GRE数学易错题

合集下载

GRE考试中最易出错的数学题十题总结

GRE考试中最易出错的数学题十题总结

GRE考试中最易出错的数学题十题总结
1. If N is positive number, the prime number of between N+1 and N+6 cannot be :0,1,2,3,4,6
2 .一个班有52个人,平均分数是45,去掉2人的分数,平均是40,问这2人的平均分数是多少。

3. 一个cube total surface area 382 square ft,求所有边长(96)。

4. (x,y)与原点(0,0)距离和(1-x,1-y)到原点距离比较(好象不确定)
5. 00的integer, p^q和P^(-q)大小 (后大)
6. 一个公司的电话在3000-3799之间,问其中在3020-3039的概率是多少。

7. (-5)*(-7)*(-9)和(-5)+(-7)+(-9)大小比较(后者大,地球人都知道)
8 .一个三角形(有图,我画不出来)两个边长分别为3,4,二者夹角x(0
9. 4/7=(s+4)/(t+7) 比较s和4t/7(相同)
10. 一个圆与一个长方形三个边相内切,该长方形两个边分别为h,k (圆的直径为k),长方形面积是圆面积4倍,问h/k,和PI那个大(相等)。

GRE数学易错题105道

GRE数学易错题105道

1. n个数从小到大排列,求(n-1)/4,设商为i,余数为j ,则可求得1st Quartile为:(第i+1个数)*(4-j)/4+(第i+2个数)*j/42. 4个*,2个·的排列方式 15(=)3 .5双袜子,同时去2只,刚好配对的概率。

1/94. 40人说French,60人说Russian,80人说Italy,说两种语言的有50人,说三种语言的有10人. 共有125人,问不说这些语言的有几人. Key:125-(40+60+80-50-10*2)=155 .等腰直角三角形边长2加2倍根号2,求面积。

6. 某种溶液浓度为125gram per liter, 转换成 ounce per gallon,求表达式.已知 1 ounce=28.xxx gram and 1 gallon=3.875 liter7. x,y,z 均方差为d, 求x+10,y+10,z+10的均方差 (d)8. 1的概率是0.8,2的概率是0,6,问是1或是2或是both的概率,1-0.6*0.8(数字瞎编)=0.92.9. 还有一组测量数据中,12.1比mean低1.5个标准差,17.5比mean高3.0个标准方差.问mean是多少.13.9(设标准差为X 12.1+1.5X=M,17.5-3X=M)10. 图表题,1992年总和是50,96年是60,每年至少增长1,问最大的年增长:7.011 .x+y=5&2x+2y=8之间最短距离与1比较 <112. 以40miles/hour速度经过一1.5miles的路,若超速则罚款fine=50+(速度-40)*10,现一人用108秒通过此路,问她的fine=? key 15013. xyz togather finish the task for 9 hour, xy togather need 12 hour,z alone needs ? hour. key 3614. 直线l.在X轴截距是3,在Y轴截距是4。

GRE考试105道数学易错难题(二)

GRE考试105道数学易错难题(二)

GRE考试105道数学易错难题(二)GRE数学考试105道易错难题〔二〕51、n4 从2到n的奇数与从2到n的素数比大小52、q(-3,-6,-9,-12)r(-3,-6,-9,-12,-15)a:the number 一个集合里有,另一个没有的。

b:a number 两个集合里有的留意了,the number 值得是个数,应是1,而a number 只得是具体的数,-3,-6,-9,-12都为负数,应为a大。

53、第一天下雨的概率是70%,第二天下雨的概率是40%〔不管第一天是否下雨〕,两天均不下雨的概率〔0.18〕54、斜率〔slope〕为3的一条直线,经过(k,5)。

比较k与2的大小。

55、3^100-3^97,问GREATEST PRIME FACTOR,选 1356、两个事件E , F, P(F|E)=0.45,比较P(~F|E) 与 0.55的大小:小于57、以等边三角形〔边长为2〕的各顶点为圆心,以1为半径画圆,3圆弧围成的部分的面积与3*(3)1/2 /4比较大小58、28只人,14只男人,男人中有7只为50岁以下的,这群人中50岁以下的的百分比.59、wxyz四人排队,问w在z前面的几率和1/2比较大小60、x的值为0的frequency 为n为1的frequency为100-n,为x 的 arithmatic average less than 0.5 时n 的值与50的比较(0*n+(100-n)*1)/1000.5得n5061、9^17/8^17 与 9^17+5^9/8^17+5^9 比较大小〔前大于后〕62、图表题﹕一个饼图表示支持x,y的百分比﹐另一个表示支持者收入的百分比﹕3000,58%;3000-5000,24%;5000,18%Q1:支持y且收入5000的最大百分比〔两者取小﹐18%〕Q2:罗马数字题63. 图表题﹕列出了几年的labor force数﹐及labor force in farming 的比例第一年和最终一年labor force in farming的人数的改变64、n=2k=3m, 问n^2和6km的大小。

最新自己整理的GRE数学经典错题资料

最新自己整理的GRE数学经典错题资料

GRE数学经典错题1答案:6000错因:单位!233%错因:最近的整数。

3BC 画图4C18,2/C20,2 5 注意表达6正态分布有一个图:平均值200,标准差10,则超过220的概率2%,小于1/67.8+2*2.5=132 standard deviations 两倍标准差8.8.(3*8%+7*18%)/10=15%错因:题目没看懂A组成了R的8%9.D10. histogram 直方图都取小的最小平均值:(1*15+6*35+11*15+16*13+21*10+26*5+31*3)= median of the 95 measurements这95个数的中位数:6-10或者看看也能看出来注意:这种柱状图的解法10.B11.错音:表达没看懂S里面的个数=72the number in S: S里面的数12.公倍数a multiple ofS是正整数,S里的数为36的倍数AC10-12出自OGP191 13 P34513问有多少非0的位数0.000…64选B14答案9,比50少的。

