基于STM32的四旋翼飞行控制系统毕业设计
基于STM32的四轴飞行器设计
基于STM32的四轴飞行器设计引言:四轴飞行器(Quadcopter)是一种重量轻、机动性强的飞行器,在无人机技术中应用广泛。
本文将介绍基于STM32的四轴飞行器设计。
一、STM32介绍:STM32是意法半导体公司推出的一款高性能32位微控制器系列,它具有强大的计算处理能力和丰富的外设资源,非常适合用于四轴飞行器的设计和控制。
二、硬件设计:1.处理器选择:选用性能较高的STM32系列微控制器作为飞行器的主控制单元,可根据实际需求选择合适的型号。
考虑到计算处理能力和外设资源的要求,建议采用高性能的STM32F4系列或STM32H7系列微控制器。
2.传感器:四轴飞行器需要借助多种传感器来获取飞行状态的信息,包括陀螺仪、加速度计、磁力计等。
这些传感器可以通过I2C或SPI接口与主控制单元连接,以获取实时的飞行姿态和姿态控制信息。
3.无线通信模块:可选择适合的无线通信模块,如Wi-Fi模块或蓝牙模块,用于与地面站或其他设备进行数据传输和控制指令的交互。
通过无线通信模块,可以实现四轴飞行器的遥控操作和数据传输。
4.电机和电调:四轴飞行器需要四个无刷电机和相应的电调来实现动力推力的控制。
电机和电调的选择应根据载荷和预期飞行能力来确定,同时需要考虑与主控制单元的通信接口兼容性。
5.电源系统:四轴飞行器需要一种可靠的电源系统来驱动其各个部件。
主要包括锂电池、电流传感器和稳压模块。
电流传感器用于监测整个系统的功耗,稳压模块用于为主控制单元和其他模块提供稳定的电源。
6.启动与显示模块:飞行器需要一种方便的启动与显示模块来显示系统状态和预警信息。
可以选择配备一块小型的液晶显示屏或LED指示灯,以及相关的按键和蜂鸣器。
三、软件设计:1.实时操作系统(RTOS):可以选择合适的RTOS系统,如FreeRTOS或CMSIS-RTOS,用于实现四轴飞行器的任务管理和调度。
RTOS可以提供任务优先级调度、实时中断处理等相关功能,保证飞行器的实时性和稳定性。
采用STM32设计的四轴飞行器飞控系统
采用STM32设计的四轴飞行器飞控系统四轴飞行器飞控系统是一种应用于四轴飞行器上的关键控制设备。
它包括硬件和软件两个部分,用于控制飞行器的姿态、稳定性和导航等功能。
其中,采用STM32设计的四轴飞行器飞控系统因其高性能、低功耗和丰富的外设资源而受到广泛关注。
一、硬件设计:1.处理器模块:采用STM32系列微控制器作为处理核心。
STM32系列微控制器具有较高的计算能力和丰富的外设资源,能够满足飞行控制的计算需求。
2.传感器模块:包括加速度计、陀螺仪、磁力计和气压计等传感器。
加速度计用于测量飞行器的线性加速度,陀螺仪用于测量飞行器的角速度,磁力计用于测量飞行器的方向,气压计用于测量飞行器的高度。
3.无线通信模块:采用无线通信模块,如蓝牙、Wi-Fi或者无线射频模块,用于与地面站进行通信,实现飞行参数的传输和遥控指令的接收。
4.电源管理模块:对飞行器的电源进行管理,确保各个模块的正常运行。
包括电池管理、电量检测和电源开关等功能。
5.输出控制模块:用于控制飞行器的电机、舵机等执行机构,实现对飞行器的姿态和动作的控制。
二、软件设计:1.飞行控制程序:运行在STM32微控制器上的程序,用于实时读取传感器数据、运算控制算法、输出控制信号。
该程序包括姿态解算、飞行控制和导航等模块。
-姿态解算模块:根据加速度计、陀螺仪和磁力计等传感器数据,估计飞行器的姿态信息,如俯仰角、横滚角和偏航角。
-飞行控制模块:根据姿态信息和目标控制指令,计算出电机和舵机的控制信号,保证飞行器的稳定性和灵敏度。
-导航模块:利用GPS等导航设备获取飞行器的位置和速度信息,实现自动驾驶功能。
2.地面站程序:在地面计算机上运行的程序,与飞行器的无线通信模块进行数据交互。
地面站程序可以实时监测飞行器的状态和参数,并发送控制指令给飞行器。
总结:采用STM32设计的四轴飞行器飞控系统是一种高性能、低功耗的控制设备,包括硬件和软件两个部分。
硬件包括处理器模块、传感器模块、无线通信模块、电源管理模块和输出控制模块。
基于STM32的微型四旋翼无人机控制系统设计—软件设计
基于STM32的微型四旋翼无人机控制系统设计—软件设计首先,需要实现的是飞行控制算法。
飞行控制算法主要包括姿态估计和控制器设计两个部分。
在姿态估计中,通过加速度计和陀螺仪等传感器获取四旋翼的姿态信息,并使用滤波算法对数据进行处理,得到稳定的姿态角数据。
常用的滤波算法有卡尔曼滤波器和互补滤波器等。
在控制器设计中,根据姿态角数据和期望姿态角数据,设计合适的控制算法,生成四个电机的输出信号,以控制四旋翼的姿态。
常用的控制算法有PID控制器和模糊控制器等。
其次,需要实现的是传感器数据的获取和处理。
四旋翼无人机通常配备加速度计、陀螺仪、磁力计和气压计等传感器,用于获取飞行状态相关的数据。
通过I2C或SPI等接口将传感器与STM32连接,然后通过相关的驱动程序读取传感器数据。
读取到的数据可以进行校准和滤波等处理,以提高数据的准确性和稳定性。
最后,需要实现的是控制指令的生成和发送。
控制指令的生成主要根据用户输入的期望飞行状态和传感器反馈的实际飞行状态来确定。
例如,用户输入期望的飞行速度和高度等信息,然后通过控制算法和传感器数据计算得到四电机的输出信号,以控制四旋翼实现期望的飞行动作。
生成的控制指令可以通过PWM信号或者CAN总线等方式发送给四旋翼的电调或者电机。
除了上述的基本功能,还可以根据实际需求增加一些辅助功能,如飞行模式切换、状态显示、数据记录和回放等。
这些功能可以通过开发相关的菜单和界面实现,用户可以通过遥控器或者地面站等设备进行相关操作。
总结起来,基于STM32的微型四旋翼无人机控制系统设计软件设计主要包括飞行控制算法的实现、传感器数据的获取和处理、控制指令的生成和发送等几个方面。
通过合理设计和实现上述功能,可以实现四旋翼无人机的稳定飞行和精确控制。
基于STM32的四旋翼飞行器设计
基于STM32的四旋翼飞行器设计四旋翼无人机是一种多轴飞行器,由四个电机驱动四个旋翼产生升力来进行飞行。
它具有简单结构、灵活机动、携带能力强等特点,被广泛应用于航空航天、电力、农业、测绘和娱乐等领域。
本文将基于STM32微控制器,设计一个基本的四旋翼飞行器。
首先,我们需要选用一款合适的STM32微控制器作为核心控制单元。
根据不同需求,可以选择不同型号的STM32芯片。
需要考虑的因素包括处理器性能、输入输出接口、通信接口等。
接下来,我们需要选用合适的电机和电调。
电机和电调是四旋翼飞行器的动力系统,直接影响飞行器的性能。
选择电机时需要考虑电机功率、转速、扭矩等参数。
而选择合适的电调则需要考虑电流容量、控制方式等因素。
四旋翼飞行器还需要传感器来获取飞行状态和环境信息。
常见的传感器包括陀螺仪、加速度计、磁力计和气压计等。
这些传感器将实时提供飞行器的姿态、加速度、地理位置和气压等数据,用于飞行控制。
