x +5)2+y 2≤(x -5)2+y 2.两边平方,得9(x +5)2+9y 2≤(x -5)2+y 2,即⎝⎛⎭⎫x +2542+y 2≤⎝⎛⎭⎫1542. ∴以点C ⎝⎛⎭⎫-254,0为圆心,154为半径的圆是这两地购货的分界线;圆C 内居民从A地购货便宜;圆C 外的居民从B 地购货便宜;圆C 上的居民从A 、B 两地购货的总费用相等,可随意从A 、B 两地之一购货. B 组1.A 2.D 3.A 4.x =32 5.y 2=23x -19 6.x 24a 2+y 24b 2=1. 7.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离,∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线,∴动点C 的轨迹方程为x 2=4y . (2)由题意知,直线l 2的方程可设为y =kx +1 (k ≠0),与抛物线方程联立消去y , 得x 2-4kx -4=0. 设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=4k ,x 1x 2=-4. 又易得点R 的坐标为⎝⎛⎭⎫-2k ,-1, ∴RP →·RQ →=⎝⎛⎭⎫x 1+2k ,y 1+1·⎝⎛⎭⎫x 2+2k ,y 2+1 =⎝⎛⎭⎫x 1+2k ⎝⎛⎭⎫x 2+2k +(kx 1+2)(kx 2+2) =(1+k 2)x 1x 2+⎝⎛⎭⎫2k +2k (x 1+x 2)+4k2+4=-4(1+k 2)+4k ⎝⎛⎭⎫2k +2k +4k 2+4 =4⎝⎛⎭⎫k 2+1k 2+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.8.解 (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P =x ,y P =54y , ∵P 在圆上,∴x 2+(54y )2=25,即轨迹C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3), 设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1,即x 2-3x -8=0. ∴x 1=3-412,x 2=3+412.∴线段AB 的长度为 |AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+k 2)(x 1-x 2)2=4125×41=415。

2.1.1曲线与方程

2.1.1曲线与方程
(3)第二、四象限两轴夹角平分线上的点的坐标都满足 x+y =0,反之,以方程 x+y=0 的解为坐标的点都在第二、四 象限两轴夹角的平分线上,因此第二、 四象限两轴夹角平分 线上的点的轨迹方程是 x+y=0.
研一研· 问题探究、课堂更高效
2.1.1
探究点二 由方程判断曲线 例 2 下列方程表示如图所示的直线,对吗? 为什么?不对请改正. (1) x- y=0;(2)x2-y2=0; (3)|x|-y=0.
2.1.1
曲线与方程
1.对于曲线和方程的概念要了解. 2.理解曲线上的点与方程的解之间的一一对应关系,领会 “曲线的方程”与“方程的曲线”的涵义.
通过直线与方程、 圆与方程理解曲线与方程的关系; 利用数形结合,直观体会曲线上点的坐标与方程解的关 系.
研一研· 问题探究、课堂更高效
2.1.1
探究点一 曲线与方程的概念 引言:在必修 2 的直线与方程、圆与方程中,讨论了曲线 与方程的关系,同学们有了一定的感性认识.这一节的主 要目的是对曲线与方程的关系有一个更加系统、完整的认 识. 问题 1 直线 y= x 上任一点 M 到两坐标轴距离相等吗?
解 (1)中曲线上的点不全是方程 x- y=0 的解, 如点 (-1,-1)等,即不符合“曲线上的点的坐标都是方程 的解”这一结论; (2)中,尽管“曲线上的坐标都是方程的解”,但以方程 x2-y2=0 的解为坐标的点不全在曲线上,如点(2,-2) 等,即不符合“以方程的解为坐标的点都在曲线上”这 一结论;
研一研· 问题探究、课堂更高效
2.1.1
跟踪训练 2 方程 x2+xy=x 的曲线是 A.一个点 C.一条直线 B.一个点和一条直线 D.两条直线
( D )
解析 ∵方程可化为 x(x+y)=x,即 x(x+y-1)=0, ∴x=0 或 x+y-1=0,因此方程的曲线是两条直线

高中数学2-4曲线与方程新人教B版选择性必修第一册

高中数学2-4曲线与方程新人教B版选择性必修第一册

跟踪训练3 一个动点P到直线x=8的距离是它到点A(2,0)的距离的
2倍.求动点P的轨迹方程.
解析:设P(x,y),则|8-x|=2|PA|.
则|8-x|=2 x − 2 2 + y − 0 2 ,
化简,得3x2+4y2=48,
故动点P的轨迹方程为3x2+4y2=48.
题型4 代入法求曲线的方程
题型1 曲线与方程的概念
例1 (1)命题“以方程f(x,y)=0的解为坐标的点都在曲线C上”是
命题“曲线C的方程是f(x,y)=0”的(
)
A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案:B
解析:根据曲线方程的概念,“曲线C的方程是f(x,y)=0”
包含“曲线C上的点的坐标都是方程f(x,y)=0的解”和“以方
ON为两边作平行四边形MONP,求点P的轨迹.
状元随笔 方法一:由平行四边形性质可知|MP|=|ON|=2,满足圆
的定义,注意去掉不满足条件的点;
方法二:根据对角线互相平分,利用代入法可求出轨迹方程.
题型3 直接法求曲线方程
例3 已知两定点A(-2,0),B(1,0),如果动点P满足条件|PA|=
2|PB|,则动点P的轨迹所围成的图形的面积等于(
)
A.9π
B.8π
C.4π
D.π
答案:C
解 析 : 设 P(x , y) , 由 |PA| = 2|PB| , 知 x + 2 2 + y 2 =
2 x − 1 2 + y 2 ,化简整理,得(x-2)2+y2=4,
【思考探究】
1.为什么说“建立平面直角坐标系是解析几何的基础”?