15答案AD16 absolute value绝对值机经的题目纯粹粗心DE 这题易错。

D 注意看清楚是哪一年!粗心B这里的平均数要算上number!由2011年下降到2012年sum= average*number模考median中位数精品文档r行r+1列,既不在4行也不在7列的数量r×(r+1)﹣[r+(r+1)﹣1]个,化简=r×r﹣r 精品文档。

GRE机经易错题

GRE机经易错题

1.How many such numbers in 1-100 that when divided by 5 the remainder is 3, and divided by 6 the remainder is 2?A:2B:3C:4D:5E:62.n>2Quantity A Quantity BThe standard deviation of {2,2,2,n} The standard deviation of {2,n,n,n}A:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.3.What is the 57 digit to the right of the decimal point of ?A:2B:8C:5D:7E:14.CD = 6, point A lies on line CD, point B is not on line CD, where 1 ≤ AB < 2, what’s the range of area of triangle BCD?A:3B:4C:5D:6E:85.Triangle ABC has an acute angle C, AC=3, BC=4,what’s the value range of line AB?A:1B:2C:3D:4E:56.A man walks from point A to pointB on the rectangular grids shown. He could only choose to walk north or east at any corner, what’s the probability of choosing a path via point C? A:B:C:D:E:7.,where a and b are both integers, what is the possible value of a+b ?A:9B:12C:15D:17E:29F:100G:106H:1098.k is an odd integer which is greater than 100, d is a divisor other than k itself Quantity A Quantity BdA:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.9.There are 30 pencils in 5 different colors, 6 pencils in each color, how many pencils we need to pick to guarantee that every color has at least 2 pencils?A:24B:25C:26D:27E:2810.A 10-day long course, in the analysis of attendance for three students:A attended for 8 days, B attended for 7 days, C attended for 6 days, among which only 1 day all of them attended. How many days at least two students attended?A:6B:7C:8D:9E:1011.S={1,2,3,4,6}, T={1,2,3,6,8}, pick one number from each set separately, how many different possible product of the two selected numbers ?A:10B:11C:12D:13E:1412.Randomly select a number from 1-1000, what is the probability that none of the digit would be 6 in this number?A:B:C:D:E:13.Line l intersected with two parallel lines m and n.Quantity A Quantity BNumber of points which is at equaldistance to three lines 3A:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.14.m,n are both integers, m is a factor of, how many pairs of (m, n) that ?A:ZeroB:OneC:ThreeD:FourE:Six15.S = {3 5 7 8 8 9 10 11 12}, T = {3 5 7 9 10 11 12}Quantity A Quantity BThe standard deviation of Set S The standard deviation of Set TA:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.16.A four-digit number 7a6b, a, b are both inte gers, what’s the probability that this number would be divided by 4? ________17.The probability of A is 60% and the probability of B is 50%, what is the most possibleprobability that neither A nor B would happen?A:0.80B:0.40C:0.75D:0.55E:0.6818.If Bob can do a job in 20 days and Jane can do the job in 30 days, they work together to do this job and in this period, Bob stop work for 2.5 days and Jane stop work for x days, and the job be finished for 14 days, what is x?A:1.6B:3.2C:1.5D:1.25E:1.1519.In an insurance company, each policy has a paper record and an electric record. For those policies having incorrect paper record, 60% also having incorrect electric record; For policies having incorrect electric record, 75% also having incorrect paper record.3% of all policies have both incorrect paper and incorrect electric records. If we randomly pick out one policy, what’s the probability that the one having both correct paper and correct electric records?A:0.80B:0.94C:0.75D:0.88E:0.9220.Two librarians, Robert and Patricia, cataloged a combined total of 180 new books, each of which was cataloged by only one of the two librarians. Although they spent the same amount of time cataloging their books, Robert spent an average of 15 minutes per book whereas Patricia spent an average of 12 minutes per book.Quantity A Quantity BThe number of books cataloged by Robert 60A:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.21.The unit price of commodity X is $21.94, for every order on commodity X, a tax of $20 would be imposed on the buyer. Some buyer has made n orders on commodity X, with the standard deviation of 5 on number of commodities in every order. What’s the standard deviation of the total price he/she paid for every order?A:5B:21.94C:43.88D:109.7E:2522.There is a 3*3 table, we need to fill it with three different numbers, A, B and C. There should not be two identical numbers in either each row or each column. How many different methods are available?A:6B:8C:10D:12E:1623. Hal has 4 girl friends and 5 boy friends. In how many different ways can Hal invite 2 girls and 2 boys to his birthday party?A.54B.60C.72D.120E.24024. An office has 6 employees; there are 5 female employees and 1 male employee. In how many ways can a 3-person committee be created if the committee must include the male employee?A.10B.12C.15D.24E.3025. Joan has 100 candies to distribute among 10 children. If each child receivesat least 1 candy and no two children receive the same number of candies, what is the maximum number of candies that a child can receive?A.10B.34C.39D.45E.5526. From a group of 8 people, it is possible to create exactly 56 different k-person committees. Which of the following could be the value of k ? Indicate all such values.A. 1B. 2C. 3D. 4E. 5F. 6G.727. How many 4-digit numbers begin with an even digit and end with an odd digit ?A 250B 500C 2,000D 2,500E 5,00028. How many positive integers can be expressed as a product of two or more of the prime numbers 5,7,11,and 13 if no one product is to include the same prime factor more than once ?A EightB nineC TenD ElevenE Twelve29. N equals the number of positive 3-digit numbers that contain odd digits only.Quantity ANQuantity B125A. Quantity A is greater.B. Quantity B is greater.C. The two quantities are equal.D. The relationship cannot be determined from the information given.Quantity ANumber of different triangles possible using the given points as vertices.Quantity B42A. Quantity A is greater.B .Quantity B is greater.C. The two quantities are equal.D. The relationship cannot be determined from the information given.31. What percent of the integers between 100 and 999,inclusive,have all three digits the same ?A 1%B 2%C 3%D 4%E 5%32. Of the 20 lightbulbs in a box, 2 are defective. An inspector will select 2 lightbulbs simultaneously and at random from the box. What is the probability that neither of the lightbulbs selected will be defective?Give your answer as a fraction.33. For a certain probability experiment, the probability that event A will occur is 1/2 and the probability that event B will occur is 1/3. Which of the following values could be the probability that the event A∪B (that is, the event A or B, or both) will occur?Indicate all such values.A. 1/3B. 1/2C. 3/434. A and B are independent events, and the probability that both events occur is 1/2. Which of the following could be the probability that event A occurs?Indicate all such probabilities.A. 0B. 1/4C. 1/2D. 3/4E. 135. In a certain state, each license plate consists of either three digits (between 0 and 9, inclusive) followed by two letters or three letters followed by two digits. For example, 055-XY, 123-PP, and AAA-70 are all acceptable plates. How many different license plates can the state issue?36. A positive integer is a palindrome if it reads exactly the same from right to left as it does from left to right. For example, 5 and 66 and 373 are all palindromes. How many palindromes are there between 1 and 1,000, inclusive?37. A box contains 10 balls numbered from 1 to 10 inclusive. If Ann removes a ball at random and replaces it, and then Jane removes a ball at random, what is the probability that both women removed the same ball?A. 1/100B. 1/90C. 1/45D. 1/10E. 41/4538. A: {71,73,79,83,87} B: {57,59,61,67}If one number is selected at random from set A, and one number is selected at random from set B, what is the probability that both numbers are prime?A. 9/20B. 3/5C. 3/4D. 4/5E. 139. A box at a yard sale contains 3 different china dinner sets, each consisting of 5 plates.A customer will randomly select 2 plates to check for defects. What is the probability that the 2 plates selected will be from the same dinner set?A. 2/7B. 2/5C. 2/3D. 5/6E. 3/240. If an integer greater than 100 and less than 1,000 is to be selected at random, what is the probability that the integer selected will be a multiple of 7?142/999142/900142/899128/900128/89941. The greatest of the 21 positive integers in a certain list is 16. The median of the 21 integers is 10. What is the least possible average (arithmetic mean) of the 21 integers?A. 4B. 5C. 6D.7E.842. For a certain distribution, the measurement 12.1 is 1.5 standard deviations below the mean, and the measurement 17.5 is 3.0 standard deviations above the mean. What is the mean of the distribution?A. 13.8精品文库B. 13.9C.14.0D. 14.1E. 14.2。