在飞行控制方面,我们需要实现飞行器稳定的控制算法。
PID控制器是常用的控制算法之一,通过调节电机转速来控制飞行器的姿态。
PID控制器的参数需要根据实际情况进行调整,以实现稳定的飞行。
此外,四旋翼飞行器还需要通信功能,以便与地面站进行数据传输。
常见的通信方式有蓝牙、Wi-Fi和无线电调制解调器等。
通信功能可以实现飞行器的遥控和数据传输,使飞行器具备更广阔的应用空间。
最后,为了实现全自动飞行,还可以加入GPS导航系统和图像处理系统。
GPS导航系统可以提供精准的飞行位置和速度信息,通过编程实现预设航点飞行。
图像处理系统可以通过摄像头获取实时图像,并进行目标识别和跟踪,实现智能飞行等功能。
综上所述,基于STM32的四旋翼飞行器设计需要考虑微控制器选型、电机电调选择、传感器使用、飞行控制算法、通信功能等方面。
通过合理的设计和编程,可以实现一个功能齐全、性能稳定的四旋翼飞行器。
基于STM32的四旋翼无人机智能控制方法设计
基于STM32的四旋翼无人机智能控制方法设计四旋翼无人机是一种应用广泛的无人机类型,它由四个同心排列的旋翼组成,能够提供稳定的飞行能力。
在基于STM32的四旋翼无人机智能控制方法设计中,我们需要考虑飞行稳定性、遥控操控能力以及自动控制能力等方面。
首先,为了保证飞行的稳定性,我们可以采用PID控制方法。
PID控制器由比例(P)、积分(I)和微分(D)三个部分组成,可以根据飞行状态的误差来调整旋翼的转速。
通过调整PID参数,可以使得飞行器能够更好地保持平衡。
在STM32上,我们可以通过编程来实现PID控制器,并将其与四个旋翼的电机连接起来。
其次,为了实现遥控操控能力,我们可以利用STM32的GPIO口和UART通信接口来实现无人机与遥控器之间的通信。
遥控器通过按键或摇杆等控制方式发送信号给STM32,STM32将接收到的信号解码后,将其转化为相应的控制指令,再发送给飞行器的电机。
利用STM32的中断功能,我们可以实现快速响应遥控指令的功能,使得飞行体验更加流畅。
最后,为了提高无人机的自动控制能力,我们可以加入一些传感器,例如陀螺仪、加速度计和姿态传感器等。
这些传感器可以实时感知无人机的飞行状态,例如俯仰角、滚转角和偏航角等。
通过将传感器的数据传输给STM32,我们可以根据具体的飞行算法来实现自动控制功能,例如自动起飞、自动降落和自动悬停等。
在基于STM32的四旋翼无人机智能控制方法设计中,我们需要结合硬件设计和软件设计。
硬件方面,我们需要设计电机驱动电路、通信电路和传感器接口电路等。
软件方面,我们需要进行编程,实现PID控制算法、遥控通信协议和传感器数据处理算法等。
综上所述,基于STM32的四旋翼无人机智能控制方法设计是一个复杂的系统工程,需要考虑飞行稳定性、遥控操控能力和自动控制能力等方面的要求。
通过合理的硬件设计和软件编程,我们可以实现一个功能强大、性能优越的四旋翼无人机。
基于STM32的四旋翼飞行器的设计与实现共3篇
基于STM32的四旋翼飞行器的设计与实现共3篇基于STM32的四旋翼飞行器的设计与实现1基于STM32的四旋翼飞行器的设计与实现四旋翼飞行器可以说是近年来无人机发展的代表,其在农业、环保、救援等领域的应用越来越广泛。
本文将介绍基于STM32的四旋翼飞行器的设计与实现,着重讲解硬件设计和程序开发两个方面的内容。
一、硬件设计1、传感器模块四旋翼飞行器需要各种传感器模块来获取飞行状态参数,包括加速度计、陀螺仪、罗盘、气压计等。
其中,加速度计和陀螺仪通常被集成在同一个模块中,可以采用MPU6050或MPU9250这种集成传感器的模块。
气压计则可以选择标准的BMP180或BMP280。
罗盘的选型需要考虑到干扰抗性和精度,常用HMC5883L或QMC5883L。
2、电机驱动四旋翼飞行器需要四个电机来驱动,常用的电机是直流无刷电机。
由于电机电压较高,需要使用电机驱动模块进行驱动。
常用的电机驱动模块有L298N和TB6612FNG等。
3、遥控器模块飞行器的遥控器模块通常由一个发射器和一个接收器组成。
发射器采用2.4G无线传输技术,可以通过遥控器上的摇杆控制飞行器,遥控器还可以设置飞行器的航向、高度等参数。
接收器接收发射器传来的信号,必须与飞行器的控制系统进行通信。
4、飞行控制器飞行控制器是飞行器的核心部分,它通过传感器模块获取飞行状态参数,再结合遥控器模块传来的控制信号,计算出飞行控制指令,驱动电机模块控制飞行器的不同动作。
常用的飞行控制器有Naze32、CC3D、Apm等,本文将采用开源的Betaflight飞行控制器。
二、程序开发1、Betaflight固件烧录Betaflight是一款基于Cleanflight的开源固件,它具有良好的稳定性和强大的功能。
将Betaflight固件烧录到飞行控制器中需要使用ST-Link V2工具,同时需要在Betaflight Configurator中进行配置,包括传感器矫正、PID参数调整、遥控器校准等。
基于STM32的四旋翼无人机设计
基于STM32的四旋翼无人机设计在本文中,我们将会介绍基于STM32的四旋翼无人机设计,包括硬件设计、软件开发和飞行控制等方面。
一、硬件设计1. 传感器模块在四旋翼无人机中,传感器模块的设计非常重要,主要包括陀螺仪、加速度计、磁力计和气压计等传感器。
这些传感器可以用于测量无人机的姿态角、加速度、磁场强度和气压,从而实现飞行控制和稳定性。
在STM32的硬件设计中,可以选择常见的MPU6050、HMC5883L、MS5611等传感器作为传感器模块,并通过I2C或SPI接口与STM32连接,实现传感器数据的采集和处理。
2. 无刷电机驱动模块四旋翼无人机的推进力主要来自四个无刷电机,因此无刷电机驱动模块的设计非常关键。
在STM32的硬件设计中,可以选择常见的电调模块(如BLHeli系列)作为无刷电机驱动模块,通过PWM信号控制电机的转速和转向。
还需要考虑电机与电调模块的连接方式和供电方式,以保证无人机的稳定飞行。
3. 通信模块通信模块是无人机与地面站或其他设备进行数据传输的重要组成部分。
在STM32的硬件设计中,可以选择常见的2.4G/5.8G数传模块(如NRF24L01、XBee、HC-12等)作为通信模块,通过串口与STM32连接,实现无人机与地面站的数据交换和控制。
二、软件开发1. 飞行控制算法飞行控制算法是无人机的灵魂,直接影响无人机的飞行性能和稳定性。
在基于STM32的四旋翼无人机设计中,可以采用常见的PID控制算法,通过对传感器采集的数据进行处理,控制无刷电机的转速和姿态角,实现无人机的稳定飞行。
还可以结合卡尔曼滤波算法对传感器数据进行融合和处理,提高飞行控制系统的精度和稳定性。
2. 地面站软件地面站软件是无人机与操作员进行交互的重要工具,主要用于监控无人机的状态、下达飞行任务和参数设置等功能。
在基于STM32的四旋翼无人机设计中,可以开发PC端或移动端的地面站软件,通过串口或数传模块与无人机进行数据交换和控制。