曲线与方程的知识点

曲线与方程的知识点

第八节曲线与方程[备考方向要明了]考什么怎么考了解方程的曲线与曲线的方程的对应关系.轨迹方程的有关问题是高考的一个重要考向,通常以解答题形式出现,一般是第一问求轨迹方程,第二问考查直线与所求轨迹的位置关系,难度较大,如2012年辽宁T20,湖南T21等.[归纳·知识整合]1.曲线与方程一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.曲线可以看作是符合某条件的点的集合,也可看作是满足某种条件的动点的轨迹,因此,此类问题也叫轨迹问题.[探究] 1.若曲线与方程的对应关系中只满足(2)会怎样?提示:若只满足“以这个方程的解为坐标的点都是曲线上的点”,则以这个方程的解为坐标的点的集合形成的曲线可能是已知曲线的一部分,也可能是整条曲线.2.动点的轨迹方程和动点的轨迹有什么区别?提示:“求动点的轨迹方程”和“求动点的轨迹”是不同的,前者只需求出轨迹的方程,标出变量x,y的范围;后者除求出方程外,还应指出方程表示的曲线的图形,并说明图形的形状、位置、大小等有关数据.2.求曲线方程的基本步骤3.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点,方程组无解,两条曲线就没有交点.(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.[自测·牛刀小试]1.已知M (-2,0),N (2,0),|PM |-|PN |=4,则动点P 的轨迹是( ) A .双曲线 B .双曲线左支 C .一条射线D .双曲线右支解析:选C 根据双曲线的定义知动点P 的轨迹类似双曲线,但不满足2c >2a >0的条件,故动点P 的轨迹是一条射线.2.设定点F 1(0,-3),F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a (a >0),则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段解析:选D 当a =3时,点P 的轨迹是线段,当a ≠3时,点P 的轨迹是椭圆. 3.一条线段AB 的长为2,两个端点A 和B 分别在x 轴和y 轴上滑动,则线段AB 的中点的轨迹是( )A .双曲线B .双曲线的一分支C .圆D .椭圆解析:选C 法一:设A (a,0),B (0,b ),AB 中点为M (x ,y )则a =2x ,b =2y ,由AB =2,得(2x -0)2+(0-2y )2=2,即x 2+y 2=1.法二:当A ,B 分别在x ,y 轴上时,由△AOB 是直角三角形斜边上的中线等于斜边的一半可知,中点到原点的距离为1.当点A 或B 与原点重合时,中点到原点的距离也是1,故中点轨迹为单位圆.4. 已知点O (0,0),A (1,-2),动点P 满足|P A |=3|PO |,则P 点的轨迹方程是______________________.解析:设P 点的坐标为(x ,y ),则(x -1)2+(y +2)2=3x 2+y 2,整理得8x 2+8y 2+2x-4y -5=0.答案:8x 2+8y 2+2x -4y -5=05.已知两定点A (1,1),B (-1,-1),动点P 满足PA ·PB =x 22,则点P 的轨迹是______________.解析:设点P (x ,y ),则PA =(1-x,1-y ),PB =(-1-x ,-1-y ),所以PA ·PB =(1-x )(-1-x )+(1-y )·(-1-y )=x 2+y 2-2.由已知x 2+y 2-2=x 22, 即x 24+y 22=1,所以点P 的轨迹为椭圆. 答案:椭圆直接法求轨迹方程[例1] 已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0). (1)求动点P 的轨迹C 的方程;(2)试根据λ的取值情况讨论轨迹C 的形状.[自主解答] (1)由题设知直线PM 与PN 的斜率存在且均不为零,所以k PM ·k PN =y x +1·yx -1=λ, 整理得x 2-y 2λ=1(λ≠0,x ≠±1). 即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1). (2)①当λ>0时,轨迹C 为中心在原点、焦点在x 轴上的双曲线(除去顶点);②当-1<λ<0时,轨迹C 为中心在原点、焦点在x 轴上的椭圆(除去长轴两个端点); ③当λ=-1时,轨迹C 为以原点为圆心、1为半径的圆(除去点(-1,0),(1,0)); ④当λ<-1时,轨迹C 为中心在原点、焦点在y 轴上的椭圆(除去短轴的两个端点).保持例题条件不变,若λ=-2,过定点F (0,1)的直线l 与轨迹C 交于A ,B 两点,求△AOB 的面积的最大值.解:由例1(2)知,当λ=-2时,轨迹C 为椭圆,其方程为x 2+y 22=1(x ≠±1). 由题意知,l 的斜率存在.设l 的方程为y =kx +1,代入椭圆方程中整理得 (k 2+2)x 2+2kx -1=0.(*)设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程(*)的两个实根, 则x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2.设d 为点O 到直线AB 的距离, 则S △OAB =12|AB |·d =121+k 2|x 1-x 2|·1k 2+1=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2=124k 2(k 2+2)2+4k 2+2=2·k 2+1(k 2+2)2=2·1(k 2+1)+1k 2+1+2≤ 22, 当且仅当k =0,上式取等号. 故当k =0时,△OAB 的面积取最大值为22. ———————————————————直接法求轨迹方程如果动点满足的几何条件是一些与定点、定直线有关的几何量的等量关系,而该等量关系又易于表达成含x ,y 的等式,从而可直接得到轨迹方程,这种求轨迹的方法称为直接法.1.已知点A (-2,0),B (3,0),若动点P 满足PA ·PB =2,则动点P 的轨迹方程为________.解析:设P 的坐标为(x ,y )则PA =(-2-x ,-y ,)PB =(3-x ,-y ).由PA ·PB =2,得(-2-x )(3-x )+y 2=2,即x 2+y 2-x -8=0.答案:x 2+y 2-x -8=0定义法求轨迹方程[例2] 已知定点A (0,-1),点B 在圆F :x 2+(y -1)2=16上运动,F 为圆心,线段AB 的垂直平分线交BF 于P .(1)求动点P 的轨迹E 的方程;(2)若曲线Q :x 2-2ax +y 2+a 2=1被轨迹E 包围着,求实数a 的最小值. [自主解答] (1)由题意得|P A |=|PB |. 则|P A |+|PF |=|PB |+|PF |=4>|AF |=2,所以动点P 的轨迹E 是以A 、F 为焦点的椭圆. 设该椭圆的方程为y 2a 2+x 2b2=1(a >b >0),则2a =4,2c =2,即a =2,c =1,故b 2=a 2-c 2=3. 所以动点P 的轨迹E 的方程为y 24+x 23=1.(2)x 2-2ax +y 2+a 2=1即(x -a )2+y 2=1, 则曲线Q 是圆心为(a,0),半径为1的圆.而轨迹E 为焦点在y 轴上的椭圆,其左、右顶点分别为(-3,0),(3,0). 若曲线Q 被轨迹E 包围着,则-3+1≤a ≤3-1, 故a 的最小值为-3+1. ——————————————————— 定义法求轨迹方程及其注意点(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程;(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.2.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,则椭圆的另一个焦点F 的轨迹方程是什么?解:由题意知|AC |=13,|BC |=15,|AB |=14,又∵|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2,故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.又c =7,a =1,b 2=48,故点F 的轨迹方程为y 2-x 248=1(y ≤-1).3.点P (-3,0)是圆C :x 2+y 2-6x -55=0内一定点,动圆M 与已知圆相内切且过P 点,求圆心M 的轨迹方程.解:已知圆为(x -3)2+y 2=64,其圆心C (3,0),半径为8,由于动圆M 过P 点, 所以|MP |等于动圆的半径r ,即|MP |=r .又圆M 与已知圆C 相内切,所以圆心距等于半径之差即|MC |=8-r . 从而有|MC |=8-|MP |,即|MC |+|MP |=8.根据椭圆的定义,动点M 到两定点C ,P 的距离之和为定值8>6=|CP |, 所以动点M 的轨迹是椭圆,并且2a =8,a =4;2c =6,c =3;b 2=16-9=7, 因此M 点的轨迹方程为x 216+y 27=1.代入法(相关点法)求轨迹方程[例3] (2012·辽宁高考)如图所示,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点.C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等.证明:t 21+t 22为定值.[自主解答] (1)设A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),① 直线A 2B 的方程为y =-y 1x 1-a (x -a ),②由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b2⎝⎛⎭⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0).(2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2||y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以 b 2x 21⎝⎛⎭⎫1-x 21a 2=b 2x 22⎝⎛⎭⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2. 