初一代数式的求值专题
初一数学代数式求值
初一数学代数式求值题的详细解析:1. 题目:已知x = 1 ,求2x + 3 的值。
解析:把x = 1 代入式子,得到2×1 + 3 = 5 。
2. 题目:若y = -2 ,求3y²- 4 的值。
解析:将y = -2 代入,3×(-2)²- 4 = 8 。
3. 题目:当a = 5 时,求6a - 1 的值。
解析:把a = 5 代入,6×5 - 1 = 29 。
4. 题目:已知b = 4 ,求7b + 2 的值。
解析:因为b = 4 ,所以7×4 + 2 = 30 。
5. 题目:若c = 0 ,求8c - 5 的值。
解析:由于c = 0 ,所以8×0 - 5 = -5 。
6. 题目:当d = -3 时,求5d + 7 的值。
解析:把d = -3 代入,5×(-3) + 7 = -8 。
7. 题目:已知e = 2 ,求9e - 6 的值。
解析:将e = 2 代入,9×2 - 6 = 12 。
8. 题目:若f = -1 ,求10f + 8 的值。
解析:把f = -1 代入,10×(-1) + 8 = -2 。
9. 题目:当g = 3 时,求4g - 9 的值。
解析:把g = 3 代入,4×3 - 9 = 3 。
10. 题目:已知h = 5 ,求6h - 10 的值。
解析:因为h = 5 ,所以6×5 - 10 = 20 。
11. 题目:若i = 0 ,求7i - 3 的值。
解析:由于i = 0 ,所以7×0 - 3 = -3 。
12. 题目:当j = -2 时,求8j + 5 的值。
解析:把j = -2 代入,8×(-2) + 5 = -11 。
13. 题目:已知k = 1 ,求5k - 7 的值。
解析:将k = 1 代入,5×1 - 7 = -2 。
14. 题目:若l = -3 ,求6l + 4 的值。
七年级数学《代数式求值》专项练习
七年级数学代数式求值一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1 B.1 C.﹣2 D.22.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54 B.6 C.﹣10 D.﹣183.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B.1 C.﹣1 D.﹣24.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,15.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.46.已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣37.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或308.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣99.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3 B.0 C.1 D.210.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0 B.﹣1 C.﹣3 D.311.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣712.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3 B.27 C.9 D.1二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π= .14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为.15.若a﹣2b=3,则9﹣2a+4b的值为.16.已知3a﹣2b=2,则9a﹣6b= .17.若a2﹣3b=5,则6b﹣2a2+2015= .18.按照如图所示的操作步骤,若输入的值为3,则输出的值为.19.若a﹣2b=3,则2a﹣4b﹣5= .20.已知m2﹣m=6,则1﹣2m2+2m= .21.当x=1时,代数式x2+1= .22.若m+n=0,则2m+2n+1= .23.按如图所示的程序计算.若输入x的值为3,则输出的值为.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为.参考答案与试题解析一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1 B.1 C.﹣2 D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54 B.6 C.﹣10 D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0 B.1 C.﹣1 D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3 B.0 C.1 D.2【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0 B.﹣1 C.﹣3 D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时, ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时, ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3 B.27 C.9 D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π= 2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18 .【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为 3 .【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b= 6 .【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015= 2005 .【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5= 1 .【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m= ﹣11 .【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1= 2 .【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1= 1 .【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3 .【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9 .【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是 3 .【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9 .【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x2﹣2x=3,∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.故答案为:9【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 5 .【考点】代数式求值.【专题】整体思想.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3 .【考点】代数式求值;单项式乘多项式.【专题】整体思想.【分析】把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.【解答】解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9 .【考点】代数式求值.【专题】整体思想.【分析】把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.【解答】解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故答案为:9.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.。
初中数学竞赛代数专题讲义之代数式求值含例题习题及详解
代数式求值由数与字母经有限次代数运算(加、减、乘、除、乘方、开方)所组成的表达式叫做代数式。
已知一个代数式,把式中的字母用给定数值代替后,运算所得结果叫做在字母取给定数值时代数式的值。
一、专题知识1.基本公式(1)立方和公式:2233()()a b a ab b a b +-+=+(2)立方差公式:2233()()a b a ab b a b-++=-(3)完全立方和:33223()33a b a a b ab b +=+++(4)完全立方差:33223()33a b a a b ab b -=-+-2.基本结论(1)33322()33a b a b a b ab +=+--(2)33322()33a b a b a b ab -=-+-(3)22()()4a b a b ab-=+-二、经典例题例题1已知y z x z x yx y z+++==求代数式y z x +的值。
【解】(1)0x y z ++≠,由等比性质得2()2x y z y zx y z x+++==++;(2)0x y z ++=,则y z x +=-,所以1y zx+=-。
例题2已知234100x y +-=,求代数式y x x y xy y x x 65034203152223--++++的值。
【解】32221532043506x x y xy y x x y++++--322222215205034103410105(3410)(3410)(3410)1010x xy x x y y y x y x x y y x y x y =+-++-++-+=+-++-++-+=例题3实数,,a b c满足条件:231224a b ab -=+=-,求代数式2a b c ++的值。
【解】22222442318224a b a ab b ab c ab ⎧-=⇒-+=⎪⎨+=-⇒+=-⎪⎩两式相加得,()2220a b ++=只有2=0a b +且0c =,所以20a b c ++=。
七年级数学下册综合算式专项练习题带有乘方和开方的代数式求值
七年级数学下册综合算式专项练习题带有乘方和开方的代数式求值随着数学知识的深入学习,我们开始接触到更加复杂的代数式。
在这篇文章中,我们将专项练习带有乘方和开方的代数式求值。
通过解答一系列练习题,我们可以更好地理解这些概念,并提升自己的解题能力。
1. 求解代数式:(2x)^2 + 3(x-1)^2,其中 x =2.解:将 x = 2 代入代数式中,得到:(2*2)^2 + 3(2-1)^2 = 4^2 + 3*1^2 = 16 + 3 = 19.2. 求解代数式:(3y)^3 + 2(4-y)^2,其中 y = -1.解:将 y = -1 代入代数式中,得到:(3*(-1))^3 + 2(4-(-1))^2 = (-3)^3 + 2(4+1)^2 = -27 + 2(5^2) = -27 + 2*25 = -27 + 50 = 23.3. 求解代数式:0.5(x+3) - 2(x-1),其中 x =4.解:将 x = 4 代入代数式中,得到:0.5(4+3) - 2(4-1) = 0.5*7 - 2*3 = 3.5 - 6 = -2.5.通过以上三个例子,我们可以看到如何利用乘方和开方来求解复杂的代数式。
这些代数式的求值需要我们熟练掌握乘法、除法和加减法运算的基本规则,同时需要注意运算的顺序。
除了乘方和开方,我们还可以对代数式进行求和、求积等操作。
下面,我们来解答两个综合题。
4. 求解代数式:(2x+3)(x-4),其中 x =5.解:将 x = 5 代入代数式中,得到:(2*5+3)(5-4) = (13)(1) = 13.5. 求解代数式:√(x^2 + 2x + 1),其中 x = -3.解:将 x = -3 代入代数式中,得到:√((-3)^2 + 2(-3) + 1) = √(9 - 6 + 1) = √4 = 2.在解题过程中,我们需要注意运算符的优先级,例如先进行乘方运算,再进行乘法和加法运算。
代数式求值经典题型1-(含详细答案)
.