基于stm32的微型四旋翼飞行器设计
定为0,然后调内环PID,首先将I和D置0,对单P进行调试,当用 手干扰系统能感觉到有一定恢复力并有点晃动时,P就为理想值。 在P值确定好的情况下调节I值,I主要是消除稳态误差,对P有辅助 作用,当用手去干扰系统,系统能较快的恢复水平,此时的I值就 为理想值。由于调试P和I能达到预期效果,所以内环D值置0,内 环参数确定好后再对外环参数进行调试,外环主要作用是控制四 旋翼姿态响应快慢,本次调试期望值是0,调试外环单P,用手给 PITCH方向一个力,四旋翼能快速达到设定角并保持水平飞行, 此时的P就为理想值。在调试过程过程中虽然四旋翼能快速达到设 定角,但是系统会有一点震荡,通过调试外环D,当系统不再震荡 时,记下D值。对ROLL方向的调试步骤同上。最终调试飞行效果 如图10所示,对PITCH方向调试参数如表1所示,对ROLL方向调 试参数如表2所示。
ELECTRONICS WORLD・技术交流
基于STM32的微型四旋翼飞行器设计
贵阳学院电子与通信工程学院 古 训 贵州民族大学机械电子工程学院 郑亚利
本文以STM32F103C8T6为主控制器,采用MPU6050完成姿态 信息采集,通过蓝牙模块完成四旋翼飞行器与电脑之间的通信, Nrf2401完成微型四旋翼飞行器和遥控器之间的通信。将MPU6050 采集的数据由四元素法转换成欧拉角对四旋翼进行姿态解算控制, 通过串级PID控制四个空心杯电机的转速,实现了微型四旋翼飞行 器PITCH和ROLL方向的稳定水平飞行。
1.引言 四旋翼在无人机研究领域中是发展最快、研究最多的一种飞行
器(赵鹏,郑文豪,李刚,基于STM32的四旋翼飞行器的设计: 电子制作,2019),目前主要应用于研发平台、军事和执法、商业 应用方面。四旋翼飞行器体积小、质量轻、飞行稳定,可应用于执 行航拍、监控、勘察、救援等飞行任务。其工作原理是主控芯片输 出四路PWM波调节四个电机的转速来改变四个旋翼的转速,从而 改变螺旋桨产生的升力,使四旋翼飞行器的位置和姿态得以控制。 四旋翼飞行器是一个欠驱动系统,它有4个输入,分别是上升力和 三个方向的转矩,6个输出分别是垂直、前 后、侧向、俯仰、滚转、偏航运动。四旋翼 飞行器有垂直、横滚、俯仰、偏航四种基本 飞行控制方式。本文主要介绍四旋翼硬件设 计以及串级PID对PITCH和ROLL方向的平衡 控制影响。
基于STM32的四旋翼飞行器设计
【关键词】stm32 四旋翼飞行器变参数pid控制卡尔曼滤波随着航天技术的不断发展和成熟,四旋翼飞行器以其低成本、体积小、对环境要求低、高性能、独特构造和飞行方式等特点,被广泛应用于军事和民用领域。
本文以飞行器控制算法为研究主题,重点研究四旋翼飞行器的算法结构,设计飞行控制算法,提出一套基于卡尔曼滤波算法的姿态检测系统,并以改进的变参数pid控制算法来进行控制,实现了四旋翼飞行器的稳定飞行、悬停、航拍等功能,验证了设计的合理性。
1 飞行器工作原理四旋翼飞行器也称为四旋翼直升机,是一种有四个螺旋桨且螺旋桨呈十字形交叉的飞行器,是固联在刚性十字交叉结构上,由4个独立电机驱动的螺旋桨组成的6自由度系统。
四旋翼一般具有两种飞行模式,x飞行模式和十字飞行模式,实验证明x模式较十字模稳定且便于控制,所以本文设计中采用的是x飞行模式,结构图如图1所示。
在四旋翼的中轴处mcu 将无线模块传达的控制数据发送给电调,再通过电调控制三相无刷电机的转速变化实现俯仰运动、偏航运动、垂直起落运动和空中悬停。
飞行器在做俯仰运动过程中电机0、1或2、3转速同时增减,并且其余两个电机转速也发生变化,变化方向与其相反;偏航动作过程中电机0、2或者1、3转速增加,同时其余两个电机保持原有转速;垂直起落过程中四路电机转速同步加减,当四路电机所产生的升力与四旋翼自身重力相等时,飞行器保持悬停状态。
2 硬件设计四旋翼飞行器的硬件设计包括两部分:飞行器主体硬件结构设计、遥控器硬件结构设计。
2.1 飞行器主体硬件结构设计2.2 遥控器硬件结构设计本文的遥控器是自行设计制作的,利用cad软件设计出了遥控器外壳的双层平面模型,并利用雕刻机对亚克力进行镂空加工,设计pcb外形并导入电路板绘制工具软件,将pcb板嵌在两层亚克力模型版中。
遥控器主要mcu、无线通信模块、显示部分、飞行控制量输入部分、参数微调部分、指示部分组成。
由遥控器的mcu同样采用stm32f103vet6,无线通信模块采用大功率nrf24l01模块通过spi串行通信总线与mcu相连;显示部分由2.4寸tft彩屏和驱动电路组成,通过系统总线与mcu连接实现显示功能;飞行控制量输入部分由碳膜型遥感电位器和拨盘电位器组成,通过mcu的12位ad接口采集模拟信息,作为四旋翼的动作和云台动作控制量;参数微调部分由贴片按键实现,可以微调遥控器的飞行参数,指示部分由贴片led组成。
基于Arduino兼容的Stm32单片机的四旋翼飞行器设计
基于Arduino兼容的Stm32单片机的四旋翼飞行器设计基于Arduino兼容的STM32单片机的四旋翼飞行器设计一、引言随着无人机技术的发展和应用,四旋翼飞行器成为了热门的研究领域。
它具有飞行稳定性高、机动性好、适应性强等优势,被广泛应用于农业植保、航拍摄影、物流配送等领域。
本文基于Arduino兼容的STM32单片机设计四旋翼飞行器,主要包括硬件设计和软件编程的内容。
二、硬件设计1. 硬件选型本设计采用STM32F103C8T6单片机作为处理器,其具有性能稳定可靠、易于操作等特点,同时兼容Arduino,可以借助开发环境进行编程;四个无刷直流电机作为动力源,通过控制电调来实现转速的控制;姿态传感器采用MPU6050六轴传感器,用来检测飞行器的倾斜角度;无线通信模块采用nRF24L01,用于与遥控器进行通信。
2. 电路设计整个飞行器系统的电路由电源管理电路、控制电路、传感器电路和通信电路四部分组成。
(1)电源管理电路:使用锂电池作为电源,通过电源管理芯片实现电池的充电和保护管理,确保系统电源的稳定性。
(2)控制电路:STM32单片机作为核心控制器,连接电机驱动电路、姿态传感器以及通信模块。
通过Arduino提供的开发环境,编写控制算法,实现电机的转速控制,以及飞行器的姿态控制。
(3)传感器电路:连接MPU6050六轴传感器,用于检测飞行器的姿态,包括加速度和角速度等数据。
通过与STM32单片机的通信,采集传感器数据并进行处理,实现飞行器的稳定控制。
(4)通信电路:通过nRF24L01无线通信模块与遥控器进行通信,实现遥控器对飞行器的控制。
三、软件编程1. 飞行控制算法飞行器的稳定控制是整个系统的核心。
在设计中,通过PID控制算法来实现飞行器的稳定飞行。
PID控制算法基于偏差(error)进行计算,包括比例环节、积分环节和微分环节。
其中,比例环节用来衡量偏差的大小,积分环节用来补偿系统漏差,微分环节用来预测偏差的变化趋势。
基于STM32的四旋翼飞行控制器的设计.
