难熔金属粉末冶金制备新技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难熔金属的粉末冶金制备新技术

何勇学号:153312086

粉末冶金研究院

摘要:本文简要介绍了几种难熔金属的制备新技术,包括三种现代粉末冶金烧结技术(微波烧结、放电等离子烧结、选择性激光烧结)与两种近静成型技术(3D打印、金属粉末注射成形)。介绍其制备方法的基本原理、技术优势以及应用现状,并在最后简单阐述材料制备技术的发展趋势。先进烧结技术具有烧结温度低、烧结速度快、晶粒组织细化、结构均匀可控等优点,同时节约能源,生产效率高,是未来难熔金属制品致密化过程的优良选择;近静成型技术摒弃了传统材料制品制备和加工分开进行的传统工艺,大大缩短了生产周期,已成为当今难熔金属材料研究的热点,在高新尖端领域拥有十分可观的前景。

关键词:难熔金属;制备工艺技术;粉末冶金

Abstract: This paper briefly introduces several new techniques of preparation of refractory metal, including three modern sintering technologies such as microwave sintering and two kinds of near net shape techniques. The basic principles,advantages and research status of these methods are claimed in the main paragraph. At the last part, some development trend of refractory metal materials are listed briefly.Not only do they possess unique advantages on rapid heating rate, short sintering time, inhibiting grain growth and controlling microstructure, but also show enormous industrial application value and prospect in terms of short production cycle and high efficiency energy saving, so the new sintering techniques have become a present research focus in material field.Near net shape technology has a very considerable prospects in the high-tech frontier because it greatly shortens the production cycle.

Key words: refractory metal; preparation technique; powder metallurgy

1 前言

难熔金属[1]一般是指熔点在2000℃以上的过渡金属元素,广义上包括钨(W)、钼(Mo)、钽(Ta)、铌(Nb)、钛(Ti)、钒(V)、铬(Cr)、锆(Zr)等十几种元素。难熔金属元素均位于元素周期表的IIIB、IVB、VB族内,其中钨、钼、钽、铌和铼(Re)这五种元素应用最广。

难熔金属及其合金、金属间化合物以其高熔点、高硬度、高强度等一系列独特的物理与力学性能而广泛应用于国防军工、航空航天、电子信息、冶金化工、能源环保等领域, 历来受到世界各国的高度重视, 在国民经济中占有重要地位[2]。例如钨钼及其合金由于耐高温性能好、密度大、抗高温冲击和疲劳, 广泛用于电力、冶金、兵器、核聚变、化工等行业中[3]。难熔金属合金可以抵抗辐射、温度、腐蚀和拉伸应力的苛刻环境, 在高温时具有高蠕变强度, 且同碱流体材料具有很好的相容性, 因此可以作为高温结构材料使用。

随着现代工业技术的不断进步与发展,对于难熔金属材料性能的要求越来越严格,传统的熔炼铸造等制备加工方法已经无法满足现代制造业对难熔金属制品的性能要求,与之相比,粉末冶金技术能够制备出高纯、高强、高性能的特殊制品,是目前难熔金属制备发展的主流趋势。

2 难熔金属的烧结新技术

粉末冶金烧结技术是制备难熔金属及其合金锭坯的主要方法,也是生产过程中的关键工序,对产品的最终性能起着决定性作用。常规烧结方法有氢气烧结、真空烧结、热等静压烧结等,能够实现绝大多数情况下,难熔金属材料的制备要求。随着粉末制备和烧结手段的发展,还能实现一些功能梯度材料、细晶粒材料和形状复杂的零件烧结制备[4]。微波烧结、放电等离子烧结和选择性激光烧结都是这一方向的最新成果。

2.1 微波烧结技术

微波烧结(Microwave Sintering, MS)是材料科学与微波技术结合的新产物,通过电磁场使材料整体加热至烧结温度来实现致密化。由于微波烧结炉是采用微波发生器代替传统的热源,因此微波烧结的加热原理与常规烧结工艺有本质的区别。常规烧结中热量是通过介质从材料表面向内部扩散,最终完成烧结过程;而微波烧结是将材料吸收的微波能转化为材料内部分子的动能和势能,使材料内部的每一个分子和原子都成为发热源[5]。很显然,这种加热方式可以使材料整体受热更加,从而使材料的热应力减至最小,这对于改善材料的密度、强度和韧性都非常有利。图1为微波烧结装置的工作原理图[6]。在微波烧结过程中, 微波发生器产生的微波由波导管导入加热腔中, 对放置在腔体中的试样进行加热烧结, 部分微波能量会被反射回来,环行器的作用是将反射回的微波导向水负载从而保护磁控管。微波烧结加热腔体是微波烧结设备的核心部分,腔体的合理设计、精密制作和正确调整是实现材料成功烧结的关键, 图2为微波烧结炉加热腔体的简图[7],微波加热腔体有多种形式,通常可分为行波加热器、多模炉式加热器、单模谐振腔式加热器3种。多模炉式加热器由于结构简单, 适用于各种加热负载,目前在生产实际中应用最为广泛。

相关文档
最新文档