从而y 21+y 22=b 2,因此t 21+t 22=a 2+b 2为定值.——————————————————— 代入法(相关点法)求轨迹方程的适用条件动点所满足的条件不易得出,但形成轨迹的动点P (x ,y )却随另一动点Q (x ′,y ′)的运动而有规律地运动,而且动点Q 的轨迹方程为给定的或容易求得的,则可先将x ′,y ′表示成x ,y 的式子,再代入Q 的轨迹方程,整理化简即得动点P 的轨迹方程.4.已知圆C 的方程为x 2+y 2=4.(1)直线l 过点P (1,2),且与圆C 交于A ,B 两点,若|AB |=23,求直线l 的方程; (2)过圆C 上一动点M (不在x 轴上)作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ =OM +ON ,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.解:(1)当直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),两交点距离为23,满足题意.若直线l 不垂直于x 轴,设其方程为y -2=k (x -1),即kx -y -k +2=0.设圆心到此直线的距离为d ,则23=24-d 2,得d =1.所以|-k +2|k 2+1=1,解得k =34,故所求直线方程为3x -4y +5=0.综上所述,所求直线方程为3x -4y +5=0或x =1.(2)设点M 的坐标为(x 0,y 0)(y 0≠0),Q 点坐标为(x ,y ),则N 点坐标是(0,y 0). 因为OQ =OM +ON ,所以(x ,y )=(x 0,2y 0)即x 0=x ,y 0=y2.又因为M 是圆C 上一点,所以x 20+y 20=4,即x 2+y 24=4(y ≠0). 所以Q 点的轨迹方程是x 24+y 216=1(y ≠0),这说明轨迹是中心在原点,焦点在y 轴上,长轴为8、短轴为4且除去短轴端点的椭圆.1个主题——坐标法求轨迹方程通过坐标法,由已知条件求轨迹方程,通过对方程的研究,明确曲线的位置、形状以及性质是解析几何需要完成的两大任务,是解析几何的核心问题,也是高考的热点之一.3种方法——求轨迹方程的三种常用方法 明确求轨迹方程的适用条件是求轨迹方程的关键.(1)直接法:如果动点满足的几何条件本身是一些几何量(如距离与角等)的等量关系,或这些几何条件简单明了且易于表达,就可运用直接法求轨迹方程.在运用直接法求轨迹方程时要注意:化简方程的过程中有时破坏了方程的同解性,此时要补上遗漏点或删除多余的点,这是不可忽视的.(2)定义法:求轨迹方程时,应尽量利用几何条件探求轨迹的类型,应用定义法,这样可以减少运算量,提高解题速度.(3)代入法(相关点法):当所求动点M 是随着另一动点P (称之为相关点)而运动,且相关点P 满足一曲线方程时,就可用代入法求轨迹方程.此时应注意:代入法求轨迹方程是将x ′,y ′表示成x ,y 的式子,同时要注意x ′,y ′的限制条件.数学思想——分类讨论思想在判断方程表示曲线类型中的应用分类讨论思想是中学数学解题的重要思想,解析几何中许多问题涉及到分类讨论,如轨迹方程中轨迹类型的确定、最值问题、参数范围问题等都可能遇到因变量范围不同而结果就不同的情形,因此要对变量进行讨论,才能确定最后的结果.分类讨论题的一般步骤:确定分类的标准及对象→进行合理地分类→逐类进行讨论→归纳各类结果.[典例] (2011·湖北高考)平面内与两定点A 1(-a,0)、A 2(a,0)(a >0)连线的斜率之积等于非零常数m 的点的轨迹,加上A 1、A 2两点所成的曲线C 可以是圆、椭圆或双曲线.(1)求曲线C 的方程,并讨论C 的形状与m 值的关系;(2)当m =-1时,对应的曲线为C 1;对给定的m ∈(-1,0)∪(0,+∞),对应的曲线为C 2.设F 1,F 2是C 2的两个焦点,试问:在C 1上,是否存在点N ,使得△F 1NF 2的面积S =|m |a 2.若存在,求tan ∠F 1NF 2的值;若不存在,请说明理由.[解] (1)设动点为M ,其坐标为(x ,y ),当x ≠±a 时,由条件可得kMA 1·kMA 2=y x +a ·y x -a =y 2x 2-a 2=m ,即mx 2-y 2=ma 2(x ≠±a ).又A 1(-a,0),A 2(a,0)的坐标满足mx 2-y 2=ma 2, 故依题意,曲线C 的方程为mx 2-y 2=ma 2.当m <-1时,曲线C 的方程为x 2a 2+y 2-ma 2=1,C 是焦点在y 轴上的椭圆;当m =-1时,曲线C 的方程为x 2+y 2=a 2,C 是圆心在原点的圆;当-1 <m <0时,曲线C 的方程为x 2a 2+y 2-ma 2=1,C 是焦点在x 轴上的椭圆;当m >0时,曲线C 的方程为x 2a 2-y 2ma 2=1,C 是焦点在x 轴上的双曲线.(2)由(1)知,当m =-1时,C 1的方程为x 2+y 2=a 2; 当m ∈(-1,0)∪(0,+∞)时,C 2的两个焦点分别为F 1(-a 1+m ,0),F 2(a 1+m ,0).对于给定的m ∈(-1,0)∪(0,+∞),C 1上存在点N (x 0,y 0)(y 0≠0)使得△F 1NF 2的面积S=|m |a 2的充要条件是⎩⎪⎨⎪⎧x 20+y 20=a 2,y 0≠0, ①12·2a 1+m |y 0|=|m |a 2. ②由①得0<|y 0|≤a ,由②得|y 0|=|m |a 1+m.当0<|m |a 1+m≤a ,即1-52≤m <0或0<m ≤1+52时,存在点N ,使S =|m |a 2; 当|m |a1+m>a ,即-1<m <1-52或m >1+52时,不存在满足条件的点N . 当m ∈⎣⎢⎡⎭⎪⎫1-52,0∪⎝ ⎛⎦⎥⎤0,1+52时,由NF 1=(-a 1+m -x 0,-y 0),NF 2=(a 1+m -x 0,-y 0),可得NF 1·NF 2=x 20-(1+m )a 2+y 20=-ma 2,设|NF 1|=r 1,|NF 2|=r 2,∠F 1NF 2=θ,则由NF 1·NF 2=r 1r 2cos θ=-ma 2,可得r 1r 2=-ma 2cos θ,从而S =12r 1r 2sin θ=-ma 2sin θ2cos θ=-12ma 2tan θ,于是由S =|m |a 2,可得-12ma 2tan θ=|m |a 2,即tan θ=-2|m |m .综上可得, 当m ∈⎣⎢⎡⎭⎪⎫1-52,0时,在C 1上,存在点N ,使得S =|m |a 2,且tan ∠F 1NF 2=2;当m ∈⎝⎛⎦⎥⎤0,1+52时,在C 1上,存在点N ,使得S =|m |a 2,且tan ∠F 1NF 2=-2;当m ∈⎝ ⎛⎭⎪⎫-1,1-52∪⎝ ⎛⎭⎪⎫1+52,+∞时,在C 1上,不存在满足条件的点N .[题后悟道]1.对参数m 的分类讨论是本题的一个特色,同时本题的求解思维需要考生回归课本,真正理解和体会解析几何中运动变化的参数的存在价值.2.解析几何中对几何图形的探究,对轨迹方程的探究,其实就是对方程问题中涉及的参数进行分类讨论与整合归纳,要求对参数讨论遵循“不重不漏”的原则.[变式训练]设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标.解:设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1), 可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |.①因为点A 在单位圆上运动,所以x 20+y 20=1.②将①式代入②式即得所求曲线C 的方程为x 2+y 2m 2=1(m >0,且m ≠1). 因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0);当m >1时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,-m 2-1),(0,m 2-1).一、选择题(本大题共6小题,每小题5分,共30分) 1.方程(x -y )2+(xy -1)2=0的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点 D .以上答案都不对解析:选C(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.故⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =-1,y =-1.2.已知点O (0,0),A (1,2),动点P 满足|OP +AP |=2,则P 点的轨迹方程是( ) A .4x 2+4y 2-4x -8y +1=0 B .4x 2+4y 2-4x -8y -1=0 C .8x 2+8y 2+2x +4y -5=0 D .8x 2+8y 2-2x +4y -5=0解析:选A 设P 点的坐标为(x ,y ),则OP =(x ,y ),AP =(x -1,y -2),OP +AP=(2x -1,2y -2).所以(2x -1)2+(2y -2)2=4,整理得4x 2+4y 2-4x -8y +1=0.3.下列各点在方程x 2-xy +2y +1=0表示的曲线上的是( ) A .(0,0) B .(1,1) C .(1,-1)D .(1,-2)解析:选D 验证法,点(0,0)显然不满足方程x 2-xy +2y +1=0,当x =1时,方程变为1-y +2y +1=0,解得y =-2,则(1,-2)点在曲线上.4.(2013·长春模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( )A.4x 221-4y 225=1 B.4x 221+4y 225=1 C.4x 225-4y 221=1 D.4x 225+4y 221=1 解析:选D ∵M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆.∴a =52,c =1,则b 2=a 2-c 2=214,∴椭圆的标准方程为4x 225+4y 221=1.5.