第
已知 x-y=2
10
题
求代数式 x3-6xy-y3
.
. .
.
解
x3-6xy-y3
=2(x-y)² . 把 x-y=2 代入上式 .
=( x3 - y3)-6xy
=2(2)²
第
=(x-y)(x2+xy+y2)-6xy
=2×4
10
题
. 把 x-y=2 代入上式 .
=8
=2(x2+xy+y2)-6xy
第 6
1
4
=10×(x² + x²)------(1)
题
【第 2 步】
已知 x² -2x -2=0,两边同时除以 x,得
2 x -2 - x =0 把-2 移到等号右边,得
.
2 x - x =2,两边同时平方,得
4 x² - 4 + x² =4,把-4 移到等号右边,
4 x² + x² = 8--------(2)
. 把-6xy 移到括号里 .
=2(x2+xy+y2-3xy) =2(x2-2xy+y2)
答案: 8
.
.
第
11
已知 3x²-x-1 =0,
题
求代数式 6x3+7x²-5x-2018
.
. .
.
思考
已知 3x²-x-1 =0 故 3x²-x=1 ,
=2x+9x2-5x-2018 =9x2-3x-2018
7y² x=2x+5y 两边同时乘以 2x+5
第
13
2x²+5xy=7y²,把 7y²移到等号左边,
代数式求值经典题型1-(含详细答案)
两边同时平方,x²-2xy+y²=5
将(1)、(2)代入上式,得
把-2xy 移到等号右边,
上式=( 5)² [( 5)² +4xy]
得,x²+y²=5 +2xy------(2)
第 4
【第 2 步】
题
(x²- y²)² - 10(x²+y²)
-10 (5 +2xy) =5(5+4xy)-10(5 +2xy) =25+20xy-50- 20xy
题
温馨提示 选B
本题有一定难度,请同学们自己先做一遍,实在 做不出来,再看答案。
.
. .
.
【思考】 因为 x+y 、x² +y²为已知数,所以,一 定要将代数式分解为含有 x+y 、x² +y²。
解 2x² +2x²y+2xy+xy²+y3
将 2x2 与 2xy 结合,2x2y、xy2、y3 结合,
. 把-6xy 移到括号里 .
=2(x2+xy+y2-3xy) =2(x2-2xy+y2)
答案: 8
.
.
第
11
已知 3x²-x-1 =0,
题
求代数式 6x3+7x²-5x-2018
.
. .
.
思考
已知 3x²-x-1 =0 故 3x²-x=1 ,
=2x+9x2-5x-2018 =9x2-3x-2018
1² 所求代数式=[a2-(2a)2]× a²
-3a² = a² = -3
答案: - 3
.
7y²
第
已知 x、y 是正数,且 x=2x+5y ,
七年级代数式求值
七年级代数式求值一、代数式求值的概念。
代数式求值就是用给定的数值代替代数式里的字母,按照代数式中的运算关系计算得出结果。
例如,对于代数式2x + 3,当x = 5时,将x = 5代入代数式中进行计算,2×5+3 = 10 + 3=13,这个13就是当x = 5时该代数式的值。
二、代数式求值的步骤。
1. 化简代数式。
- 如果代数式比较复杂,先进行化简。
例如,对于代数式3x+2x^2 - 5x + 1,可以先合并同类项,得到2x^2 - 2x+1。
2. 代入数值。
- 明确代数式中字母的值,将其代入化简后的代数式。
已知x = 2,将x = 2代入2x^2 - 2x + 1中。
3. 计算结果。
- 按照代数式中的运算顺序进行计算。
对于2x^2 - 2x+1,当x = 2时,2×2^2-2×2 + 1=2×4 - 4+1=8 - 4+1 = 5。
三、注意事项。
1. 代入数值时要准确。
- 当字母的值是负数、分数等情况时,要特别注意符号问题。
例如,对于代数式x^2 - 3x,当x=-(1)/(2)时,(-(1)/(2))^2-3×(-(1)/(2))=(1)/(4)+(3)/(2)=(1 +6)/(4)=(7)/(4)。
2. 运算顺序。
- 遵循先乘方、再乘除、后加减的运算顺序。
如果有括号,先算括号里面的。
例如,对于代数式(2x + 1)^2 - 3(x - 1),当x = 3时,先计算(2×3+1)^2=(6 + 1)^2 = 49,再计算3(x - 1)=3×(3 - 1)=6,最后49-6 = 43。
初一代数式求值练习题及答案
初一代数式求值练习题及答案11212:已知:x+=3,求代数式+x+6+的值 xxxa5b53:已知当x=7时,代数式ax+bx-8=8,求x=7时,x?x?8的值.21:已知:m=4:已知xyzx?2y?3z==,则代数式34xy?2yz?3yz5:已知a=3b,c=4a求代数式2a?9b?2c的值a?6b?c 2-6:已知a,b互为相反数,c,d互为倒数,x的绝对值等于1,求代数式a+b+xcdx的值7:设a+b+c=0,abc>0,求b?cc?aa?b++的值 bca1;9:5a-4a+a-9a-3a-4+4a,其中a=-10:5ab-2229212112ab+ab-ab-ab-5,其中a=1,b=-2;2412211:-,其中a=2,b=;112112212:x-2+3,其中x=-2,y=-;3293122213:-5abc-{2ab-[3abc-2]},其中a=-2,b=-1,c=3.14:证明多项式16+a-{8a-[a-9-3]}的值与字母a的取值无关.15:由于看错了符号,某学生把一个代数式减去x+6x -6误当成了加法计算,结果得到2x-2x+3,正确的结果应该是多少?16:当x?2,y?2211时,求代数式x2?xy?y2?1的值。
217:已知x是最大的负整数,y是绝对值最小的有理数,求代数式2x3?5x2y?3xy2?15y3的值。
11??18:已知x1??3??,求代数式x1999?x1998?x1997x?1的值。
6??19:已知32?2a?b?3?a?b?2a?b的值。
??5,求代数式a?ba?b2a?b20:当x?7时,代数式ax3?bx?5的值为7;当x??7时,代数式ax3?bx?5的值为多少?21:已知当x?5时,代数式ax2?bx?5的值是10,求x?5时,代数式ax2?bx?5的值。
2:若xyz??,且3x?2y?z?18,求z?5y?3z的值;4523:若代数式2y2?3y?7的值是2,那么代数式4y2?6y?9的值是24:已知y?2x,z?2y,x?2,则代数式x?y?z 的值为25:设m?m?1?0,则m3?2m2?1997?______;526:当x?7时,代数式ax?bx?8?8,求当x??7时,2a5bx?x?8的值222227:已知a??2,b?0.25,求代数式9ab?3ab?5?8ab?3ab?7?7ab的值。
【常考压轴题】专题05 代数式求值的四种考法(原卷版)2023-2024学年七年级数学上册压轴题攻略
.