基于STM32的四旋翼飞行控制器设计姓名: XX学号:54130XXXXXXX班级:自动化摘要随着时代的发展,多旋翼飞行器越来越被广泛的应用在军事、民用、以及科学研究等多个领域,同时其本身也向着高效、多功能化方面发展。
四旋翼飞行器也称为四旋翼直升机又叫四轴飞行器,是一种有4个螺旋桨且螺旋桨呈十字形交叉的飞行器,可以搭配微型相机录制空中视频。
四旋翼直升机,国外又称Quadrotor,Four-rotor,4 rotors helicopter,X4-flyer等等,是一种具有四个螺旋桨的飞行器并且四个螺旋桨呈十字形交叉结构,相对的四旋翼具有相同的旋转方向,分两组,两组的旋转方向不同。
与传统的直升机不同,四旋翼直升机只能通过改变螺旋桨的速度来实现各种动作(目前,也出现可以改变螺距的四旋翼飞行器,这种控制方式比改变电机转速更灵活方便)。
一四旋翼飞行基础控制原理1.1 飞行动力原理(图2.1)(图2.2 )四轴飞行器是一个在空间具有6个活动自由度(分别沿3个坐标轴作平移和旋转动作),但是只有4个控制自由度(四个电机的转速)的系统,因此被称为欠驱动系统(只有当控制自由度等于活动自由度的时候才是完整驱动系统)。
不过对于姿态控制本身(分别沿3个坐标轴作旋转动作),它确实是完整驱动的。
1.2 姿态分析因有两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,(图2.2.1)实现了沿z轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
保证四个旋翼转速同步增加或减小是垂直运动的关键。
电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。
为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。
《2024年基于STM32单片机的无人机飞行控制系统设计》范文
《基于STM32单片机的无人机飞行控制系统设计》篇一一、引言随着科技的不断发展,无人机技术已成为当今的热门研究领域。
而无人机的核心部分,即飞行控制系统的设计,更是其成功的关键。
本文将详细介绍基于STM32单片机的无人机飞行控制系统设计,包括其设计原理、硬件构成、软件实现以及性能评估等方面。
二、设计原理本设计基于先进的飞行控制算法,采用模块化设计思路,实现对无人机飞行的稳定控制。
飞行控制系统以STM32单片机为主控芯片,结合陀螺仪、加速度计等传感器,实时采集无人机的飞行状态信息,并通过PID控制算法,实现对无人机的姿态调整和飞行控制。
三、硬件构成1. 主控芯片:选用STM32F4系列高性能单片机,具备高运算速度和低功耗特性,满足无人机飞控系统对实时性和稳定性的要求。
2. 传感器模块:包括陀螺仪、加速度计等,用于实时采集无人机的飞行状态信息。
3. 电机驱动模块:采用PWM(脉宽调制)信号控制电机驱动器,实现对电机的精确控制。
4. 通信模块:采用无线通信技术,实现与地面控制站的实时数据传输和指令接收。
四、软件实现1. 操作系统:采用实时操作系统(RTOS),实现对任务的优先级管理和调度,确保系统的实时性和稳定性。
2. 传感器数据处理:通过传感器模块采集到的数据,经过滤波、校准等处理后,输出给主控芯片进行计算。
3. PID控制算法:根据传感器数据,通过PID控制算法计算输出控制量,实现对无人机的姿态调整和飞行控制。
4. 任务管理:根据任务优先级和系统资源情况,合理分配和控制各个任务的执行。
五、性能评估本设计具有以下优点:1. 高精度:采用高精度传感器和PID控制算法,实现对无人机飞行的精确控制。
2. 高稳定性:采用实时操作系统和模块化设计,提高系统的稳定性和可靠性。
3. 低功耗:选用低功耗主控芯片和优化软件算法,降低系统功耗。
4. 易扩展:采用标准化接口和模块化设计,方便后续的升级和维护。
经过实际测试和飞行实验,本设计的无人机飞行控制系统具有良好的飞行性能和稳定性,可满足各种应用场景的需求。
基于STM32的微型四旋翼无人机控制系统设计—软件设计
毕业设计(论文)开题报告题目:基于STM32的微型四旋翼无人机控制系统设计—软件设计院(系)电子信息工程学院专业电气工程及其自动化班级姓名学号导师2017年3月9日与国外相比,国内对四旋翼无人机的研究起步较晚,尚处于初步阶段。
主要有南京航空航天大学、北京航空航天大学、中国科学技术大学、哈尔滨工业大学、国防科学技术大学等高校的硕士研究生以及一些高新技术企业对四旋翼无人飞行器研究的比较多。
值得一提的是于2006年成立的深圳市大疆创新科技有限公司也一直致力于多旋翼无人机的研发创新,研发的主流产品线包括,Ace One系列工业无人直升机飞行控制系统及地面站控制系统,筋斗云系列多旋翼航拍飞行器,包含了高清数字图传的如来系列手持控制一体机等等。
如PHANTOM2VISIO+飞行器,它自带云台,可加载高清摄像机,采用三轴陀螺减震和GPS定点定高技术,飞行稳定、操作简单,又称为会飞的相机。
2本课题研究的主要内容和拟采用的研究方案、研究方法或措施四旋翼飞行器的控制系统由姿态测量系统、飞行控制系统组成。
姿态测量系参考文献[1]岳基隆.四旋翼无人机自适应控制方法研究[D].长沙:国防科学技术大学,2010.[2]王小莉.面向桥梁检测的四旋翼飞行器控制系统研究[D].重庆交通大学,2013,05[3]单海燕.四旋翼无人直升机飞行控制技术研究[D].南京:南京航空航天大学,2008.[4]郭晓鸿.微型四旋翼无人机控制系统设计与实现[D].南京:南京航空航天大学,20 12.[5]庞庆霈.四旋翼飞行器设计与稳定控制研究[D].中国科学技术大学,2011.[6]庞庆霈,李家文,黄文号.四旋翼飞行器设计与平稳控制仿真研究[J].电光与控制,2012.[7]胡庆.基于STM32单片机的无人机飞行控制系统设计[D].南京:南京航空航天大学,2012.[8]胡飞.小型四旋翼飞行器飞行控制系统研究与设计[D].上海:上海交通大学,2009.[9] Derrick Yeo, Ella M.Aerodynamic Sensing as Feedback for Ornithopter Flight Control. 49th AIAA Aerospace Sciences Meeting,2011.[10]黄波.基于磁传感器阵列的微弱磁性目标定位的研究[D].武汉工程大学,2012.[11]蒋乐平.基于DSP的太阳能飞航飞行控制器研究[D].南昌航空大学,2012.[12]黄毅.某近程小型无人机飞行控制系统研究[D].南昌航空大学,2013.[13] Yasaman Saeedi, Robustness Analysis of a Simultaneously Stabilizing Controller: A Flight Control Case Study. AIAA 2011.[14]芦燊桑.无人机遥测遥控地面站系统研究[D].南昌航空大学,2012.[15]胡宁博,李剑,赵榉云.基于HMC5883的电子罗盘设计[J].传感器世界,2011,06:35-38[16] John M. Kearney, Ari Glezer. Aero-Effected Flight Control Using Distributed Active Bleed.41st AIAA Fluid Dynamics Conference and Exhibit, 2011:3099-3110.。