GRE数学6大类常见易错问题盘点

GRE数学6大类常见易错问题盘点

GRE数学6大类常见易错问题盘点GRE数学6大类常见易错问题盘点, 把握应对方法避开意外扣分。

今日我给大家带来了GRE数学6大类常见易错问题盘点,盼望能够关心到大家,下面我就和大家共享,来观赏一下吧。

GRE数学6大类常见易错问题盘点把握应对方法避开意外扣分1. 最大最小值问题最大最小值问题是简单发生错误的,因为题目考的是区间,然后求区间里的一个极值,这类题目答案也往往是几个特别接近的数字。

假如考生一时大意,就很简单选出一个比正确答案稍大或者稍小一点点的数值,由此造成问题。

2. 百分比转换问题百分比问题也是比较常见的错误。

举例来说,A比B大20%,但反过来B并不是比A小20%,许多考生脑子一时没转过来,直接做了一个数值转换,在不经意间就犯了错误。

3. 单位转换问题这个可以说是GRE数学里经典的出题陷阱。

有些题目会给出几个不同单位的数据,但并不会明确提示考生,假如考生在计算时没有留意,直接用数字去算而遗忘了单位转换,那么就肯定会出问题。

4. 漏看题目要求这是考生在审题过程中很简单犯的低级错误。

举例来说,一道题目,告知你N 这个数,需要通过系列条件计算才能知道N的值,最终问的却是2N的数值。

有些考生看题目没看完最终要求就自以为是算N的数值,好不简单算完了就直接选了答案,结果自然是错误的。

5. 图片比例问题GRE数学中有很多几何题目会提供图片给大家参考,但这些图片的比例有时候却是有意给错的。

比方一个三角形,有意给出类似等边三角的样子,题目中却完全没有提到是等边三角。

假如考生自以为是的依据图片脑补了一个等边三角的默认条件,然后运用到计算当中,那么就会在不经意中踩中陷阱。

6. 小数点问题GRE数学中,涉及到百分比的题目许多,有些题目看似求数值,最终要求百分比,或者反其道而行之。

考生假如不留意,小数点上出现问题,也是特别简单出错的。

综上所述,GRE数学想要拿到高分,并不是只搞定学问点就能做到的。

考生只有在考试中多加留意各种详情,认真再认真地审题、解题和检查,才能确保GRE数学高分总分。

GRE数学这4种易错问题不能忍

GRE数学这4种易错问题不能忍

GRE数学这4种易错问题不能忍GRE数学这4种易错问题不能忍,避开出错先了解扣分缘由,今日我给大家带来了GRE数学这4种易错问题不能忍。

盼望能够关心到大家,下面我就和大家共享,来观赏一下吧。

GRE数学这4种易错问题不能忍避开出错先了解扣分缘由GRE数学易错缘由:对题目理解有误犯错表现:1. 完全无法读懂字面意思2. 能读懂字面意思,但是无法在规定时间内完成3. 能在规定时间内读懂字面意思,但是不能快速整理出数学模型或解题思路。

所谓理解问题,其实就是指看不懂题目,这种错误非常致命,却特殊简单被一些自认为思维好规律强的同学忽视,明明会做的题目,由于看不懂题目而出错,实在太惋惜。

GRE数学易错缘由:某些学问点忘了或没把握犯错表现:能读懂题,且有思路的大致方向,但对于完成该思路的工具(如描述统计的公式、集合的2种类型的处理方式,排列组合和概率的公式,etc)完全没有印象或虽然有印象但是不能系统驾驭,导致最终不能完成题目。