【变式训练 1】若实数 x 满足 x2 x 1 0 ,则 2x2 2x 2021
.
【变式训练 2】若 a 2b 3c 3, 5a 6b 7c 5 ,则 a 6b 8c 的值是( )
A. 2
B.2
C.0
D. 1
类型二、降幂思想求值
例 1.已知 2x2 x 5 0 ,则 4x4 4x3 x2 的值为
专题 05 代数式求值的四种考法
类型一、整体思想求值
例 1.当 x 2 时,代数式 ax3 bx 1的值为 45 ,则当 x 2 时,代数式 ax3 bx 1的值
为
.
例 2.已知 x2 - x - 4 = 0 ,则 2 3x2 3x 的值
例 3.已知 m n 2 ,则 m n2 m n 的值为
例.已知 x 1 2021 a0 a1x a2 x2 a3 x3 a2021x2021 ,则 a1 a2 a2021
.
【变式训练 1】设 x 13 ax3 bx2 cx d ,则 a b c d 的值为(
)
A.2
B.8
C. 2
D. 8
【变式训练 2】 (2x 1)5 a5x5 a4x4 ... a1x a0 ,则 a2 a4 ___________.
课后训练
1.已知代数式 5 y x 的值是 4 ,则代数式 2x 10 y 10 的值是
.
2.已知 2m 3n2 7 0 ,则代数式 12n2 8m 4 的值等于
.ቤተ መጻሕፍቲ ባይዱ
3.若 a 与 b 互为相反数,c 与d 互为倒数,e 是绝对值最小的数,则 2 a b 3cd 4e .
代数式求值经典题型1~(含详细答案解析)
初中数学《代数式求值》已知a+b= 2 ,a-b= 3求代数式a(a+2b)+b(2a-b)的值已知a²+a-3=0求代数式13a3+52a2的值已知x - 1x= 2,求代数式x²- 1x²的值已知x - y = 5求代数式(x²- y²)²- 10(x²+y²)的值若x、y互为相反数,求代数式2x²-3x +2 +7xy-3y+5y²的值若x²-2x -2=0,求代数式x4+410x²的值。
已知x(x+y)-y(x+1)=x(x-2)求代数式x²+xy-y²y²+2xy已知x+y= -2求代数式x²+ 2y(x+1)+(y-1)²已知x是最大的负整数,y是绝对值最小的有理数,求代数式3x3+ 2y2x+(2y+3x)²已知x-y=2求代数式x3-6xy-y3已知3x²-x-1 =0,求代数式6x3+7x²-5x-2018题目:已知a-b= -1,b-c=2,求代数式(a+b+c)(a-b-c)(1 - ca)2 的值已知x、y是正数,且x=7y²2x+5y,求代数式4x²-2x+xy +2y-5y²+3 的值(2)-(1)得:4xy=3-4x²y²,把-4x²y²移到左边4x²y²+4xy=3 两边同时加上1,得:4x²y²+4xy+1=4,即(2xy+1)²=4 ,两边同时开方,2xy+1= ±2因为x、y是正数,那么2xy+1也是正数,所以2xy+1=-2(舍去)故2xy+1=2 ,即xy= 12--------------(3)把(3)代入到(2),得,x²+ 2×12+y²=3 则有:x²+y²=2----(4)已知x2-3x+1=0,求代数式x² - 1 x²。
七年级数学下册综合算式专项练习题带有绝对值和百分数的代数式求值
七年级数学下册综合算式专项练习题带有绝对值和百分数的代数式求值在七年级数学下册中,综合算式是一个重要的考查内容。
其中,综合算式中常见的复杂形式是带有绝对值和百分数的代数式。
如何准确地求解这类代数式是学习数学的关键之一。
本文将通过一系列练习题,帮助同学们更好地掌握综合算式中带有绝对值和百分数的代数式求值方法。
1. 题目一:求解下列代数式的值:(1) $|3-7|$(2) $|-5|+|-8|$(3) $|6-10|+|-9+12|$解析与求解:对于绝对值,我们可以将其拆解为两种情况进行求解。
第一种情况是当绝对值内的数字大于等于0时,绝对值的值就是这个数字本身。
第二种情况是当绝对值内的数字小于0时,绝对值的值等于这个数字的相反数。
(1) $|3-7|=|-4|=4$(2) $|-5|+|-8|=5+8=13$(3) $|6-10|+|-9+12|=|-4|+|3|=4+3=7$因此,题目一的求解结果为:(1) $|3-7|=4$(2) $|-5|+|-8|=13$(3) $|6-10|+|-9+12|=7$2. 题目二:求解下列带有百分数的代数式的值:(1) $25\% \times 60$(2) $40\% \div 5$(3) $0.6 \times 20\%$解析与求解:对于百分数,我们需要将其转化为小数进行运算。
转化的方法是将百分数除以100。
(1) $25\% \times 60 = \frac{25}{100} \times 60 = 0.25 \times 60 = 15$(2) $40\% \div 5 = \frac{40}{100} \div 5 = 0.4 \div 5 = 0.08$(3) $0.6 \times 20\% = 0.6 \times \frac{20}{100} = 0.6 \times 0.2 = 0.12$因此,题目二的求解结果为:(1) $25\% \times 60 = 15$(2) $40\% \div 5 = 0.08$(3) $0.6 \times 20\% = 0.12$通过以上两个题目的求解过程,我们可以总结出带有绝对值和百分数的代数式求值的基本方法。
专题训练 代数式求值问题归类
专题训练 代数式求值问题归类
类型一、直接代入求代数式的值 1、填表
2、当x=1,y=-6时,求下列代数式的值: (1)()2x y - (2)222x y xy +-
类型二、先化简再求代数式的值
1、先化简,再求值:⎪⎭
⎫ ⎝⎛++⎪⎭⎫ ⎝
⎛--223
1x 2
3-3
12x 2
1
y y x ,其中x=-2,y=3
2。
2、已知A=611,5x 223+-=-x x B x ,求当x=-1时,A+5B 的值。
一个三角形的一边长为a+b ,另一边长比这条边长b ,第三边长比这条边短a-b ,
(1)求这个三角形的周长。
(2)若a=5,b=3,求这个三角形的周长。
类型三、由隐含条件求代数式的值
已知a 的倒数就是它本身,负数b 的倒数的绝对值是3
1,c 的相反数是5,求代数式[])43(4a 42c a b a +---的值。
类型四、整体代入法求代数式的值。
已知当x=2,多项式5a 35-++cx bx x 的纸为7,则当x=-2时,这个多项式的值是多少?