已知A ⎝⎛⎭⎫x -2,y 2,B ⎝⎛⎭⎫0,y2,C (x ,y ),若AC ⊥BC ,则动点C 的轨迹方程为( ) A .y 2=8x B .y 2=-8x C .y 2=8(x -2)D .y 2=-8(x -2)解析:选B AC =⎝⎛⎭⎫2,y 2,BC =⎝⎛⎭⎫x ,y 2,则AC ⊥BC 得2x +y24=0,即y 2=-8x . 6.(2013·洛阳模拟)设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP =2PA ,且OQ ·AB =1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:选A 设A (a,0),B (0,b ),a >0,b >0.由BP =2PA ,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ ·AB =1,得(-x ,y )·(-a ,b )=1,即ax+by =1.将a ,b 代入上式得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).二、填空题(本大题共3小题,每小题5分,共15分)7.(2013·佛山模拟)在△ABC 中,A 为动点,B ,C 为定点,B ⎝⎛⎭⎫-a 2,0,C ⎝⎛⎭⎫a2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是________.解析:由正弦定理:|AB |2R -|AC |2R =12×|BC |2R ,即|AB |-|AC |=12|BC |,且为双曲线右支.答案:16x 2a 2-16y 23a2=1(x >0且y ≠0)8.直线x a +y2-a=1与x ,y 轴交点的中点的轨迹方程__________.解析:设直线x a +y2-a =1与x ,y 轴交点为A (a,0),B (0,2-a ),A ,B 中点为M (x ,y ),则x =a 2,y =1-a2,消去a ,得x +y =1,∵a ≠0,a ≠2,∴x ≠0,x ≠1.答案:x +y =1(x ≠0,x ≠1)9.设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且AB 中点为M ,则点M 的轨迹方程是________.解析:F (1,0),设A (x 1,y 1),B (x 2,y 2),M (x ,y ),则x 1+x 2=2x ,y 1+y 2=2y ,y 21=4x 1,y 22=4x 2,后两式相减并将前两式代入得(y 1-y 2)y =2(x 1-x 2),当x 1≠x 2时,y 1-y 2x 1-x 2×y =2.又A 、B 、M 、F 四点共线,y 1-y 2x 1-x 2=yx -1,代入得y 2=2(x -1),当x 1=x 2时,M (1,0)也适合这个方程,即y 2=2(x -1)是所求的轨迹方程.答案:y 2=2(x -1)三、解答题(本大题共3小题,每小题12分,共36分)10.过双曲线x 2-y 2=1上一点M 作直线x +y =2的垂线,垂足为N ,求线段MN 的中点P 的轨迹方程.解:设动点P 的坐标为(x ,y )点M 的坐标为(x 0,y 0), 则N (2x -x 0,2y -y 0).由N 在直线x +y =2上,得2x -x 0+2y -y 0=2.① 由PM 垂直于直线x +y =2,得y -y 0x -x 0=1,即x -y -x 0+y 0=0.②由①②得x 0=32x +12y -1,y 0=12x +32y -1,代入双曲线方程得⎝⎛⎭⎫32x +12y -12-⎝⎛⎭⎫12x +32y -12=1,整理得2x 2-2y 2-2x +2y -1=0.即点P 的轨迹方程2x 2-2y 2-2x +2y -1=0. 11.已知动圆P 过点F ⎝⎛⎭⎫0,14且与直线y =-14相切. (1)求圆心P 的轨迹C 的方程;(2)过点F 作一条直线交轨迹C 于A ,B 两点,轨迹C 在A ,B 两点处的切线相交于N ,M 为线段AB 的中点,求证:MN ⊥x 轴.解:(1)由已知,点P 到点F ⎝⎛⎭⎫0,14的距离等于到直线y =-14的距离,根据抛物线的定义,可得动圆圆心P 的轨迹C 为抛物线,其方程为x 2=y .(2)证明:设A (x 1,x 21),B (x 2,x 22).∵y =x 2,∴y ′=2x .∴AN ,BN 的斜率分别为2x 1,2x 2. 故AN 的方程为y -x 21=2x 1(x -x 1), BN 的方程为y -x 22=2x 2(x -x 2),即⎩⎪⎨⎪⎧y =2x 1x -x 21,y =2x 2x -x 22.两式相减,得x N =x 1+x 22,又x M =x 1+x 22,所以M ,N 的横坐标相等,于是MN ⊥x 轴.12.(2012·湖南高考)在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.解:(1)法一:设M 的坐标为(x ,y ),由已知得|x +2|=(x -5)2+y 2-3.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以(x -5)2+y 2=x +5.化简得曲线C 1的方程为y 2=20x .法二:由题设知,曲线C 1上任意一点M 到圆心C 2(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)证明:当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0),又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.于是|5k +y 0+4k |k 2+1=3.整理得72k 2+18y 0k +y 20-9=0.①设过P 所作的两条切线P A ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根,故k 1+k 2=-18y 072=-y 04.②由⎩⎪⎨⎪⎧k 1x -y +y 0+4k 1=0,y 2=20x得k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根, 所以y 1y 2=20(y 0+4k 1)k 1.④同理可得y 3y 4=20(y 0+4k 2)k 2.⑤于是由②,④,⑤三式得 y 1y 2y 3y 4=400(y 0+4k 1)(y 0+4k 2)k 1k 2=400[y 20+4(k 1+k 2)y 0+16k 1k 2]k 1k 2=400(y 20-y 20+16k 1k 2)k 1k 2=6 400.所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400.1.一圆形纸片的圆心为O ,点Q 是圆内异于O 的一个定点,点A 是圆周上一动点,把纸片折叠使点A 与点Q 重合,然后展开纸片,折痕CD 与OA 交于点P ,当点A 运动时,点P 的轨迹为( )A .椭圆B .双曲线C .抛物线D .圆解析:选A ∵折痕所在的直线是AQ 的垂直平分线, ∴|P A |=|PQ |.又∵|P A |+|OP |=r , ∴|PQ |+|OP |=r >|OQ |.由椭圆的定义知点P 的轨迹是椭圆. 2.已知A ,B 分别是直线y =33x 和y =-33x 上的两个动点,线段AB 的长为23,D 是AB 的中点.(1)求动点D 的轨迹C 的方程;(2)过点N (1,0)作与x 轴不垂直的直线l ,交曲线C 于P ,Q 两点,若在线段ON 上存在点M (m,0),使得以MP ,MQ 为邻边的平行四边形是菱形,试求m 的取值范围.解:(1)设D (x ,y ),A ⎝⎛⎭⎫x 1,33x 1,B ⎝⎛⎭⎫x 2,-33x 2. 因为D 是线段AB 的中点, 所以x =x 1+x 22,y =33·x 1-x 22.因为|AB |=23,所以(x 1-x 2)2+⎝⎛⎭⎫33x 1+33x 22=12.所以(23y )2+⎝⎛⎭⎫33×2x 2=12,即x 29+y 2=1.故点D 的轨迹C 的方程为x 29+y 2=1.(2)设l :y =k (x -1)(k ≠0),代入椭圆方程x 29+y 2=1,得(1+9k 2)x 2-18k 2x +9k 2-9=0, 所以x 1+x 2=18k 21+9k 2.所以y 1+y 2=k (x 1+x 2)-2k =-2k1+9k 2. 所以PQ 中点H 的坐标为⎝ ⎛⎭⎪⎫9k 21+9k 2,-k 1+9k 2. 因为以MP ,MQ 为邻边的平行四边形是菱形, 所以k MH ·k =-1.所以-k1+9k 29k 21+9k 2-m·k =-1,即m =8k 21+9k 2. 因为k ≠0,所以0<m <89.又点M (m,0)在线段ON 上,所以0<m <1.综上,0<m <89.3.(2012·江西高考)已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足|MA +MB |=OM ·(OA +OB )+2.(1)求曲线C 的方程;(2)点Q (x 0,y 0)(-2<x 0<2)是曲线C 上的动点,曲线C 在点Q 处的切线为l ,点P 的坐标是(0,-1),l 与P A ,PB 分别交于点D ,E ,求△QAB 与△PDE 的面积之比.解:(1)由MA =(-2-x,1-y ),MB =(2-x,1-y ),得 |MA +MB |=(-2x )2+(2-2y )2,OM ·(OA +OB )=(x ,y )·(0,2)=2y ,由已知得(-2x )2+(2-2y )2=2y +2,化简得曲线C 的方程是x 2=4y .(2)直线P A ,PB 的方程分别是y =-x -1,y =x -1,曲线C 在Q 处的切线l 的方程是y =x 02x -x 204,且与y 轴的交点为F ⎝⎛⎭⎫0,-x 24, 分别联立方程,得⎩⎪⎨⎪⎧y =-x -1,y =x 02x -x 24,⎩⎪⎨⎪⎧y =x -1,y =x 02x -x 204,解得D ,E 的横坐标分别是x D =x 0-22,x E =x 0+22,则x E -x D =2,|FP |=1-x 204,故S △PDE =12|FP |·|x E -x D |=12·⎝⎛⎭⎫1-x 204·2=4-x 204, 而S △QAB =12·4·⎝⎛⎭⎫1-x 204=4-x 202,则S △QAB S △PDE=2. 即△QAB 与△PDE 的面积之比为2.。