这其实是比较不应当消失的错误,GRE考试会考的数学学问点都是固定的,也没有说突然就增加了一些新内容,考生只要在复习中做好充分预备,就不应当发生这种错误。

GRE数学易错缘由::踩中了题目的思维陷阱犯错表现:能够读懂题目且知道思路以及运用的工具,但是由于加入了自己的主观或过去的常识导致自己加了条件,在这样的状况下解题,消失偏差。

比较常见的一种错误类型,俗称想当然。

考生在做题时,下意识的把一些常识作为条件脑补进了题目,最终得出错误的结果。

在GRE 考试数学部分需要特殊留意,解题应完全根据题目给出的条件进行,不要加入自己的主观常识。

GRE数学易错缘由:马虎大意意外扣分错误表现:计算错误,把三角形的“height”看成“side”等等。

这种错误就不用多说了,大家想必都犯过,解决方法时多总结,把马虎类的问题集中在一起,常常看看,保证同一类型的错误不要反复消失。

GRE数学究竟考什么1.算术:数的性质及四则运算的变化及应用,这部分的题一般都相当简单,约占练习题比重的15%;2.几何:包括三角形、四边形、圆形乃至多边形等平面几何图形的角度、周长、(表)面积等的计算;长方体、正方体以及圆柱体的表面积及体积的计算;以及简洁的解析几何方面的内容;总共约占练习题的25%;3.定义:包括词汇、公式等由定义来求解的题目,比重约占练习题的10%;4.代数:以文字代数的计算,主要是代数等式和代数不等式,约占练习题比重的15%;5.文字题:通过阅读冗长的叙述来做一些实际上极简洁的运算,约占练习题比重的20%;6.图表题:利用统计图表(主要包括圆形图、条形图、线形图和表格等)来出一些要求考生通过分析和计算才能解答的题目,约占练习题的15%。

解题干货重拳出击丨GRE数学易错题型全解析

解题干货重拳出击丨GRE数学易错题型全解析

解题干货重拳出击丨GRE数学易错题型全解析GRE数学总是容易被忽略,一不小心就会在这些题上面丢分,看看这些易错题,是不是你踩过的坑。

01被除数计算问题余数考点中被除数计算的题型,一般是在题目当中给出除数和余数,问满足要求的被除数。

这类题型计算的方法是利用公式:被除数=除数×商+余数。

需要注意的是各个数的取值范围:被除数和除数都是正整数;商是非负整数;0≤余数≤除数。

【例】How many positive integers less than 100 have a remainder of 2 when divided by 13?A. 6B. 7C. 8D. 9E. 10答案C.【易错点】商只算了正整数,没有把0算进去。

【解析】问小于100的正整数当中,满足除以13余2的数有多少个?可以假设除以13余2的数是:x=13n+2,其中n是非负整数.那么根据题意可以列不等式:0<13n+2<100.解得-2/13<n<98/13,因为n是非负整数,所以n可以取0到7这几个整数,一共8个取值,对应的x就有8个取值.02概率计算问题事件之间的关系常见的有三种:互斥、对立、独立。

简单来区别一下:互斥事件是指两个事件不能同时发生;对立事件是指两个事件的发生非此即彼;独立事件是指事件之间互不影响。

在分析题目当中的事件时,首先要理解的就是事件之间的关系。

【例】For a certain probability experiment, the probability that event A will occur is 1/2 and the probability that event B will occur is 1/3.Which of the following values could be the probability that the event A ∪ B (that is, the event A or B, or both) will occur?Indicate all such values.A.1/3B.1/2C.3/4答案BC.【易错点】题干没有告知两个事件的关系,默认为是独立事件。

GRE机经易错题word文本

GRE机经易错题word文本

1.How many such numbers in 1-100 that when divided by 5 the remainder is 3, and divided by 6 the remainder is 2?A:2B:3C:4D:5E:62.n>2Quantity A Quantity BThe standard deviation of {2,2,2,n} The standard deviation of {2,n,n,n}A:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.3.What is the 57 digit to the right of the decimal point of ?A:2B:8C:5D:7E:14.CD = 6, point A lies on line CD, point B is not on line CD, where 1 ≤ AB < 2, what’s the range of area of triangle BCD?A:3B:4C:5D:6E:85.Triangle ABC has an acute angle C, AC=3, BC=4,what’s the value range of line AB?A:1B:2C:3D:4E:56.A man walks from point A to pointB on the rectangular grids shown. He could only choose to walk north or east at any corner, what’s the probability of choosing a path via point C? A:B:C:D:E:7.,where a and b are both integers, what is the possible value of a+b ?A:9B:12C:15D:17E:29F:100G:106H:1098.k is an odd integer which is greater than 100, d is a divisor other than k itself Quantity A Quantity BdA:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.9.There are 30 pencils in 5 different colors, 6 pencils in each color, how many pencils we need to pick to guarantee that every color has at least 2 pencils?A:24B:25C:26D:27E:2810.A 10-day long course, in the analysis of attendance for three students:A attended for 8 days, B attended for 7 days, C attended for 6 days, among which only 1 day all of them attended. How many days at least two students attended?A:6B:7C:8D:9E:1011.S={1,2,3,4,6}, T={1,2,3,6,8}, pick one number from each set separately, how many different possible product of the two selected numbers ?A:10B:11C:12D:13E:1412.Randomly select a number from 1-1000, what is the probability that none of the digit would be 6 in this number?A:B:C:D:E:13.Line l intersected with two parallel lines m and n.Quantity A Quantity BNumber of points which is at equaldistance to three lines 3A:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.14.m,n are both integers, m is a factor of, how many pairs of (m, n) that ? A:ZeroB:OneC:ThreeD:FourE:Six15.S = {3 5 7 8 8 9 10 11 12}, T = {3 5 7 9 10 11 12}Quantity A Quantity BThe standard deviation of Set S The standard deviation of Set TA:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.16.A four-digit number 7a6b, a, b are both integers, what’s the probability that this number would be divided by 4? ________17.The probability of A is 60% and the probability of B is 50%, what is the most possible probability that neither A nor B would happen?A:0.80B:0.40C:0.75D:0.55E:0.6818.If Bob can do a job in 20 days and Jane can do the job in 30 days, they work together to do this job and in this period, Bob stop work for 2.5 days and Jane stop work for x days, and the job be finished for 14 days, what is x?A:1.6B:3.2C:1.5D:1.25E:1.1519.In an insurance company, each policy has a paper record and an electric record. For those policies having incorrect paper record, 60% also having incorrect electric record; For policies having incorrect electric record, 75% also having incorrect paper record.3% of all policies have both incorrect paper and incorrect electric records. If we randomly pick out one policy, what’s the probability that the one having both correct paper and correct electric records?A:0.80B:0.94C:0.75D:0.88E:0.9220.Two librarians, Robert and Patricia, cataloged a combined total of 180 new books, each of which was cataloged by only one of the two librarians. Although they spent the same amount of time cataloging their books, Robert spent an average of 15 minutes per book whereas Patricia spent an average of 12 minutes per book.Quantity A Quantity BThe number of books cataloged by Robert 60A:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.21.The unit price of commodity X is $21.94, for every order on commodity X, a tax of $20 would be imposed on the buyer. Some buyer has made n orders on commodity X, with the standard deviation of 5 on number of commodities in every order. What’s the standard deviation of the total price he/she paid for every order?A:5B:21.94。