类型五、利用程序框图求代数式的值
一.填空题(共1小题)
1.根据如图所示的数值转换器,当输入的x与y满足|x+1|+(y﹣)2=0,请列式求出输出的结果..
二.解答题(共1小题)
2.根据如图的数值转换器,当输入的x,y满足时,请列式并求出输出的结果.。
专题07 代数式求值(解析版)
第7讲代数式求值化简求值知识点1 去括号与添括号(1)去括号法则:括号前面是“+”号,把括号与它前面的“+”号去掉,括号里的各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都变号。
此法则可简记为:“-”变“+”不变。
(2)添括号法则:所添括号前没有“+”号,括号里的各项都不变号;所添括号前面是“-” 号,括号里的各项都要改变符号。
注意:1、实质是乘法分配率,2、去括号时括号外面的数字因数要与括号里面的每一项相乘,同号得正,异号的负。
知识点2 整式加减的运算法则:一般地,几个整式相加减,如果有括号就先,然后再。
注意:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。
1.先化简再求值:(2x3﹣2y2)﹣3(x3y2+x3)+2(y2+y2x3),其中x=﹣1,y=2.【解答】解:(2x3﹣2y2)﹣3(x3y2+x3)+2(y2+y2x3)=2x3﹣2y2﹣3x3y2﹣3x3+2y2+2x3y2=﹣x3﹣x3y2.当x=﹣1,y=2时,原式=﹣(﹣1)3﹣(﹣1)3×22=1+4=5.2.解答下列问题:先化简,再求值:(18a﹣3a2)﹣5(1+2a+a2),其中a2﹣a+3=0.【解答】解:(18a﹣3a2)﹣5(1+2a+a2),=18a﹣3a2﹣5﹣10a﹣5a2,=﹣8a2+8a﹣5,∵a2﹣a+3=0,∴a2﹣a=﹣3,∴﹣8a2+8a﹣5,=﹣8(a2﹣a)﹣5,=﹣8×(﹣3)﹣5,=24﹣5,=19.3.先化简,再求值:A=4ab﹣2b2﹣a2,B=3b2﹣2a2+5ab,当a=1.5,时,求3B﹣4A的值.【解答】解:3B﹣4A=3(3b2﹣2a2+5ab)﹣4(4ab﹣2b2﹣a2)=9b2﹣6a2+15ab﹣16ab+8b2+4a2=17b2﹣2a2﹣ab,当a=1.5,时,3B﹣4A=17b2﹣2a2﹣ab=17×(﹣)2﹣2×(1.5)2﹣1.5×(﹣)=.4.先化简,再求值:(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)+ab2,其中a=﹣,b=﹣1.(2)5x2﹣[2xy﹣3(xy+2)+5x2],其中|2x﹣1|+(3y+2)2=0.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b+ab2=3a2b,∵,b=﹣1,∴原式==;(2)原式=5x2﹣(2xy﹣xy﹣6+5x2)=5x2﹣xy+6﹣5x2=﹣xy+6,∵|2x﹣1|+(3y+2)2=0,∴2x﹣1=0,3y+2=0,∴,,∴=.5.(1)先化简再求值:,其中x=﹣3,y=2.(2)若代数式(2x2+ax﹣2y+4)﹣(2bx2﹣3x+4y﹣3)的值与字母x的取值无关,求代数式﹣2b+4ab的值.【解答】解:(1)原式=x2﹣6xy﹣2y2﹣2x2+7xy﹣2y2=﹣x2+xy﹣4y2,当x=﹣3,y=2时,原式=﹣(﹣3)2+(﹣3)×2﹣4×22=﹣9﹣6﹣16=﹣31;(2)(2x2+ax﹣2y+4)﹣(2bx2﹣3x+4y﹣3)=2x2+ax﹣2y+4﹣2bx2+3x﹣4y+3=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式(2x2+ax﹣2y+4)﹣(2bx2﹣3x+4y﹣3)的值与字母x的取值无关,∴2﹣2b=0,a+3=0,解得:a=﹣3,b=1,∴a2﹣2b+4ab=×(﹣3)2﹣2×1+4×(﹣3)×1=﹣2﹣12=﹣.6.(1)先化简再求值(ab+3a2)﹣2(a2﹣2ab),其中|a﹣1|+(b+2)2=0.(2)已知:A=x3+2x+3,B=2x3﹣xy+2.①求2A﹣B;②若2A﹣B的值与x无关,求y的值.【解答】解:(1)(ab+3a2)﹣2(a2﹣2ab)=ab+3a2﹣2a2+4ab=a2+5ab,∵|a﹣1|+(b+2)2=0.∴a=1,b=﹣2,∴原式=12+5×1×(﹣2)=1﹣10=﹣9;(2)①2A﹣B=2(x3+2x+3)﹣(2x3﹣xy+2)=2x3+4x+6﹣2x3+xy﹣2=xy+4x+4;②若2A﹣B的值与x无关,则y+4=0,∴y=﹣4.7.已知多项式(3x2+mx﹣y+3)﹣(2x﹣2y+1﹣nx2)的值与字母x的取值无关,求多项式﹣3(2m2﹣nm)+4(m2+mn﹣6)的值.【解答】解:(3x2+mx﹣y+3)﹣(2x﹣2y+1﹣nx2)=3x2+mx﹣y+3﹣2x+2y﹣1+nx2=(3+n)x2+(m﹣2)x﹣y+2y+2,∵多项式(3x2+mx﹣y+3)﹣(2x﹣2y+1﹣nx2)的值与字母x的取值无关,∴3+n=0,m﹣2=0,∴m=2,n=﹣3.∴﹣3(2m2﹣nm)+4(m2+mn﹣6)=﹣6m2+3nm+4m2+4mn﹣24=﹣2m2+7nm﹣24=﹣2×22+7×(﹣3)×2﹣24=﹣8﹣42﹣24=﹣74.8.(1)合并同类项:6x2y+2xy﹣3x2y2﹣7x﹣5yx﹣4y2x2﹣6x2y.(2)先化简再求值:已知(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求3(a2﹣ab﹣b2)﹣(4a2+ab+b2)的值.【解答】解:(1)原式=6x2y+2xy﹣3x2y2﹣7x﹣5yx﹣4y2x2﹣6x2y.=6x2y﹣6x2y+(2xy﹣5xy)+(﹣3x2y2﹣4y2x2)﹣7x=﹣3xy﹣7x2y2﹣7x.(2)由题意得:(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)=(2﹣2b)2x2+(a+3)x﹣6y+b+1,∵式子的值与字母x的取值无关,∴2﹣2b=0,a+3=0,∴b=1,a=﹣3,3(a2﹣ab﹣b2)﹣(4a2+ab+b2)=3a2﹣3ab﹣3b2﹣4a2﹣ab﹣b2=﹣a2﹣4ab﹣4b2,当a=﹣3,b=1时,原式=﹣(﹣3)2﹣4×(﹣3)×1﹣4×12=﹣9+12﹣4=﹣1.整体带入求值知识点3 常用方法:整体带入、字母常数化、降幂一.填空题(共6小题)1.若3a﹣2b+1=6,则9a﹣6b+2的值为17.【解答】解:9a﹣6b+2=3(3a﹣2b)+2,∵3a﹣2b+1=6,∴3a﹣2b=5,∴原式=3×5+2=17.