曲线与方程

曲线与方程

曲线与方程【要点梳理】要点一:圆锥曲线的统一定义当点P 到定点(,0)F c 的距离和它到定直线2:a l x c =的距离的比是常数(0)cc a a >>时,这个点的轨迹是双曲线,方程为22221x y a b-=(其中222b c a =-),这个常数就是双曲线的离心率.这样,圆锥曲线可以统一定义为:平面内到一个定点F 和到一条定直线l (F 不在l 上) 的距离的比等于常数e 的点的轨迹.当01e <<时,它表示椭圆; 当1e >时,它表示双曲线; 当1e =时,它表示抛物线. 其中e 是圆锥曲线的离心率,定点F 是圆锥曲线的焦点,定直线l 是圆锥曲线的准线.根据图形的对称性可知,椭圆和双曲线都有两条准线,对于中心在原点,焦点在x 轴上的椭圆或双曲线,与焦点12(,0),(,0)F c F c -对应的准线方分别为22,a a x x c c=-=. 要点二:曲线与方程概念的理解一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程,0f x y =()的实数解建立了如下的关系:(1)曲线C 上所有点的坐标都是方程,0f x y =()的解; (2)以方程,0f x y =()的解为坐标的点都在曲线C 上.那么,方程,0f x y =()叫做曲线C 的方程;曲线C 叫做方程,0f x y =()的曲线. 要点诠释:(1)如果曲线C 的方程为,0f x y =(),那么点00(,)P x y 在曲线C 上的充要条件为00,0f x y =(); (2)曲线C 可看成是平面上满足一定条件的点的集合,而,0f x y =()正是这一定条件的解析表示.因此我们可以用集合的符号表示曲线C :{(,)|,0}C x y f x y ==(). (3)曲线C 也称为满足条件,0f x y =()的点的轨迹.定义中的条件(1)叫轨迹纯粹性,即不满足方程,0f x y =()的解的点不在曲线C 上;条件(2)叫做轨迹的完备性,即符合条件的所有点都在曲线上.“纯粹性”和“完备性”是针对曲线C 是否为满足方程,0f x y =()的点的轨迹而言. (4)区别轨迹和轨迹方程两个不同的概念,轨迹是“形”,轨迹方程是“数”.要点三:关于坐标法与解析几何1.解析几何是在坐标系的基础上,用代数的方法研究几何问题的一门数学学科.2.解析几何的两个基本问题:①根据已知条件,求出表示平面曲线的方程; ②通过方程,研究平面曲线的性质.3.根据曲线与方程的关系可知,曲线与方程是同一关系下的两种不同的表现形式.曲线的性质完全反映在它的方程上,而方程的的性质也完全反映在它的曲线上,这正好说明了几何问题与代数问题可以互相转化,这就是解析几何的基本思想方法,也就是数形结合,形与数达到了完美的统一.我们把这种借助坐标系研究几何图形的方法叫做坐标法,又称解析法. 定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x ,y )所满足的方程(,)0f x y =表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.要点四:求曲线方程①建系:建立适当的直角坐标系; ②设点:设动点坐标P(x,y);③列式:写出动点P 满足的几何条件,把条件坐标化,得方程F(x, y)=0;④化简:化方程F(x, y)=0为最简形式,特殊情况,予以补充说明,删去增加的或者补上丢失的解; ⑤证明:证明以化简后的方程的解为坐标的点都在曲线是。