基于Arduino兼容的Stm32单片机的四旋翼飞行器设计
基于Arduino兼容的Stm32单片机的四旋翼飞行器设计一、引言四旋翼飞行器是近年来快速发展的一种无人机,它具有灵活、稳定、可控性强等特点,被广泛应用于各个领域,如农业、摄影、救援等。
本文将基于Arduino兼容的Stm32单片机设计一个四旋翼飞行器,包括硬件设计和主控程序编写,并对其进行测试和分析。
二、硬件设计1. 硬件平台选型我们选择Arduino兼容的Stm32单片机作为主控芯片。
Stm32系列单片机具有强大的性能和丰富的外设资源,能够满足四旋翼飞行器的实时控制要求。
2. 四旋翼结构设计我们采用X形结构的四旋翼设计,具有较好的稳定性和操控性。
每个旋翼由一个电动助力机构和一个螺旋桨组成,通过电机控制器控制电机的转速,从而控制飞行器的升降和姿态。
3. 传感器选择为了使飞行器能够感知环境和自身状态,我们选择了加速度计、陀螺仪和磁力计等传感器。
加速度计用于测量飞行器的加速度和姿态角度,陀螺仪用于测量飞行器的角速度,磁力计用于测量地磁场信息,以辅助姿态控制。
4. 通信模块选型我们选择了无线通信模块,可以实现飞行器与地面控制站的数据传输和指令控制。
5. 电源设计为了保证飞行器的稳定供电,我们设计了电源管理模块,包括电池、稳压器和电源选择开关等,以提供所需的电压和电流。
三、主控程序编写1. 启动流程飞行器在上电后,首先要进行初始化操作,包括外设初始化、传感器校准和数据校验等。
接着进入主循环,不断读取传感器数据、执行控制算法、更新电机转速和发送数据等。
2. 姿态控制算法通过读取加速度计和陀螺仪的数据,可以得到飞行器的姿态信息。
我们采用PID控制算法来控制飞行器的姿态,即通过调节电机转速来调整飞行器的姿态角度,使其保持在设定值附近,提高飞行器的稳定性。
3. 飞行控制算法飞行器的飞行控制算法主要包括高度控制、位置控制和姿态控制。
通过读取高度传感器的数据,可以得到飞行器的高度信息。
我们采用模糊控制算法来调节电机转速,控制飞行器的高度和位置。
基于STM32的四旋翼飞行控制系统毕业设计
目录1前言 (1)1.1背景与意义 (1)1.2国内外研究现状 (1)1.3论文主要工作 (2)2总体方案设计 (3)2.1方案比较 (3)2.2方案论证与选择 (3)3飞行器原理与结构 (5)3.1飞行器原理 (5)3.2飞行器结构 (6)4单元模块设计 (8)4.1各单元模块功能介绍及电路设计 (8)4.1.1电源 (8)4.1.2 STM32F407最小系统 (9)4.1.3 下载电路 (11)4.1.4 飞控姿态模块 (11)4.1.5 无刷电机连接电路 (12)4.1.6 串口接口电路 (12)4.2特殊器件的介绍 (12)4.2.1 无线数传模块 (12)4.2.2 飞控姿态模块 (13)5软件设计 (16)5.1软件设计原理及设计所用工具 (16)5.2主要软件设计流程框图及说明 (17)5.2.1串口中断流程图 (17)5.2.2外部中断流程图 (18)5.2.3主程序流程图 (18)6系统调试 (20)6.1 通信系统 (20)6.2 姿态传感器调试 (21)6.2.1 传感器数据分析与处理 (21)6.2.2 姿态解算 (23)6.2.3 数据中断 (28)6.3 PID调试 (30)6.3.1 PID姿态控制 (30)6.3.2 飞控系统PID调试 (33)7系统功能、指标参数 (36)7.1系统能实现的功能 (36)7.2系统指标参数 (36)8结论 (38)8.1 回顾 (38)8.2 展望 (38)9总结与体会 (39)10谢辞 (40)11参考文献 (41)附录: (42)1.硬件电路图 (42)2.PCB图 (43)3.部分程序 (44)4.外文翻译 (46)1前言1.1背景与意义近年来得益于现代控制理论与电子控制技术的发展,四轴飞行器得到了广泛的关注,在民用与工业领域,具有广泛的应用前景。
甚至无人机在战争中得到广泛的应用。
当下无人机发展火热,其中以四旋翼飞行器的发展最为突出。
基于STM32的四旋翼飞行器控制系统设计
基于STM32的四旋翼飞行器控制系统设计四旋翼飞行器是一种由四个旋翼驱动的无人机。
它具有垂直起降和悬停的能力,能够在空中保持稳定飞行。
基于STM32的四旋翼飞行器控制系统设计需要考虑飞行器的姿态控制、飞行模式控制、传感器数据获取与处理等方面,同时还需要实现与地面站的通信和数据传输。
首先,飞行器的姿态控制是控制系统设计的核心。
通过采用传感器获取飞行器的姿态信息,如加速度计、陀螺仪和磁力计等,利用PID控制算法对飞行器进行姿态调整,使其保持平衡和稳定飞行。
STM32可以通过配置外设,如ADC和定时器,来获取传感器数据,同时使用GPIO口来控制电机的转速,实现四旋翼飞行器的姿态控制。
其次,飞行模式控制是四旋翼飞行器控制系统中的另一个重要方面。
飞行模式通常包括手动模式、自稳模式和定点悬停模式等。
在手动模式下,飞行器由遥控器控制飞行方向和速度。
在自稳模式下,飞行器利用姿态控制算法来保持平衡和稳定飞行。
在定点悬停模式下,飞行器根据传感器数据和定位信息,实现在空中固定位置悬停。
通过STM32的串口通信模块与遥控器通信,可以实现飞行模式的切换和控制。
另外,传感器数据获取与处理也是四旋翼飞行器控制系统设计的重要部分。
飞行器需要获取传感器数据,如高度、速度和位置等信息,并进行处理,以进行姿态控制和飞行模式控制。
STM32可以通过配置串口通信、I2C或SPI总线来获取和处理传感器数据,同时利用内部的计算和存储单元进行数据处理和算法运算。
最后,与地面站的通信和数据传输是四旋翼飞行器控制系统设计中的另一个重要方面。
地面站可以通过无线通信方式与飞行器进行通信,获取飞行器的状态信息和传感器数据,并发送飞行指令和控制信号。
通过配置STM32的无线通信模块,如WiFi或蓝牙模块,可以实现与地面站的通信和数据传输。
除了以上提到的关键设计方面,四旋翼飞行器控制系统设计还需要考虑电源管理、动力系统控制(电机控制)、GPS定位和导航等问题。
基于STM32的多传感器四旋翼姿态控制系统设计
嵌入式技术基于STM32的多传感器四旋翼姿态控制系统设计**基金项目:国家自然科学基金(51665019,61763017);江西省研究生创新 专项资金项目(YC2019-S325)任剑秋,钟小勇,张小红(江西理工大学理学院,江西赣州341000)摘要:针对四旋翼无人机姿态传感器易受干扰,导致姿态输出误差大的问题,设计了一种基于STM32的多传感器 四旋翼姿态控制系统。
系统使用MPU6050等传感器实时采集四旋翼姿态数据,通过四元数互补滤波算法进行姿态解算,利用串级PID 控制,以PWM 方式驱动电机。
在设计控制系统的软硬件基础上,完成了四旋翼的实物制作与飞 行测试。
结果表明:该系统能够灵活地控制四旋翼无人机的姿态,实现四旋翼无人机稳定飞行。