故答案为:17.2.若代数式2x2﹣3x的值为5,则代数式﹣4x2+6x﹣9的值是﹣19.【解答】解:∵代数式2x2﹣3x的值为5,∴﹣4x2+6x﹣9=﹣2(2x2﹣3x)﹣9=﹣2×5﹣9=﹣19.故答案为:﹣19.3.若a2+a﹣1=0,则4﹣3a2﹣3a的值为1.【解答】解:∵a2+a﹣1=0,∴a2+a=1,则4﹣3a2﹣3a=4﹣3(a2+a)=4﹣3=1.故答案为:1.4.已知代数式x2+xy=2,y2+xy=﹣5,则2x2+5xy+3y2=﹣11.【解答】解:∵x2+xy=2,y2+xy=﹣5,∴2x2+2xy=4,3y2+3xy=﹣15上述两式相加,可得:(2x2+2xy)+(3y2+3xy)=﹣11即:2x2+5xy+3y2=﹣11故答案为:﹣115.若x2+2x﹣5=0,则x3+3x2﹣3x﹣5的值为0.【解答】解:∵x2+2x﹣5=0∴x2+2x=5,x2=5﹣2xx2=5﹣2x等式两边等式乘以x得:x3=5x﹣2x2,将其代入则x3+3x2﹣3x﹣5∴x3+3x2﹣3x﹣5=5x﹣2x2+3x2﹣3x﹣5=x2+2x﹣5=5﹣5=0.故答案为:06.已知a2+a﹣1=0,则a3+2a2+2019=2020.【解答】解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=2020二.解答题(共3小题)7.已知代数式3x2﹣4x+6的值为﹣9,求x2﹣+6的值.【解答】解:∵3x2﹣4x+6=﹣9,∴3x2﹣4x=﹣15,∴x2﹣=﹣5,∴x2﹣+6=1.8.若3x+2y+4z=4,x﹣y+z=2,求x+4y+2z的值.【解答】解:由x﹣y+z=2得,2x﹣2y+2z=4,∴,∴由②﹣①得,x+4y+2z=0,所以,x+4y+2z的值为0.9.已知,,,求代数式的值.【解答】解:∵,,,∴=3,=4,=5,即=3,=4,=5,∴++=6,∴++==6.∴原式=.。
初一:代数式的求值专题
代数式的求值类型一、利用分类讨论方法【例1】已知|[ =7,间=12,求代数式x+y的值.变式练习:1、已知|乂-1|=2,|丫|=3,且乂与丫互为相反数,求3 X 2 7y . 4 y的值2、|x|=4,|y|=6,求代数式|x+y|的值3、已知凶=1,| y = 1,求代数式x 2—2町+ y 2的值;类型二、利用数形结合的思想方法【例】有理数a, b,c在数轴上的位置如图所示:试试代数式I a+b | — | b—1 | — | a—c | — | 1 一c] 的值.变式练习:1、有理数a, b, c在数轴上对应点如图所示,化简|b+a| + |a+c| + |c-b|I 111rC B0 A2、已知a, b, c在数轴上的位置如图所示,化简|a| + |c-b| + |a-c| + |b-a|a 0 c b题型三、利用非负数的性质【例 D 已知(a—3)2+|—b+5 | + | c — 2 |=0.计算 2a+b+c 的值.【例2】若实数a、b满足a2b2+a2+b2-4ab+1=0,求b + a之值。
a b变式练习:1、已知:|3x-5| + |2y+8|=0 求x+y2、若205x|2x-7| 与30x| 2y-8 |互为相反数,求xy+x题型四、利用新定义【例1】用“★”定义新运算:对于任意实数a, b,都有a*b=b2+i.例如,7*4 = 42+1 = 17, 那么5*3=;当川为实数时,m*(m*2)=.变式练习:1、定义新运算为a4b =( a + 1 )刊,求的值。
6A ( 3A4 )2、假定m^n表示m的3倍减去n的2倍,即mOn=3m-2n o (2)已知乂。
(4。
1) =7,求x的值。
3、规定a * b = 1 - -, a **b = 2-1, 则(6 * 8)**(8 * 6)的值为; b a题型五、巧用变形降次【例】已知X2 —x—1 = 0,试求代数式一X3+2X+2008的值.变式练习:设m 2 + m — 1 = 0,则U m 3 + 2 m 2 +1997 =题型六、整体代入法当单个字母的取值未知的情况下,可借助“整体代入,,求代数式的值。
代数式求值经典题型(含详细答案)
代数式求值经典题型【编著】黄勇权 经典题型:1、x+x 1=3,求代数式x2-2x 1的值。
2、已知a+b=3ab ,求代数式b 1a 1+的值。
3、已知x 2-5x+1=0,求代数式x 1x +的值。
4、已知x-y=3,求代数式(x+1)2-2x+y (y-2x )的值。
5、已知x-y=2,xy=3,求代数式x 2-x y6+y 2的值。
6、已知y x =2,则x y-x 的值是多少?7、若2y 1x 1=+,求代数式:3y x y -3x y3x y -x ++的值。
8、已知5-x =4y-4-y2,则代数式2x-3+4y的值是多少?9、化简求值,12x x 1-x 2++÷)(1x 21+-,其中x=13-10、x 2-4x+1=0,求代数式:x 2+2x 1的值。
【答案】1、x+x 1 =3,求代数式:x 2-2x 1的值。
解:x2-2x 1=(x+x 1)(x-x 1)=(x+x 1)2x 1-x )(=(x+x 1)22x 12x +-=(x+x 1)4x 12x 22-++ =(x+x 1)4x1x 2-+)( 将x+x 1=3代入式中=3×432-=352、已知a+b=3ab ,求代数式:b 1a 1+的值。
解:b 1a 1+=ab b a +将a+b=3ab 代入式中 =3 3、已知x2-5x+1=0,求代数式:x1x +的值。
解:因x 2-5x+1=0, 等式两边同时除以x则有:x 0x 1x x 5x x 2=+-化简得:x-5+x 1=0把-5移到等号的右边,得:x1x +=5 4、已知x-y=3,求代数式:(x+1)2-2x+y (y-2x )的值。
解:(x+1)2-2x+y (y-2x )去括号,展开得 =x 2+2x+1-2x+y 2-2xy 合并同类项,+2x 与-2x 抵消 =x 2+1+y 2-2xy把+1移到最后,=x2+y2-2xy+1此三项结合=(x2-2xy+y2)+1=(x-y)2+1将x-y=3合代入式中=(3)2+1=3+1=45、已知x-y=2,xy=3,求代数式x2-x y6+y2的值。
初中数学代数式求值专题训练及答案
初中数学代数式求值专题训练及答案1、若2x+3y+z=1,2x+y+3z=3,求代数式 x+2y 的值。
2、已知:2023(1+3x)= 1,求代数式 7+6x 的值。
3、已知 a a= 3243,求代数式√a2+√a3+√a4的值。
4、若x2 + xy +y2 = 2xy +y2 = 3,求代数式(x+1)(y-2) + 3的值。