GRE数学满分须知这6个常见扣分问题要特别当心

GRE数学满分须知这6个常见扣分问题要特别当心

GRE数学满分须知这6个常见扣分问题要特别当心下面我为大家分别介绍GRE数学中最常见的6种低级错误,大家只要对这些错误多加留意,在考试中引起警惕,其实还是比较简单避开的。

1. 最大最小值问题最大最小值问题是简单发生错误的,因为题目考的是区间,然后求区间里的一个极值,这类题目答案也往往是几个特别接近的数字。

假如考生一时大意,就很简单选出一个比正确答案稍大或者稍小一点点的数值,由此造成问题。

2. 百分比转换问题百分比问题也是比较常见的错误。

举例来说,A比B大20%,但反过来B并不是比A小20%,许多考生脑子一时没转过来,直接做了一个数值转换,在不经意间就犯了错误。

3. 单位转换问题这个可以说是GRE数学里经典的出题陷阱。

有些题目会给出几个不同单位的数据,但并不会明确提示考生,假如考生在计算时没有留意,直接用数字去算而遗忘了单位转换,那么就肯定会出问题。

4. 漏看题目要求这是考生在审题过程中很简单犯的低级错误。

举例来说,一道题目,告知你N这个数,需要通过系列条件计算才能知道N的值,最终问的却是2N的数值。

有些考生看题目没看完最终要求就自以为是算N的数值,好不简单算完了就直接选了答案,结果自然是错误的。

5. 图片比例问题GRE数学中有很多几何题目会提供图片给大家参考,但这些图片的比例有时候却是有意给错的。

比方一个三角形,有意给出类似等边三角的样子,题目中却完全没有提到是等边三角。

假如考生自以为是的依据图片脑补了一个等边三角的默认条件,然后运用到计算当中,那么就会在不经意中踩中陷阱。

6. 小数点问题GRE数学中,涉及到百分比的题目许多,有些题目看似求数值,最终要求百分比,或者反其道而行之。

考生假如不留意,小数点上出现问题,也是特别简单出错的。

总而言之,GRE数学想要拿到高分总分,以上提到的这些常见扣分问题考生就必需多加留意,假如大家能够在考试中保持细心,认真再认真地审题、解题和检查,确保GRE数学高分总分才会更有把握。

GRE数学这3种题型错误率高-

GRE数学这3种题型错误率高-

GRE数学这3种题型错误率高?GRE数学这3种题型错误率高?有用解题步骤思路具体介绍。

今日我给大家带来GRE数学这3种题型错误率高。

盼望能够关心到大家,下面我就和大家共享,来观赏一下吧。

GRE数学这3种题型错误率高?有用解题步骤思路具体介绍GRE数学易错题型解题步骤思路:大小比较题(Quantitative Comparison)a)解答之前,两个Column都要先仔细看一看;b)留意出题的目的在于强调速度和捷径,因此不要陷于冗长的演算过程;c)尽可能地简化问题,必要时画出草图或做上记号;d)当问题中没有消失变量而都是数值时,不行以选(D);e)当问题中消失变量x、y、z或a、b、c时,可以由0、1和-1的简洁数值代替计算;假如代入不同的数值,有不同的大小关系则就选(D);f)要特殊留意数量比较大小的最终几题。

GRE数学易错题型解题步骤思路:计量力量题(Math Ability)a)认真阅读题目,把要求解的地方圈起来;b)画出草图或在图上做记号;c)若有简洁的公式或解法,则尽量用简洁的方法直接求解,再选择正确的答案;d)若没有公式可循,则试着消去不合理的答案,即由答案做起,代入题目中验证是否正确,并且用近似值求法来简化计算过程,最终求出正确答案;e)要特殊留意最终的几题,一般设有简单而奇妙的陷阱。

GRE数学易错题型解题步骤思路:图表分析题(Graphic Analysis)a)先略读一下题目;b)检视一下图表,留意标题、图例及比较显着的变化;c)把每个题目的重点圈起来;来源:考试大d)太难的或简单混淆的题目要跳过去;e)假如计算的项目很繁杂,应先从可能的答案求近似值,排解不合理的答案;f)在整个数量部分的试题中,图表分析的题目应当放在最终面做。