关键词:四旋翼无人机;姿态控制;STM32 ;传感器;互补滤波;串级PID中图分类号:TP273 文献标识码:ADOI : 10.16157/j.issn.0258-7998.201024中文引用格式:任剑秋,钟小勇,张小红.基于STM32的多传感器四旋翼姿态控制系统设计[J].电子技术应用,2021,47(5):97-101 107.英文弓I 用格式: Ren Jianqiu , Zhong Xiaoyong , Zhang Xiaohong. Design of multi - sensor quadrotor attitude control system based onSTM32[J]. Application of Electronic Technique , 2021,47(5) : 97-101,107.Design of multi-sensor quadrotor attitude control system based on STM32Ren Jianqiu , Zhong Xiaoyong , Zhang Xiaohong(School of Science , Jiangxi University of Science and Technology , Ganzhou 341000 , China)Abstract : Aiming at the problem that the attitude sensor of the quadrotor was susceptible to interference , resulting in large attitudeoutput errors, a multi - sensor quadrotor attitude control system based on STM32 was designed. The system used sensors such as MPU6050 to collect the attitude data of the quadrotor in real time, calculated the attitude through the quaternion complementary fil tering algorithm , and used the cascade PID control to drive the motors in PWM mode . Based on the design of the software and hardware of the system, the physical production and flight test of the quadrotor were completed. The results show that the system can flexibly control the attitude of the quadrotor UAV and realize the stable flight of the quadrotor UAV.Key words : quadrotor UAV ; attitude control ; STM32 ; sensor ; complementary filtering ; cascade PID0 引言四旋翼是一种典型的多输入输出、非线性、强耦合的 欠驱动系统[1],控制系统复杂,但其结构紧凑、灵活性和 机动性好[2],在军事和民用领域都有广泛的应用前景。
基于STM32的四旋翼飞行器设计
摘要四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通飞行器相比,具有结构简单、故障率低和单位体积能够产生更大升力等优点,所以在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。
本设计采用stm32f103zet6作为主控芯片,3轴加速度传感器mpu6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终使用PID控制算法以PWM方式控制电子调速器驱动电机实现了四轴飞行器的设计。
关键词:四轴飞行器,stm32;mpu6050,2.4G无线模块.PID.PWMAbstractQuadrocopter has broad application prospect in the area of military and civilian because of its advantages of simple structure. Small size, low failure rate, taking off and landing ertically . etc. it is suitable for having task in narrow space.This design uses STM32f103zet6 as the master chip, and triaxial accelerometer mpu6050 inertial measurement unit, via 2.4G wireless module and remote control panel for communication. Finally using pid control algorithm with pwm drives the electronic speed controller to change moto to realize the design of quadrocopter.Key word : quadrocopter,stm32,mpu6050,2.4G wireless module ;pid; pwm目录第一章作品难点与创新 (1)1.1作品难点 (1)1.2创新点 (1)第二章方案论证与设计 (2)2.1飞控部分硬件框图 (2)2.2遥控器部分硬件框图 (2)2.3各部分元器件介绍 (3)2.3.1 stm32介绍 (3)2.3 .2电子调速器 (4)2.3.3 mpu6050六轴传感器 (5)2.3.4 无线通信NRF24L01 (6)第三章原理分析与硬件电路图 (8)3.1 飞行器空气动力学分析 (8)3.2飞控部分硬件电路图设计 (10)3.3 遥控部分硬件电路图设计 (10)第四章软件设计与流程 (11)4.1 pid算法分析 (11)4.2串级pid系数的整定 (12)4.3串级pid系统框图 (13)4.3.1 飞控部分程序设计 (14)4.3.2遥控部分程序设计 (14)第五章系统测试与误差分析 (15)第六章总结 (19)参考文献 (21)第一章作品难点与创新1.1作品难点对于一种芯片,最麻烦的就是底层的驱动了,很多驱动得自己编写,为了最大发挥处理器的性能,做了很多驱动优化,将不必要的延时降到最低,比如I2C 总线驱动,官方的代码不符合自己的要求,通信效率低,我们花了几天的时间去优化这个驱动,使用了模拟的IIC接口,最后在保证稳定性的前提下,速度提高了一倍。
采用 STM32 设计的四轴飞行器飞控系统
采用STM32设计的四轴飞行器飞控系统作者:常国权关键字:STM32四轴飞行器1、引言四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通的飞行器相比具有结构简单,故障率低和单位体积能够产生更大升力等优点,在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。
因此四旋翼飞行器具有广阔的应用前景,吸引了众多科研人员,成为国内外新的研究热点。
本设计主要通过利用惯性测量单元(IMU)姿态获取技术、PID电机控制算法、2.4G无线遥控通信技术和高速空心杯直流电机驱动技术来实现简易的四轴方案。