5、已知(x+13)2= 2023,求代数式(x -27)(x+53)的值。
6、已知x +2y=12,求代数式x2 - 4y2 + 48y的值。
7、已知x2 -3x +1=0,求代数式x2 + 1a2的值。
8、已知x2 -4x +1=0,求代数式x4 - 56x+ 2024的值。
9、已知x+ 1a =3,y+ 1a=1,z+ 1a==3,求代数式x yz的值。
10、已知x4 +x2 +1=0,求代数式x3 +1的值。
11、已知x=1,求代数式(x+2)(2x+1)-x2 +6的值。
12、若x>y>0,x2 + y2 =5xy,求代数式a2−a2aa的值。
13、已知2x2 +10=(x+2)(x+3),求代数式3x+6的值。
14、已知x=√8−2√15,求代数式x+1a的值。
15、已知x=2,求代数式7x2+(2x+3)(x-2)+12的值。
参考答案1、若2x+3y+z=1,2x+y+3z=3,求代数式x+2y的值解:因为2x+3y+z=1-- ----① 2x+y+3z=3-------②①+②,得4x+4y+4z=4即:x+y+z=1-----------③①-③,得x+2y=0故:代数式x+2y的值是02、已知:2023(1+3x)= 1,求代数式7+6x的值。
因为,要使得2023(1+3x)= 1成立,所以1+3x=0,即:x= - 13所以:7+3x =7 + 6×(- 13) =5故:代数式7+6x的值是53、已知 a a= 3243,求代数式√a2+√a3+√a4的值。
初一数学-代数式的值
初一数学1 代数式、代数式求值例1、(特殊值代入)已知()01556677713a x a x a x a x a x +++++=- ,试求01567a a a a a +++++ 的值。
练习:若不论x 取什么值,代数式83++bx ax 的值都相同,试求a 与b 的关系。
例2、(换元法)已知32,3a c b a ==,求代数式c b a c b a -+++的值。
练习: 1、(迎春杯初中一年级第八届试题)若______,3,2=++==c b b a b c a b 则2、已知234y x z y x z +++==,且212x y z ++=,求2x y z -+的值。
3、若,a c z c b y b a x -=-=-求x+y+z 的值.例3、(整体代入法)已知a 为有理数,且3210a a a +++=,求2320011...a a a a+++++的值。
练习:1、已知241x x +=,求代数式543267481x x x x x ++--+的值。
2、(北京初二数学竞赛题)如果a 是2310x x -+=的根,试求1825222345+-+-a a a a a 的值.例4、(将条件式变形后代入化简)已知a+b+c=0,求(a+b)(b+c)(c+a)+abc 的值。
练习:当0.2,0.04a b =-=-时,求代数式)(41)16.0(7271)(73722b a b a b a +-++-+值。
练习:一、选择题1.下列各式中,是代数式的是 ( )A.220a b -= B .43> C. a D .520x -≠2.无论a 取什么数,下列算式中有意义的是 ( ) A. 11a - B. 1a C.112a - D .121a - 3.现规定一种新的运算“※”:a ※b =2b ,如3※2328==,则3※12等于 ( ) A. 18 B .8 C.16 D .324.已知-6a 9b 4和5a 4n b 4是同类项,则代数式12n -10的值是 ( ).A . 17B .37C .-17D .985.代数式(xy z 2-4yx -1)+(3xy +z 2yx -3)-(2xy z 2+xy )的值 ( )A .与x 、y 、z 的大小无关B .与x 、y 的大小有关,而与z 的大小无关C .与x 的大小有关,与y 、z 的大小无关D .与x 、y 、z 的大小都有关6.随着计算机技术的迅速发展,电脑价格不断降低,某品牌电脑按原价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原价为 ( )A .4()5n m +元B .5()4n m +元 C .(5m+n)元 D .(5n+m)元7.观察下列图形,则第n 个图形中三角形的个数是( )A. 22n + B .44n + C .44n - D .4n8.代数式()218x y --的最大值是( )A .17B .18C .1000D .无法确定二、填空题1.单项式-2×105πa 2的系数是_________;次数是_________.2. 多项式(m+5)x n y -13x 2y -6是六次三项式,则m_________,n_________. 3.表示图中阴影部分的面积.4.若关于a 、b 的两个单项式2a 2m -5b 4与mab 3n -2的差仍是单项式,则m +n =_______.5.已知xy y x 3=-,则y xy x yxy x ---+2232=_______6.已知代数式6232+-y y 的值等于8,那么代数式=+-1232y y _______ 7.(x-3)5=ax 5+bx 4+cx 3+dx 2+ex+f ,则a+b+c+d+e+f=______, b+c+d+e=_____.三、解答题1.计算题:(1) ()22223x x y y -+- (2) ()()5273410x y x y ---(3)222222111()()()236a b a b a b -+-++ (4)6(2332x a x a ---)2.(1)当12a =,13b =时,分别求代数式①222a ab b -+,②()2a b -的值; (2)当a=5,b=3时,分别求代数式①222a ab b -+,②()2a b -的值;(3)观察(1)(2)中代数式的值,222a ab b -+与()2a b - 2有何关系?(4)利用你发现的规律,求22135.72135.735.735.7-⨯⨯+的值.…… 第1个 第2个 第3个3、代数式c bx ax ++5,当3-=x 时值为8,当0=x 时值为1,求当3=x 时,该代数式的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