总而言之,考生在解答GRE数学题目时肯定要细心仔细,要学会合理安排答题时间,保证答题效率和正确率,并留出足够时间用于检查题目。

只要娴熟把握上述解题技巧并敏捷运用,考试成果必将会得到提高。

GRE机经易错题

GRE机经易错题

1.How many such numbers in 1-100 that when divided by 5 the remainder is 3, and divided by 6 the remainder is 2?A :2B :3C :4D :5E :62.n >2Quantity AQuantity B The standarddeviation of {2,2,2,n} The standard deviation of{2,n,n,n}A :Quantity A is greater.B :Quantity B is greater.C :The two quantities are equal.D :The relationship cannot be determined from the information given.3.What is the 57 digit to the right of the decimal point of ?A :2B :8C :5D :7E :14.CD = 6, point A lies on line CD, point B is not on line CD, where 1 ≤ AB < 2, what ’s the range of area of triangle BCD?A :3B :4C :5D :6E :85.Triangle ABC has an acute angle C, AC=3, BC=4,what’s the value range of line AB?A:1B:2C:3D:4E:56.A man walks from point A to pointB on the rectangular grids shown. He could only choose to walk north or east at any corner, what’s the probability of choosing a path via point C?A:B:C:D:E:7.,where a and b are both integers, what is the possible value of a+b ?A:9B:12C:15D:17E:29F:100G:106H:1098.k is an odd integer which is greater than 100, d is a divisor other than k itself Quantity Quantity BAdA:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.9.There are 30 pencils in 5 different colors, 6 pencils in each color, how many pencils we need to pick to guarantee that every color has at least 2 pencils?A:24B:25C:26D:27E:2810.A 10-day long course, in the analysis of attendance for three students:A attended for 8 days, B attended for 7 days, C attended for 6 days, among which only 1 day all of them attended. How many days at least two students attended?A:6B:7C:8D:9E:1011.S={1,2,3,4,6}, T={1,2,3,6,8}, pick one number from each set separately, how many different possible product of the two selected numbers ?A:10B:11C:12D:13E:1412.Randomly select a number from 1-1000, what is the probability that none of the digit would be 6 in this number?A:B:C :D :E :13.Line l intersected with two parallel lines m and n.Quantity A QuantityB Number of points which is atequal distance to three lines3 A :Quantity A is greater.B :Quantity B is greater.C :The two quantities are equal.D :The relationship cannot be determined from the information given.14.m,n are both integers, m is a factor of , how many pairs of (m, n) that ?A :ZeroB :OneC :ThreeD :FourE :Six15.S = {3 5 7 8 8 9 10 11 12}, T = {3 5 7 9 10 11 12}Quantity A Quantity BThe standard deviation of Set S The standard deviation of SetTA :Quantity A is greater.B :Quantity B is greater.C :The two quantities are equal.D :The relationship cannot be determined from the information given.16.A four-digit number 7a6b, a, b are both integers, what ’s the probability that this number would be divided by 4? ________17.The probability of A is 60% and the probability of B is 50%, what is the most possible probability that neither A nor B would happen?A:0.80B:0.40C:0.75D:0.55E:0.6818.If Bob can do a job in 20 days and Jane can do the job in 30 days, they work together to do this job and in this period, Bob stop work for 2.5 days and Jane stop work for x days, and the job be finished for 14 days, what is x?A:1.6B:3.2C:1.5D:1.25E:1.1519.In an insurance company, each policy has a paper record and an electric record. For those policies having incorrect paper record, 60% also having incorrect electric record; For policies having incorrect electric record, 75% also having incorrect paper record.3% of all policies have both incorrect paper and incorrect electric records. If we randomly pick out one policy, what’s the probability that the one having both correct paper and correct electric records?A:0.80B:0.94C:0.75D:0.88E:0.9220.Two librarians, Robert and Patricia, cataloged a combined total of 180 new books, each of which was cataloged by only one of the two librarians. Although they spent the same amount of time cataloging their books, Robert spent an average of 15 minutes per book whereas Patricia spent an average of 12 minutes per book.Quantity A Quantity BThe number of books cataloged by Robert 60A:Quantity A is greater.B:Quantity B is greater.C:The two quantities are equal.D:The relationship cannot be determined from the information given.21.The unit price of commodity X is $21.94, for every order on commodity X, a taxof $20 would be imposed on the buyer. Some buyer has made n orders on commodity X, with the standard deviation of 5 on number of commodities in every order. What’s the standard deviation of the total price he/she paid for every order?A:5B:21.94C:43.88D:109.7E:2522.There is a 3*3 table, we need to fill it with three different numbers, A, B and C. There should not be two identical numbers in either each row or each column. How many different methods are available?A:6B:8C:10D:12E:1623. Hal has 4 girl friends and 5 boy friends. In how many different ways can Hal invite 2 girls and 2 boys to his birthday party?A.54B.60C.72D.120E.24024. An office has 6 employees; there are 5 female employees and 1 male employee. In how many ways can a 3-person committee be created if the committee must include the male employee?A.10B.12C.15D.24E.3025. Joan has 100 candies to distribute among 10 children. If each child receives at least 1 candy and no two children receive the same number of candies, what is the maximum number of candies that a child can receive?A.10B.34C.39D.45E.5526. From a group of 8 people, it is possible to create exactly 56 different k-person committees. Which of the following could be the value of k ?Indicate all such values.A. 1B. 2C. 3D. 4E. 5F. 6G.727. How many 4-digit numbers begin with an even digit and end with an odd digit ?A 250B 500C 2,000D 2,500E 5,00028. How many positive integers can be expressed as a product of two or more of the prime numbers 5,7,11,and 13 if no one product is to include the same prime factor more than once ?A EightB nineC TenD ElevenE Twelve29. N equals the number of positive 3-digit numbers that contain odd digits only.Quantity ANQuantity B125A. Quantity A is greater.B. Quantity B is greater.C. The two quantities are equal.D. The relationship cannot be determined from the information given.Quantity ANumber of different triangles possible using the given points as vertices. Quantity B42A. Quantity A is greater.B .Quantity B is greater.C. The two quantities are equal.D. The relationship cannot be determined from the information given.31. What percent of the integers between 100 and 999,inclusive,have all three digits the same ?A 1%B 2%C 3%D 4%E 5%32. Of the 20 lightbulbs in a box, 2 are defective. An inspector will select 2 lightbulbs simultaneously and at random from the box. What is the probability that neither of the lightbulbs selected will be defective?Give your answer as a fraction.33. For a certain probability experiment, the probability that event A will occur is 1/2 and the probability that event B will occur is 1/3. Which of the following values could be the probability that the event A∪B (that is, the event A or B, or both) will occur?Indicate all such values.A. 1/3C. 3/434. A and B are independent events, and the probability that both events occur is 1/2. Which of the following could be the probability that event A occurs? Indicate all such probabilities.A. 0B. 1/4C. 1/2D. 3/4E. 135. In a certain state, each license plate consists of either three digits (between 0 and 9, inclusive) followed by two letters or three letters followed by two digits. For example, 055-XY, 123-PP, and AAA-70 are all acceptable plates. How many different license plates can the state issue?36. A positive integer is a palindrome if it reads exactly the same from right to left as it does from left to right. For example, 5 and 66 and 373 are all palindromes. How many palindromes are there between 1 and 1,000, inclusive?37. A box contains 10 balls numbered from 1 to 10 inclusive. If Ann removes a ball at random and replaces it, and then Jane removes a ball at random, what is the probability that both women removed the same ball?A. 1/100B. 1/90C. 1/45D. 1/10E. 41/4538. A: {71,73,79,83,87} B: {57,59,61,67}If one number is selected at random from set A, and one number is selected at random from set B, what is the probability that both numbers are prime?A. 9/20B. 3/5C. 3/4E. 139. A box at a yard sale contains 3 different china dinner sets, each consisting of 5 plates. A customer will randomly select 2 plates to check for defects. What is the probability that the 2 plates selected will be from the same dinner set?A. 2/7B. 2/5C. 2/3D. 5/6E. 3/240. If an integer greater than 100 and less than 1,000 is to be selected at random, what is the probability that the integer selected will be a multiple of 7?142/999142/900142/899128/900128/89941. The greatest of the 21 positive integers in a certain list is 16. The median of the 21 integers is 10. What is the least possible average (arithmetic mean) of the 21 integers?A. 4B. 5C. 6D.7E.842. For a certain distribution, the measurement 12.1 is 1.5 standard deviations below the mean, and the measurement 17.5 is 3.0 standard deviations above the mean. What is the mean of the distribution?A. 13.8B. 13.9C.14.0文档D. 14.1E. 14.2。