整个系统的设计包括飞控部分和遥控部分,飞控部分采用机架和控制核心部分一体设计增加系统稳定性,遥控部分采用模拟摇杆操作输入使操作体验极佳,两部分之间的通信采用2.4G无线模块保证数据稳定传输。
飞行控制板采用高速单片机STM32作为处理器,采用含有三轴陀螺仪、三轴加速度计的运动传感器MPU6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终根据PID控制算法通过PWM方式驱动空心杯电机来达到遥控目标。
2、系统总体设计系统硬件的设计主要分要遥控板和飞控板两个部分,遥控板采用常见羊角把游戏手柄的外形设计,控制输入采用四向摇杆,无线数据传输采用2.4G无线模块。
飞控板采用控制处理核心和机架一体的设计即处理器和电机都集成在同一个电路板上,采用常规尺寸能够采用普通玩具的配件。
系统软件的设计同样包括遥控板和飞控板两部分的工作,遥控板软件的设计主要包括ADC的采集和数据的无线发送。
飞控板的软件的设计主要包括无线数据的接收,自身姿态的实时结算,电机PID增量的计算和电机的驱动。
整个四轴飞行器系统包括人员操作遥控端和飞行器控制端,遥控端主控制器STM32通过ADC外设对摇杆数据进行采集,把采集到的数据通过2.4G无线通信模块发送至飞控端。
飞控板的主要工作就是通过无线模块进行控制信号的接收,并且利用惯性测量单元获得实时系统加速度和角速度原始数据,并且最终解算出当前的系统姿态,然后根据遥控板发送的目标姿态和当姿态差计算出PID电机增量,然后通过PWM驱动电机进行系统调整来实现飞行器的稳定飞行。
基于STM32的微型四旋翼飞行器的设计
基于STM32的微型四旋翼飞行器的设计郭强;汤璐【期刊名称】《工业控制计算机》【年(卷),期】2015(000)007【摘要】微型四旋翼飞行器是一种结构简单、外形新颖、性能优良的垂直起降无人机,具有重要的军事和民用价值,是当前的研究热点。
介绍了以STM32为微控制器、以CC3000 Wi-Fi模块为通信控制媒介、以MEMS九轴姿态传感器(三轴加速度计、三轴陀螺仪、三轴磁阻传感器)以及气压传感器作为姿态感知的四旋翼飞行器的设计。
给出了系统控制核心设计、电源模块设计、惯性测量模块设计,电机驱动模块设计,Wi-Fi无线通信模块设计。
%This paper introduces the design of the quadrotor,whose controI center is based on STM32 microcontroI er,the communication and controI medium is based onCC3000 Wi-Fi moduIe,and the attitude perceived is based on Nine-Axis (3-axis Gyro,3-axis AcceIerometer,3-axis Compass) MEMS motion tracking devices and aItimeter sensors.This paper describes the design of system controI part,power moduIe,IMU moduIe,motor drive moduIe and Wi-Fi wireIess communication moduIe.【总页数】3页(P12-13,16)【作者】郭强;汤璐【作者单位】上海大学机电工程与自动化学院,上海200072;上海大学机电工程与自动化学院,上海200072【正文语种】中文【相关文献】1.基于STM32微型四旋翼飞行器设计与实现 [J], 王磊2.一种基于STM32的微型四旋翼飞行器硬件设计方案 [J], 尹项博;张亚明;王珂;马浩洋;苏一凡3.基于STM32微型四旋翼飞行器设计与实现 [J], 张鹏;王彬;4.基于STM32的微型四旋翼飞行器设计 [J], 古训; 郑亚利5.基于STM32的微型四旋翼飞行器的设计与研究 [J], 李亚杰;葛宇;张晔因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.可感知前方障碍物并自动绕行。
2.通过视觉识别自动跟拍移动物体。
3.点击相机画面,即可向指点方向自主飞行。
4.智能返航,感知障碍物后可自动提升飞行高度。
5.最大飞行时间28分钟,最大可控距离约5公里。
6.最高速度提升至20m/s (72km/h)。
7.一体化云台设计,提升了飞行和影像的稳定性。
(1)高度:使四个螺旋桨转速相同,当其同时加速时,螺旋桨升力变大,当升力大于飞行器重力时,飞行器拥有向上运动的加速度,飞行器上升;当四个螺旋桨同时减速时,螺旋桨产生的升力变小,当升力小于飞行器重力时,飞行器拥有向下运动的加速度,飞行器下降。
(2) Pitch:就是绕着Y轴方向旋转,所进行的控制为1,2号电机转述同等减小,3,4号电机转述同等增大,飞行器往前倾;反之,会后倾。
3
采用的机架型号为F360,轴距360mm。螺旋桨型号是1047型。电机采用的是朗宇X2212,980KV无刷电机,即每加1V的电压,电机每分钟980转,电机转速大约是10878转\分。通常四旋翼飞行器配2200mah的电池。电调为好盈天行者30A的电子调速器,整个飞行系统用锂电池供电。电机实物图如图3.2所示,电子调速器实物图如图3.3所示。
图3.2朗宇电机实物图
图3.3电子调速器实物图
飞行器组装完成后如图3.4所示
图3.4飞行器实物图
4单元模块设计
4
飞行控制系统的硬件结构遵从于方案二的结构框图,即图2.2。以下就重要的单元模块做介绍。
4.1.1电源
LM1117为低压差电压调节器。其压差输出为1.2V时,负载电流为800mA。它与国家半导体的工业标准器件LM317有相同的管脚排列。LM1117有可调电压的版本,通过2个外部电阻可实现1.25~13.8V输出电压范围。另外还有5个固定电压输出(1.8V、2.5V、2.85V、3.3V和5V)的型号。因为设计的飞行器的主控芯片是3.3V的。所以选取固定输出为3.3V的LM1117。LM1117提供电流限制和热保护。输出电压的精度在±1%以内。LM1117系列具有LLP、TO-263、SOT-223、TO-220和TO-252、D-PAK等多种封装。飞行器为了提高续航能力,要尽量减轻自身重量,所以这里选取的是SOT-223封装。在电路设计的输出端需要并联一个至少10uF的钽电容来改善瞬态响应和稳定性。LM1117电气特性如表4.1所示。
(2)支持配备高端电子产品,多种外设相连接,如照相机、机械臂等,可以实现一些娱乐功能。
例如在高空电力线巡检中,无人机能在工作人员的操控下进行工作,可以代替人工对巡检对象实施接近检测,减少工人的劳动强度。也可以携带传感仪器、摄像机等,对巡检对象进行数据收集、分析与存储,这进一步提高巡检的工作效率和巡检精度。在军事上,在局部小规模对战的时候,一些普通的侦察机,可能受到敌方打击而造成不必要的机体人员伤亡,无人机则可以很好地起到替代作用。利用四旋翼飞行器作为侦察机,具有振动小、噪声小、可靠性高、成本低、反侦察能力强、自我销毁等优势。因此无人机的军事价值不可估量。四旋翼飞行器还有着更为广阔的前景等待着开发。比如可以通过为飞行器的添加更加智能的算法实现人机互动,让飞行器帮人取物件等。
1.