――代数式的求值类型一、利用分类讨论方法【例1】已知x = 7, y = 12,求代数式x+y的值.变式练习:11、已知|x-1|=2 , |y|=3,且x与y互为相反数,求x2_xy_4y的值32、|x|=4 , |y|=6,求代数式|x+y|的值3 、已知x=1, y =1,求代数式x2—2xy+y2的值;类型二、利用数形结合的思想方法【例】有理数a,b,c在数轴上的位置如图所示:试试代数式I a+b | — | b—1 | — | a—c | — |1 —c | 的值.变式练习:1、有理数a,b,c在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|2、已知a, b, c在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|1 1 1 1 1 |a0 c b "题型三、利用非负数的性质=0.计算2a+b+c的值.【例1】已知(a —3)2+ I- b+5 | + | c - 2|【例2] 若实数a、b满足a2b2+a2+b2-4ab+仁0,求--之值a b变式练习:1、已知:|3 x -5 | + | 2y+8 | = 0 求x+y2、若205x|2x -7 | 与30x|2y-8 | 互为相反数,求xy+x题型四、利用新定义【例1] 用“★”定义新运算:对于任意实数a, b,都有b= b2+1.例如,7^4 = 42+1= 17,那么5^3= ;当m为实数时,(m^2) = ___________________________ .变式练习:1、定义新运算为a^b =( a + 1)* b,求的值。
6A (3^ 4)2、假定m O n表示m的3倍减去n的2倍,即m O n=3m-2n。
⑴计算:(+◊—)◊£(2)已知x O( 401) =7,求x的值。
a b3、规疋a b =1, a ""b 1,则(6 ” 8) ” ”(8 ” 6)的值为 __________b a题型五、巧用变形降次【例】已知x2—x- 1 = 0,试求代数式—x3+2x+2008的值.变式练习:设m2 +m —1 = 0,贝U m3 +2m2 +1997 = _____题型六、整体代入法当单个字母的取值未知的情况下,可借助“整体代入”求代数式的值。
【例1】(1)已知3x2 -2y 5 = 7,求9x2 -6y-3的值.【例3】已知a+b+c=O,求代数式-_e— e -一b- 3的值. a b e变式练习: 1、已知1 1=4,则 a -2ab -b -的值等于( ).a b2a -2b 7a bA. 6B.-6 C.—D21572、若丄 2—2 亠7 , 则1丄1二x y zx y zx y z3、已知a b=7,求2(a—的值;4、已知丄• 1 = 2 ,求代数式* 一 2xy 空a —b a —b 3(a+b)x y5x + 3xy+5y(2)已知m -2n 3,2m n3(m -2n) m -2n 2m n 3(2 m n)5(2m n)的值 m -2n【例2】当abc=1时,a ab a 1be b 1ae e 1的值.的值;11 11 115、若a b c = 0 ,贝V a( ) b( ) c( )的值为 ______________________________be a c b a6、已知a _b = 2,b _c 二_3,c _d =5,贝U(a—e)(b 3 的值为_________a — d题型七、参数代入【例1】、已知2气=4,求金的值.2 1【例2】、若于右的值为1,1则4yF的值为(A. 1 B 1 C.【例3】、已知x2x2-211-^-2,求(亡-亡厂(兀X)的值变式练习:「若計,且3x 2y心玄,求二5y的值;2、若—=-,且3x-2y ・z=18,求z ・5y-3z 的值;3 4 53、如果x y ^2z,且x = y,贝U —- y=()x-y y-zA-4 B -2 C 0 D 2题型八、主元代换法【例1】已知a=2b, c=3a,求a +32b - c+3的值2 2 2a 3b 5c = 0,则字与的值【例2】:已知a+2b+3c = 0 ,a2_2b2_2c2变式练习:1、已知y = 2x, z = 2y, x = 2,则代数式x y z的值为________________ ;2已知a -b =1,c _a = 2,贝H (a _b)3+ (c _b)3 +(c _ a) =___________ ;题型九、特殊值法【例1】、已知一1v b v 0, 0 v a v 1,那么在代数式a—b、a+b、a+b2、a2+b中,对任意的a、b, 的代数式的值最大的是()(A) a+b (B) a—b (C)a+b2(D) a2+b3 2 2【例2】若()=a0+呼+a2x2+%x3,则(a°+a2 ) -(a i+a3)的值为________________ .【例3】、设(1 +x)2(1 _x) = a + bx +cx2+ dx3,贝U a + b + c + d =变式练习:1 、若已知(x _3)5 =ax5- a2x4- a3x3- a4x2a5x a6,贝H a1a2a3a4 a5 - a6=a^a^a^a^a^ _________________ ;2 2 2 2 1 2 2 2 22、已知1 2 3 n n(n 1)(2n 1),那么2 4 6 50 二—6题型十、常值代换法常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简, 求得代数式的值•【例1】已知ab=1,求」丄三的值1+a 1+b变式练习:仁若心1, 求已十的值;2、已知ab_6,求曲仙3 "-b)的值;对应课后作业:A 卷(共100分)一、选择题(每小题3分,共30分) 1. 在-5 , 0, -2 , 4这四个数中,最大的数是( A . 4 B . -5 C . 2. 20XX 年初,一列 CRH5型高速车组进行了““中国创造”的飞跃,将数 300000用科学记数法表示为( ) 0 D . -2 300000公里正线运营考核”标志着中国高铁车从“中国制造”到 ) 3. 4. 5. 6. 7. 8. 9. A . 3 106 B . 0.3 106 C . 3 105 D . 30 104用一个平面去截一个正方体,截面的形状不可能..为( A .三角形 下列各组式子, 不是 B .五边形 同类项的是( C .六边形 D •七边形已知 £xy 与 4xy a , b 所表示的数如图所示,下列结论正确的是(22与 33 用代数式表示“ A . (3a -b)2 如图所示的是( A .三棱锥 某种品牌彩电原价 a 一A . 兀 0.8 F 列运算正确的是 2 2B . 3c b 与-5b c B. b>0 C . b c|a C . D . a-b<0a 的3倍与b 的差的平方”,正确的是( B . 3(a -b)2 )的表面展开图 B .三棱柱 a 元,降价20%后, B . 0.8a 元 D . 4m 2n 与 2nm 2b *12 C . 