[GRE数学6种易错扣分问题如何避免]

[GRE数学6种易错扣分问题如何避免]

[GRE数学6种易错扣分问题如何避免]最大最小值问题最大最小值问题是容易发生错误的,因为题目考的是区间,然后求区间里的一个极值,这类题目答案也往往是几个非常接近的数字。

如果考生一时大意,就很容易选出一个比正确答案稍大或者稍小一点点的数值,由此造成问题。

百分比转换问题百分比问题也是比较常见的错误。

举例来说,A比B大20%,但反过来B并不是比A小20%,很多考生脑子一时没转过来,直接做了一个数值转换,在不经意间就犯了错误。

单位转换问题这个可以说是GRE数学里经典的出题陷阱。

有些题目会给出几个不同单位的数据,但并不会明确提示考生,如果考生在计算时没有留意,直接用数字去算而忘记了单位转换,那么就绝对会出问题。

漏看题目要求这是考生在审题过程中很容易犯的低级错误。

举例来说,一道题目,告诉你N这个数,需要通过系列条件计算才能知道N的值,最后问的却是2N的数值。

有些考生看题目没看完最后要求就自以为是算N的数值,好不容易算完了就直接选了答案,结果自然是错误的。

图片比例问题GRE数学中有许多几何题目会提供图片给大家参考,但这些图片的比例有时候却是故意给错的。

比如一个三角形,故意给出类似等边三角的形状,题目中却完全没有提到是等边三角。

如果考生自以为是的根据图片脑补了一个等边三角的默认条件,然后运用到计算当中,那么就会在不经意中踩中陷阱。

小数点问题总而言之,GRE数学想要拿到高分,并不是只搞定知识点就能做到的。

考生只有在考试中多加注意各种细节,仔细再仔细地审题、解题和检查,才能确保GRE数学高分满分。

希望上文提到的这些常见低级错误,能够引起大家的警惕和注意,避免在本不该出错的地方无谓地丢失分数。

新GRE数学难题的巧法一:最小值代入检验法这是数学部分最重要的解题技巧!顾名思义,这种方法通过代入某一个值求解,将复杂的问题转化成简单易懂的代数式。

我们前面说过,新GRE考试所测试的数学知识不超过初中水平,但却轻而易举地就能把这些题变难,惯用的手段不是屡设陷阱,就是用晦涩复杂的语言来表达一个事实上很清楚简单的数学计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. l1, l2 and l3 are three lines in spaceThe number of points at The number of points at which lines l1 and l2 intersect which lines l2 and l3 intersect1。