曲线与方程、圆、椭圆、双曲线、抛物线的知识要点

曲线与方程、圆、椭圆、双曲线、抛物线的知识要点

曲线与方程一般地,如果曲线C 与方程()0,=y x F 之间有以下两个关系:① 曲线C 上的点的坐标都是方程()0,=y x F 的解;② 以方程()0,=y x F 的解为坐标的点都是曲线C 上的点。

那么,我们把方程()0,=y x F 叫做曲线C 的方程,曲线C 叫做方程()0,=y x F的曲线。

圆的方程1、圆的定义:平面内到一个定点的距离等于定长(大于零)的点的轨迹是圆。

这个定点就是圆心、定长就是半径。

2、(1)圆的标准方程是()()222rb y a x =-+-其中:圆心()b a C ,,半径r(2)圆的一般方程022=++++F Ey Dx y x 其中:0422>-+F E D椭圆1、椭圆的定义:两定点1F 、2F ,动点M 满足122MF MF a +=(常数122a F F >),则动点M 的轨迹是椭圆。

问:122a F F =时如何? 问:122a F F <时如何?2、椭圆的性质双曲线1、 双曲线的定义:若定点1F 、2F ,122MF MF a -=(常数122a F F <),则动点M 的轨迹是双曲线。

又: (1)当122a F F =时如何? (2)当122a F F >时如何?再:关注?2、双曲线的性质:抛物线1.抛物线的定义:平面上与一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线。

其中:点F叫做抛物线的焦点;定直线l叫做抛物线的准线。

注:若点F在直线l上,则轨迹为过点F垂直于l的直线。

2.抛物线的标准方程的四种形式及其性质:注:p的几何意义。

(1)(2)(3)常见的基础题型1、判定曲线是否方程的曲线,方程是否曲线的方程:2、求圆、椭圆、双曲线、抛物线的标准方程(1)圆(2)椭圆、双曲线 (3)抛物线3、 知圆、椭圆、双曲线、抛物线的方程,写到标准:(1)圆:配方法(圆心、半径)(2)椭圆:122=+yx问1:焦点在x 轴?问2:焦点在y 轴?(3)双曲线:122=-y x问1:焦点在x 轴?问2:焦点在y轴?特别地:共渐进线的双曲线系?(4)抛物线:常见的综合性问题:1、求曲线方程的一般方法:(1)直接法(仅一个动点);特别:利用定义法省略化简(2)代入法(两个及以上动点)。