无人机作为当今电子产业里一个冉冉升起的新星,具有广阔的市场和发展前景。作为当代大学生,不仅要顺应时代的潮流,更要有作为时代弄潮儿的信心与勇气。四旋翼无人机涉及知识面很广泛,其中核心知识与本专业契合度相当高。比如,一颗功能强劲的微机芯片就可以打造一个功能完备的飞行控制系统。而这恰恰是微机原理和单片机的运用。主流无人机的控制系统离不开自动控制原理。并且目前无人机在电力行业的应用力度很大,综上,毕业设计选择了基于STM32ARM单片机的四旋翼飞控系统。
图3.1X型(左)与十字型(右)飞行方式图
四旋翼飞行器的四个螺旋桨都是电机直连的结构,通过改变电机转速获得旋转机身的力,从而调整自身姿态。在飞行器飞行过程中,螺旋桨会产生两个力,一个是升力,一个是与螺旋桨转向相反的反扭矩。反扭矩会使飞行器沿着螺旋桨旋转的方向自旋,如果不抵消反扭矩会让飞行器一直自转,这会影响飞行器的飞行。四旋翼飞行器通过分配四只螺旋桨的转向来抵消各个螺旋桨产生的反扭矩。以X型飞行方式为例,按顺时针方向为每个电机编号,右上角电机为1号电机,依次编号1、2、3、4。并将1、2号螺旋桨所在的轴向方向定义为X轴方向,即机头。3、4号螺旋桨所在的轴向方向定义为Y轴方向。为了抵消螺旋桨的反扭矩,1、3号螺旋桨需要顺时针转动,2、4号螺旋桨需要逆时针转动,即对角线上的螺旋角旋转方向相同,以此抵消相互之间的反扭矩。四旋翼飞行器的飞行方向与速度都是由飞行器的倾角决定的,并且飞行器倾斜的角度越大,飞行速度也就越快。通过调节各个电机的转速可以达到控制飞行器姿态、速度、甚至是飞行路径的效果。其中,四旋翼飞行器飞行的姿态主要是高度、俯仰角(Pitch)、横滚角(Roll)、偏航角(Yaw),可以继续细分为:上升、下降、前倾、后倾、左倾、右倾、左旋、右旋。
第五章节:程序流程图,对程序流程进行简单说明。
第六章节:飞行器控制系统设计,包括传感器数据进行分析和处理,DMP姿态解算方式,配置中断实时更新当前飞行姿态数据。四旋翼飞行器的PID调试策略。
第七章节:上位机与飞行器之间的通信系统,PID调试过程。
2总体方案设计
2
方案一:基于意大利开源硬件Arduino Nano作为数据处理,姿态结算的飞行控制系统。其飞行控制系统结构如图2.1所示。
最后考虑到资金、性价比和使用的难易程度选择方案二,基于STM32F407VET6单片机的飞行控制系统。
3飞行器原理与结构
3
四轴飞行器具有两种不同的飞行模式:X型与十字型。X型飞行方式的四旋翼飞行器姿态改变的方向与机身成一个45度角,十字型飞行方式四旋翼飞行器姿态改变方向与飞行器机身相同。因为采用X型飞行方式的飞行器具有更好的控制灵敏度与稳定性,所以选择了X型的飞行方式。两种工作模式如图3.1所示。
1
6
mV
电源模块的原理图如图4.1所示。图里的5V电源来源于电子调速器的BEC降压系统。
图4.1电源模块电路图
4.1.2STM32F407最小系统
STM32F407VET6是意法半导体基于CORTEX-M4内核的芯片,STM32F407拥有的资源包括:集成FPU和DSP指令,并具有192KBSRAM、1024KB FLASH、12个16位定时器、2个32位定时器、2个DMA控制器(共16个通道)、3个SPI、2个全双工I2S、3个IIC、6个串口、2个USB(支持HOST /SLAVE)、2个CAN、3个12位ADC、2个12位DAC、1个RTC(带日历功能)、1个SDIO接口、1个FSMC接口、1个10/100M以太网MAC控制器、1个摄像头接口、1个硬件随机数生成器、以及112个通用IO口等。该芯片的配置十分强悍,具有卓越的性能。相对STM32F1来说,许多功能进行了重大改进。STM32最小系统电路图如图4.2所示。
8.利用全新的视觉定位技术,可实现室内外精准定位。
又比如:3D Robotics公司最新出品的PIXHAWK飞控,拥有出色飞行稳定性,搭载双传感器系统和冗余电源输入并且可以扩展两组GPS系统,确保飞行失误降到最低。这两家公司占领了全球大部分无人机市场,并且由于技术的高门槛和垄断,其他无人机公司已经被远远的甩在了后面。大部分的无人机公司的技术仅仅停留在稳定飞行、简单航拍和户外GPS定位阶段。
受限于本人知识水平,本文解决以下问题:
第一章节:四旋翼飞行器研究背景与意义,国内外发展现状。
第二章节:就四旋翼飞行器方案讨论与选择,选择了基于STM32ARM单片机的四旋翼飞行控制系统。
第三章节:简单叙述了飞行器飞行原理,以及机械结构。
第四章节:飞行控制系统硬件设计,其中包括单片机最小系统,各2.500
2.525
2.550
V
V
LM1117-2.85
IOUT=10mA, VIN=4.85V, TJ=25˚C
0≤IOUT≤800mA, 4.25V≤VIN≤10V
0≤IOUT≤500mA, VIN=4.10V
2.820
2.790
2.790
2.850
2.850
2.850
图2.1Arduino飞控系统结构图
方案二:采用意法半导体的STM32F407VET6作为飞行器的主控芯片。其飞行控制系统结构如图2.2所示。
图2.2基于STM32飞控系统结构图
2
方案一:Arduino Nano是基于Atmega328P AVR单片机的开源硬件,具有两个外部中断口,可以输出六路PWM波,兼备IIC,UART,SPI通信功能,总的来说,其具有丰富的片上资源和优秀的性能。对它编程使用的是Arduino C,这种C语言类似于标准C,但又针对Arduino系统做了大量的简化工作,提供了许多函数和库文件,但是通用性不高。Arduino虽然是已开源的飞行控制系统,命令是依靠无线遥控器发出的,这会额外增加遥控器的费用。另外Arduino通信协议未知,这并不利于增添代码后的调试工作。
(3)Roll:与俯仰控制相似,横滚就是绕着X轴方向旋转,1,4号电机转述同等减小,2,3机转述同等增加,产生右倾;反之,会左倾。
(4)Yaw:同理可得,就是飞行器绕着Z轴旋转。当1、3号电机转述同等减小,其反扭矩和升力减小,并且2、4号电机转述同等增加,其反扭矩和升力增加,由于反扭矩出现不平衡,会使飞行器向右转,反之,会使飞行器向左转。
表4.1电气特性表-LM1117
符号
参数
测试条件
最小值
典型值
最大值
单位
VREF
基准
电压
LM1117-ADJ
IOUT=10mA, VIN-VOUT=2V, TJ=25˚C
10mA≤IOUT≤800mA,
1.4V≤VIN-VOUT≤10V
1.238
1.225