3a —b C .四棱柱 D .四棱锥 则该品牌彩电每台售价为( C . 0.2a 元2 C・— a 10.观察下图中正方形四个顶点所标的数字规律,可知数 10 11 ) a 一 元 0.2 -a 23 D. a 2015应标在( 14 15 □ □ □ □5 8 第2个正方形 1 4 第1个正方形 A .第502个正方形的左下角C .第504个正方形的左上角 二、填空题(每空2分,共20 分) 13 16 第4个正方形 9 12 第3个正方形 B .第503个正方形的右上角D .第504个正方形的右上角 a 3(a - 3b)1 11. 3的相反数是 ________ , - 3丄的绝对值是 ______________ . 412. 如果全班某次数学成绩的平均分是 84分,某同学得了 85分,记作+1分,那么-5分表示的是 _______________ 分.5jrab13. 单项式的系数是,次数是•314. 若(a+2)2 + b —1| = 0,则(a+b)2015 的值是 _________________ 15. 关于x 、y 的多项式2x 2y 3 -2x 2y - 3y -2是 __________ 次四项式. 16. 一个棱柱有16个顶点,所有侧棱长的和是 32cm ,则每条侧棱的长为 ________ cm .a+b 17. 若a , b 互为相反数,c , d 互为倒数,则 cd =.2015---------------18.规定“※”是一种新运算,且a 探b=a 2-b+1 .例如 2探3=22 - 3+1=2,请根据上面的新运算计算3探4= ______________ . 三、综合解答题(共 50分)19. 计算下列各题(每小题 4分,共24分)11531 (1) (J5)20 25(2) -16 4;(3) ();(4) 5(-6)- (-4) - (-8);2 3 6 74220. 化简(每小题5分,共10分) (1) m -4 -2m 521. (6分)如图为7个大小一样的小正方体组成的几何体,请画出此几何体的三视图.(5)+1 —2.75 食(_24) +(—1) < 3 8 丿2015--2(6) _12_丄一:-1 [_2_(_3)36 3(2) 2 a + 3 b + 6 a + 9 b - 8 a + 12 b .精编学习资料欢迎下载_22. (10分)某办公用品销售商店推出两种优惠方法:①每购买2个书包,赠送1支水性笔;②购书包和水性笔一律9折优惠.书包每个定价40元,水性笔每支10元.小颖和同学需购买8个书包,水性笔若干支(不少于4支).511精编学习资料 欢迎下载(1) 用优惠方法①购买水性笔 x 支,总费用为 %元,用含x 的代数式表示 % ;用优惠方法②购买水性笔 x 支, 总费用为y 2元,用含x 的代数式表示y 2 .(2) 小颖和同学需购买这种书包 8个和水性笔16支,请分别计算% , y 2的值•请设计出费用最少的方案, 求出 最少费用.B 卷(共50分)、填空题(每小题4分,共20分)2 2 2 223. 已知 m mn =5 , mn n =3,则 m 2mn n 的值是 __________________________ .224.____________________________________________________ 若 a =2, b =25,abvO ,则 a +b 的值是 _______________________________________ .25. 一个正方体的表面展开如图所示,每一个面上都写一个整数,并且相对两个面上所写的两个整 26.已知有理数a 、b 、c 在数轴上的对应点如图所示,化简 b —c - a +b +|a + a _q = __________ . b a 0 c27. 一个几何体由若干个大小相同,棱长均为 2的小立方块搭成,如图分别是从它的正面和上面看到的形状图,则该几何体最少与最多时体积之和是 __________ .二、解答题(共30分)28. (本小题满分6分)化简求值:-2ab -[2a 2 -3(ab a 2) ab] b ,其中 a = -1, b = 2014.29. 3 1(本小题满分8分)已知当x =2,y 「-4时,代数式ax by 的值为2016.2 求当 x 二 -4, y = - 2 时,代数式 3ax - 24by3 -2015的值.30. (本小题满分8分)观察下列式子:1 11 1 —;2 2(1)用含n (其中 n 为正整数) 的代数式表达上式规律为: n(n 1) (2)利用规律计算: 十…+2015 2016精编学习资料欢迎下载_ 1 1100 101 101 102 102 103511精编学习资料欢迎下载3、已知a =2000x 1999,b =2000x 2000,c = 2000x 2001,那么(a - b)2 (b-c)2•(c-a)2的值等于( )A 4B 6C 8D 105、已知1丄(丄丄丄),求4 28 (6yz z 3xy)的值;8 2 2x 3y 4z 8 12xyz(3)利用规律先化简再求值:1 1 1 1x(x 1) (x 1)(x 2) (x 2)(x 3) (x 2014)(x 2015),其中1x 2015----- ,且满足3x26045x - 3 = 0 . x 2015x(4)探究并计算:1 1 1---- +----- +---- +…5 10 10 15 15 2012010 201531.(本小题满分8分)学校去超市采购大米,他看中了A、B两家超市的大米,这两家超市大米的品质一样,零售价都为6元/千克, 批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量超过1000千克但不超过2000千克,按零售价的90%优惠;批发数量超过2000千克,按零售价的88%优惠.B表格说明:B家批发价格分段计算,如:学校批发大米2100千克,则总费用=6 95% 500 6 85% 1000 6 75% (2100 -1500)=10650 (元).(1) ___________________________________________________ 如果他批发600千克大米,则他在A家批发需要_______________________________________________________________ 元,在B家批发需要_________ 元;(2)如果他批发x千克大米(1500 ex £2000 ),求他分别在A、B两家批发需要的总费用(用含x的代数式表示);(3)现在他要批发1800千克大米,你能帮助他选择在哪家批发更优惠吗?请说明理由.。