2021高考江苏版(理)数学一轮复习讲义: 附加题部分 第3章 第65课 曲线与方程

2021高考江苏版(理)数学一轮复习讲义: 附加题部分 第3章 第65课 曲线与方程

第三章圆锥曲线与方程、导数及其应用、推理与证明第65课曲线与方程[最新考纲]要求内容A B C曲线与方程√1.曲线与方程一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫作曲线的方程;这条曲线叫作方程的曲线.2.求动点轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标.(2)写出适合条件p的点M的集合P={M|p(M)}.(3)用坐标表示条件p(M),列出方程f(x,y)=0.(4)化方程f(x,y)=0为最简形式.(5)说明以化简后的方程的解为坐标的点都在曲线上.3.两曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,那么C 1,C 2的交点坐标即为方程组⎩⎨⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解. 假设此方程组无解,那么两曲线无交点.1.(思考辨析)判断以下结论的正误.(正确的打“√〞,错误的打“×〞)(1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( )(2)方程x 2+xy =x 的曲线是一个点和一条直线.( )(3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( )(4)方程y =x 与x =y 2表示同一曲线.( )[解析] 由曲线与方程的定义,知(2)(3)(4)不正确,只有(1)正确.[答案] (1)√ (2)× (3)× (4)×2.(教材改编)点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.假设过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,那么点M 的轨迹是________.抛物线 [由MF =MB ,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.]3.(2021·广州模拟)点F (0,1),直线l :y =-1,P 为平面上的动点,过点P作直线l 的垂线,垂足为Q ,且QP →·QF →=FP →·FQ →,那么动点P 的轨迹C 的方程为________.x 2=4y [设点P (x ,y ),那么Q (x ,-1).∵QP →·QF →=FP →·FQ →,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2),即2(y +1)=x 2-2(y -1),整理得x 2=4y ,∴动点P 的轨迹C 的方程为x 2=4y .]4.△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长CD =3,那么顶点A 的轨迹方程为__________.(x -10)2+y 2=36(y ≠0) [设A (x ,y ),那么D ⎝ ⎛⎭⎪⎫x 2,y 2, ∴CD =⎝ ⎛⎭⎪⎫x 2-52+y 24=3, 化简得(x -10)2+y 2=36,由于A ,B ,C 三点构成三角形,∴A 不能落在x 轴上,即y ≠0.]5.在△ABC 中,|BC →|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,那么顶点A 的轨迹方程为__________.x 22-y 22=1(x >2) [以BC 的中点为原点,中垂线所在直线为y 轴建立如下图的坐标系,E ,F 分别为两个切点.那么BE =BD ,CD =CF ,AE =AF .所以AB -AC =22,所以点A 的轨迹为以B ,C 为焦点的双曲线的右支(y ≠0),且a =2,c =2,所以b =2,所以轨迹方程为x 22-y 22=1(x >2).]直接法求轨迹方程动圆过定点A (4,0),且在y 轴上截得弦MNC 的方程. 【导学号:62172346】[解] 如图,设动圆圆心为O 1(x ,y ),由题意,得O 1A =O 1M .当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,那么H 是MN 的中点,∴O 1M =x 2+42. 又O 1A =(x -4)2+y 2, ∴(x -4)2+y 2=x 2+42, 化简得,y 2=8x (x ≠0).当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴ 动圆圆心的轨迹C 的方程为y 2=8x .[规律方法]x ,y 表达的与定点、定直线有关的几何量的等量关系时,等量关系又易于表达成含有x ,y 的等式,可利用直接法求轨迹方程.2.运用直接法应注意的问题:(1)在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能无视的.(2)假设方程的化简过程是恒等变形,那么最后的验证可以省略.[变式训练1] 两点M (-1,0),N (1,0),且点P 使MP →·MN →,PM →·PN →,NM →·NP →成公差小于零的等差数列,求点P 的轨迹方程.[解] 设点P (x ,y ),那么MP →=(x +1,y ),NP →=(x -1,y ),MN →=(2,0).故MP →·MN →=2(x +1),PM →·PN →=MP →·NP →=(x +1)×(x -1)+y 2=x 2+y 2-1,NM →·NP →=-2(x -1)=2(1-x ).因为MP →·MN →,PM →·PN →,NM →·NP →成公差小于零的等差数列,所以2(x 2+y 2-1)=2(x +1)+2(1-x ).且NM →·NP →-MP →·MN →=2(1-x )-2(x +1)=-4x <0,整理得,x 2+y 2=3(x >0),故点P 的轨迹方程为x 2+y 2=3(x >0). 定义法求轨迹方程如图65-1所示,点C 为圆(x +2)2+y 2=4的圆心,点A (2,0).P 是圆上的动点,点Q 在圆的半径CP 所在的直线上,且MQ →·AP →=0,AP →=2 AM →.当点P 在圆上运动时,求点Q 的轨迹方程.图65-1[解] 由(x +2)2+y 2=4知圆心C (-2,0),半径r =2.∵MQ →·AP →=0,AP →=2AM →,∴MQ ⊥AP ,点M 为AP 的中点,因此QM 垂直平分线段AP .如图,连结AQ ,那么AQ =QP ,∴|QC-QA|=|QC-QP|=CP=2.又AC=22>2.根据双曲线的定义,点Q的轨迹是以C(-2,0),A(2,0)为焦点,实轴长为2的双曲线.由c=2,a=1,得b2=1,因此点Q的轨迹方程为x2-y2=1.[迁移探究]假设将本例中的条件“圆C的方程(x+2)2+y2=4〞改为“圆C的方程(x+2)2+y2=16〞,其他条件不变,求点Q的轨迹方程.[解]由(x+2)2+y2=16知圆心C(-2,0),半径r=4.∵MQ→·AP→=0,AP→=2 AM→,∴QM垂直平分AP,连结AQ,那么AQ=QP,∴QC+QA=QC+QP=r=4.根据椭圆定义,点Q的轨迹是以C(-2,0),A(2,0)为焦点,长轴长为4的椭圆.由c=2,a=2,得b= 2.因此点Q的轨迹方程为x24+y22=1.[规律方法] 1.定义法求轨迹方程,关键是理解解析几何中有关曲线的定义.在求曲线的轨迹方程时,应尽量利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量,优化解题过程.2.利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,那么应对其中的变量x或y进展限制.[变式训练2](2021·全国卷Ⅰ选编)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明EA+EB为定值;(2)求点E的轨迹方程,并求它的离心率.[解](1)证明:因为AD=AC,EB∥AC,所以∠EBD=∠ACD=∠ADC,所以EB=ED,故EA+EB=EA+ED=AD.又圆A的标准方程为(x+1)2+y2=16,从而AD=4,所以EA+EB=4.(2)由圆A方程(x+1)2+y2=16,知A(-1,0).又B(1,0),因此AB=2,那么EA+EB=4>AB.由椭圆定义,知点E的轨迹是以A,B为焦点,长轴长为4的椭圆(不含与x 轴的交点),所以a=2,c=1,那么b2=a2-c2=3.所以点E的轨迹方程为x24+y23=1(y≠0).故曲线方程的离心率e=ca =12.相关点(代入)法求轨迹方程如图65-2所示,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且MD=45PD.图65-2(1)当P在圆上运动时,求点M的轨迹C的方程;(2)求过点(3,0)且斜率为45的直线被C所截线段的长度. 【导学号:62172347】[解](1)设M的坐标为(x,y),P的坐标为(x P,y P),∵点D是P在x轴上的投影,M为PD上一点,且MD=45PD,∴x P=x,且y P=54y.∵P在圆x2+y2=25上,∴x2+⎝⎛⎭⎪⎫54y2=25,整理得x225+y216=1,故轨迹C的方程是x225+y216=1.(2)过点(3,0)且斜率为45的直线l的方程是y=45(x-3),设此直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y=45(x-3)代入C的方程x225+y216=1得:x225+(x-3)225=1,化简得x2-3x-8=0,∴x 1=3-412,x 2=3+412,那么AB =⎝ ⎛⎭⎪⎫1+1625(x 1-x 2)2=4125×41=415.∴直线被曲线C 所截线段的长度为415.[规律方法] 1.相关点法求轨迹方程,形成轨迹的动点P (x ,y )随另一动点Q (x ′,y ′)的运动而有规律地运动,而且动点Q 的轨迹方程为给定的或容易求得的.2.“相关点法〞的根本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1).(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y ).(3)代换:将上述关系式代入曲线方程,便可得到所求动点的轨迹方程.[变式训练3] P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,有一动点Q 满足OQ →=PF 1→+PF 2→,那么动点Q 的轨迹方程是__________.x 24a 2+y 24b 2=1 [作P 关于O 的对称点M ,连结F 1M ,F 2M ,那么四边形F 1PF 2M 为平行四边形,所以PF 1→+PF 2→=PM →=-2OP →.又OQ →=PF 1→+PF 2→,所以OP →=-12OQ →. 