三條任意直線,L1和L2的交點的個數與L2和L3的交點的個數沒關。

2. The number of 1/4-inch lengths in 1a 4-inch length2,是問4英尺中有多少個1/4英尺,應該是16個,所以是A3. The maximun number of solid cubes 4having edges of length 1/2 meter thatcan be placed inside a cubical boxhaving inside edges of length 1 meter3邊長為1的立方體裡最多能放下幾個邊長為1/2的立方體,當然是8個咯4. Cube C has volume 8 cubic centimetersThe area of one of the faces of cube C 3 square centimeters4立方體體積是8,那一個面的面積當然是4咯5. Ms.Smith got an 8 percent cost-of-living raise of $20 per weekMs.Smith's new weekly salary $2605 x*0.08=20,那x+20=270>2606. On a certain number live, if -7 is a distance of 4 from n and 7 is a distance of 18from n then n=A.25B.11C.3D.-3 E-116應該是-117. For all real numbers a and b. if a•b=a(a+b), then a•(a•b)=A. a2+ab B a2+ab+a C a2+a+b D a3+a2b E a3+a2b+a2注:a2表示a平方,a3表示a立方7新定義的運算a•b=a(a+b), 那a•(a•b)=a•(aa+ab)=a(a+aa+ab)=aa+aaa+aab8.secretary typed 6 letters,each of which had either 1 or 2 pages.If the secretary typed 10 pages in all, how many of the letters had 2 pages?A 1B 2C 3D 4E 5答案是D,題目我都看不懂,是啥意思呢?這是說秘書打六封信,沒一封信要1頁或者兩頁。

如果秘書總共打了10頁,那麼有多少封信是兩頁?解答:設有x封,則2x+(6-x)=10,解得x=4.9 how many of the five numbers above are each equal to the product of an integer and an odd integer that greater than 1?這五個數是:2 6 8 14 16a.noneb.onec.twod.theree.four我覺得這道題除了2不可能,其它四個數都有可能.可答案是c,想問大家為什麼?題目意思是這5個數哪些可以是2個>1的數的積,一個是奇數,一個是整數,只有6和14的因數中有奇數,所以C.10 這句話大家看該怎樣列式子呢?這是一道圖表題.what was the approximate percent increase in personal income from 1965 to 1970?是這樣(1970-1965)/1965還是(1970-1965)/1970這樣?是這樣:(1970-1965)/19651 the sum of two numbers, x and y, equals twice their products. if x=3, what is the value of y?這道題沒大看懂?請問大家是這樣麼?x+y=2(x+y)x+y=2xy,求y.2 if x is an integer and x2(x的平方)<37,what is the greatest possible value of x minus the least possible value of x?我覺得這道題x的最大值為6,最小值為0,所以選6.a.5b.6c.10d.12e.36選D,最大為6,最小為-6.3 三角形ABC,角B=X度,X>90 度,比較三角形的周長與3倍AC的長度的大小,答案是BAC是最大邊,所以AB+BC+AC<AC+AC+AC(3AC).2.0<p<1比較the greatest value of p(1-p)與1/2的大小,答案是C答案錯了,選B p+(1-p)>=2p(1-p)^1/2 => p(1-p)<=1/4 < 1/24 for the line with equation y=ax+b,the x-intercept os twice the y-intercept比較the slope of the line 與1/2的大小,答案是D,但算出來是-1/2呀還有截距為零的情況,所以D.5 a certain moneymarket account that had a balance of $48000 during all of last monthearned $360 in interest for the month. at what simple annual interestrate did the account earn interest last month?答案是9%,題目沒看懂意思是一個貨幣市場上個月共結餘48000,用它賺了360的利息,問以年單利計算每年利率是多少?360*12/48000=9%6 Of the positive integers that are multiples of 30 and are less than or equal to 360,what fraction are multiples of 12?a.1/6b.1/5c.1/3d.2/5e.1/2首先這道題我是對multilples of ....不大明白,這是什麼意思啊?其次這道題怎麼解呢?在小於360的30的公倍數中,也是12的公倍數的占多少?30N≤360, 得N≤12,所以共有12個數滿足題幹.又12與30的最小公倍數為60,其實此題是求是60的倍數又小於等於360所占比例,同理求出為6所以,6/12=答案E7 A certain teacher has a total ofat least 110 students enrolled in her classes.if the teachers has anaverage (arithmetic mean) of exactly 27 students enrolled per class.what is the least possible number of classes that the teacher couldhave?a.3b.4c.5d.6e.7我覺得這道題就是用110除以27就好了,可是答案是選c的是呀,110/27=4.04,如果是4個班,那麼總人數為108,還剩2個。

當然是5個班了。

8 a delivery service charges $0.02 per ounce for the first 16 ounces ofa shipment and $0.15 for eachadditional ounce of theshipment,(1pound=16ounce)the delivery charges for x shipments weighing a combimed total of the pounds vs 567.00這道題答案選的是D,不明白怎麼會無法確定呢?我是這樣算的:16×0.2+(25*16-16)×0.15...這樣對麼?因為x是個未知數,所以你無法確定它的值。

9 the cost per gram of carrots if 3 cans of carrots cost $0.90 the costper gram of onions if 5 cans of onions cost $1.50無法確定,沒有告訴1can有多少克?10 X is an integer, and the remainder when 2X is divided by 4 is 0.The remainder when X is divided by 4 0選D,當x=2,-2時,餘數為2,-2,其它情況為01 Let[X]=3, if X is an odd integer;let[X]=6, if X is an even integer.r and s are integers, 3r is odd and 5+s is odd.[r][s]3r是奇數說明r為奇數,所以[r]等於3,5+s為奇數,說明s為偶數,所以[s]=62 the value of the units' digit in 6^47(6的47次方) the value of the units' digit in 5^77(5的77次方)比較兩個數的個位,6不管多少次方個位都為6,5不管多少次方個位都為5.3 for all numbers r and s, where s/=(不等於)0, r#s=10r/s.0.01#0.01 10.01#0.01=10*0.01/0.01=10,大於1.4 1<n<5,n is an integer.the sum of the first n odd integers that are greater than zero n^2(n平方)-1說的是n個大於零的奇數和。

當n=2,1+3=4;n^2-1=3;當n=3,1+3+5=9;n^2-1=8;當n=4,1+3+5+7=16;n^2-1=15所以選A5 a^7+a^15 a^8+a^14注是a的7次方,類推呵呵比較大小題後-前=a^7(a-1)+a^14(1-a)=(a^7-a^14)(a-1)然後討論,最後結果是後-前的差<0,但當a=1時,相等。

相关文档
最新文档