设Q (x ,y ),P (x 0,y 0),那么x 0=-x 2,且y 0=-y 2,又点P (x 0,y 0)在椭圆x 2a 2+y 2b 2=1上,那么有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b 2=1.][思想与方法]1.求轨迹方程的常用方法(1)直接法:直接利用条件建立x ,y 之间的关系F (x ,y )=0.(2)定义法:先根据条件得出动点的轨迹是某种曲线,再由曲线的定义直接写出动点的轨迹方程.(3)代入(相关点)法:动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程.(4)待定系数法:所求曲线的类型,求曲线方程——先根据条件设出所求曲线的方程,再由条件确定其待定系数.2.曲线的方程与方程的曲线是从两个方面提醒方程与曲线的对应关系,表达数与形的辨证统一.[易错与防范]1.求轨迹方程时,要注意曲线上的点与方程的解是一一对应的.检验可从以下两个方面进展:一是方程的化简是不是同解变形;二是是否符合题目的实际意义.2.求点的轨迹与轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等.课时分层训练(九)A组根底达标(建议用时:30分钟)1.点A(-1,0),点B(2,0),动点C满足AC=AB,求点C与点P(1,4)所连线段的中点M的轨迹方程.[解]由题意可知:动点C的轨迹是以(-1,0)为圆心,3为半径长的圆,方程为(x+1)2+y2=9.设M(x0,y0),那么由中点坐标公式可求得C(2x0-1,2y0-4),代入点C的轨迹方程得4x20+4(y0-2)2=9,化简得x20+(y0-2)2=9,4故点M的轨迹方程为x2+(y-2)2=94.2.动点P 与两定点A (a,0),B (-a,0)连线的斜率的乘积为k ,试求点P 的轨迹方程,并讨论轨迹是什么曲线. 【导学号:62172348】[解] 设点P (x ,y ),那么k AP =y x -a ,k BP =y x +a . 由题意得y x -a ·y x +a=k ,即kx 2-y 2=ka 2. 所以点P 的轨迹方程为kx 2-y 2=ka 2(x ≠±a ).(*)(1)当k =0时,(*)式即y =0,点P 的轨迹是直线AB (除去A ,B 两点).(2)当k ≠0时,(*)式即x 2a 2-y 2ka2=1, ①假设k >0,点P 的轨迹是焦点在x 轴上的双曲线(除去A ,B 两点).②假设k <0,(*)式可化为x 2a 2+y 2(-ka 2)=1. 当-1<k <0时,点P 的轨迹是焦点在x 轴上的椭圆(除去A ,B 两点);当k =-1时,(*)式即x 2+y 2=a 2,点P 的轨迹是以原点为圆心,|a |为半径的圆(除去A ,B 两点);当k <-1时,点P 的轨迹是焦点在y 轴上的椭圆(除去A ,B 两点).3.如图65-3所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左、右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.图65-3[解] 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0).设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3),① 直线A 2B 的方程为y =-y 0x 0-3(x -3),② 由①②得y 2=-y 20x 20-9(x 2-9).③ 又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209.④ 将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).4.在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P在圆上运动时,动点M 满足PD →=2MD →,动点M 形成的轨迹为曲线C .(1)求曲线C 的方程;(2)点E (1,0),假设A ,B 是曲线C 上的两个动点,且满足EA ⊥EB ,求EA →·BA→的取值范围. 【导学号:62172349】[解] 设点M 的坐标是(x ,y ),点P 的坐标是(x 0,y 0),那么点D 的坐标为(x 0,0).由PD →=2MD →,得x 0=x ,y 0=2y .因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 20+y 20=4.①把x 0=x ,y 0=2y 代入方程①,得x 2+4y 2=4.所以曲线C 的方程为x 24+y 2=1.(2)因为EA ⊥EB ,所以EA →·EB →=0.所以EA →·BA →=EA →·(EA →-EB →)=EA →2.设点A (x 1,y 1),那么x 214+y 21=1,即y 21=1-x 214.所以EA →·BA →=EA →2=(x 1-1)2+y 21=x 21-2x 1+1+1-x 214=34x 21-2x 1+2 =34⎝ ⎛⎭⎪⎫x 1-432+23. 因为点A (x 1,y 1)在曲线C 上,所以-2≤x 1≤2.所以23≤34⎝ ⎛⎭⎪⎫x 1-432+23≤9, 所以EA →·BA →的取值范围为⎣⎢⎡⎦⎥⎤23,9. B 组 能力提升(建议用时:15分钟)1.如图65-4,F (1,0),直线l :x =-1,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP →·QF →=FP →·FQ →.求动点P 的轨迹C 的方程.图65-4[解] 设点P (x ,y ),那么Q (-1,y ),由QP →·QF →=FP →·FQ →,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得C :y 2=4x .2.双曲线x 22-y 2=1的左、右顶点分别为A 1,A 2,点P (x 1,y 1),Q (x 1,-y 1)是双曲线上不同于A 1,A 2的两个不同的动点,求直线A 1P 与A 2Q 交点的轨迹方程.[解] 由题设知|x 1|>2,A 1(-2,0),A 2(2,0),那么有直线A 1P 的方程为y =y 1x 1+2(x +2),① 直线A 2Q 的方程为y =-y 1x 1-2(x -2),②联立①②,解得⎩⎪⎨⎪⎧ x =2x 1,y =2y 1x 1,∴⎩⎪⎨⎪⎧ x 1=2x ,y 1=2y x ,③ ∴x ≠0,且|x |< 2.∵点P (x 1,y 1)在双曲线x 22-y 2=1上,∴x 212-y 21=1.将③代入上式,整理得所求轨迹的方程为x 22+y 2=1(x ≠0,且x ≠±2).3.圆C 的方程为x 2+y 2=4.(1)直线l 过点P (1,2),且与圆C 交于A ,B 两点,假设AB =23,求直线l 的方程;(2)过圆C 上一动点M (不在x 轴上)作平行于x 轴的直线m ,设m 与y 轴的交点为N ,假设向量OQ →=OM →+ON →,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.[解] (1)当直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),距离为23,满足题意.假设直线l 不垂直于x 轴,设其方程为y -2=k (x -1),即kx -y -kd ,那么23=24-d 2,得d =1,所以|-k +2|k 2+1=1,解得k =34, 故所求直线方程为3x -4y +5=0.综上所述,所求直线l 的方程为3x -4y +5=0或x =1.(2)设点M 的坐标为(x 0,y 0)(y 0≠0),Q 点坐标为(x ,y ),那么N 点坐标是(0,y 0).因为OQ →=OM →+ON →,所以(x ,y )=(x 0,2y 0),即x 0=x ,y 0=y 2.又因为M 是圆C 上一点,所以x 20+y 20=4,所以x 2+y 24=4(y ≠0), 所以Q 点的轨迹方程是x 24+y 216=1(y ≠0),这说明轨迹是中心在原点,焦点在y 轴上,长轴长为8、短轴长为4的椭圆,且除去短轴端点.4.点A (-1,0),F (1,0),动点P 满足AP →·AF →=2|FP →|.(1)求动点P 的轨迹C 的方程;(2)在直线l :y =2x +2上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为M ,N .问:是否存在点Q ,使得直线MN ∥l ?假设存在,求出点Q 的坐标;假设不存在,请说明理由.[解] (1)设P (x ,y ),那么AP →=(x +1,y ),FP →=(x -1,y ),AF →=(2,0).由AP →·AF →=2|FP →|,得2(x +1)=2(x -1)2+y 2,化简得y 2=4x .故动点P 的轨迹C 的方程为y 2=4x .(2)直线l 的方程为y =2(x +1),设Q (x 0,y 0),M (x 1,y 1),N (x 2,y 2).过点M 的切线方程设为x -x 1=m (y -y 1),代入y 2=4x ,得y 2-4my +4my 1-y 21=0.由Δ=16m 2-16my 1+4y 21=0,得m =y 12,所以过点M 的切线方程为y 1y =2(x +x 1).同理过点N 的切线方程为y 2y =2(x +x 2).因为Q (x 0,y 0)在切线上,所以⎩⎪⎨⎪⎧ y 1y 0=2(x 0+x 1),y 2y 0=2(x 0+x 2).所以点M (x 1,y 1),N (x 2,y 2)在直线yy 0=2(x 0+x )上,所以直线MN 的方程为y 0y =2(x 0+x ).又MN ∥l ,所以2y 0=2,即y 0=1,而y 0=2(x 0+1),所以x 0=-12,故点Q 的坐标为⎝ ⎛⎭⎪⎫-12,1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线与方程的关系
曲线与方程之间存在着密切的联系,它们不仅相互依存,而且彼
此又具有重要的数学意义。

首先,曲线是由一个函数表示的,而这个函数就是方程。

因此,
曲线和方程之间存在着直接的联系。

其次,通过求解该方程,可以得
到曲线的性质。

例如,如果曲线是抛物线,则可以根据抛物线的方程
来计算出它的顶点;如果曲线是椭圆,则可以通过椭圆方程来计算出
它的长轴和短轴等。

此外,曲线与方程还具有更为深刻的数学意义。

曲线和方程能够
反映物理和化学现象的发展趋势,并且可以使用数学工具对其进行解
析和研究。

更重要的是,曲线和方程也可以用于描述某些重要的场景,如关于经济学、生态学等的分析。

因此,曲线与方程之间有着密不可分的关系,而这种关系有着重
要的数学意义。

正是由于曲线和方程能够将复杂的物理世界变为易于
理解和推导的数学现象,它们才能够为人们在研究自然界现象中提供
强大的帮助。

相关文档
最新文档