杭州中考数学历年压轴题集锦(2014-2021)
中考数学压轴题集锦
![中考数学压轴题集锦](https://img.taocdn.com/s3/m/7337d7b2783e0912a2162af1.png)
第 10 题图 1
第 10 题图 2
第 10 题图 3
(3)因为△PAB 的面积为 10,AB=5,所以 AB 边上的高为 4,即点 P 到 AB 的距离
PH 为 4.
等腰三角形 PAB 分三种情况:
①如图 3,当 PA=PB 时,P 是抛物线的顶点,由于抛物线开口向上,此时 P (5 , 3) . 2
所以 3a=-3.解得 a=-1. 所以抛物线的解析式为 y=-x2+4x-3. (2)由 y=-x2+4x-3=-(x-2)2+1,得 D(0,-3),C(2, 1). 如图 1,由 B(3, 0)、D(0,-3)、C(2, 1),可知∠CBO=45°,∠DBO=45°.
所以∠CBD=90°,且 BC 2 1 . BD 3 2 3
沿 AC 向点 C 运动,运动时间为 t(t>0). (1)当点 F 是 AB 的三等分点时,求出对应的时间 t; (2)当点 F 在 AB 边上时,连结 FN 、FM: ①是否存在 t 值,使 FN=MN?若存在,请求出此时 t 的值;若不存在,请说明理由; ②是否存在 t 值,使 FN=FM?若存在,请求出此时 t 的值;若不存在,请说明理由.
NM BC
(x 1)(x 3)
解得 x 8 >1,不符合题意(如图 3). 3
③当 NA BC 1 ,且 M 在 A 右侧时, x 1 1 .
NM BD 3
(x 1)(x 3) 3
解得 x=6.此时 M(6,-12)(如图 4).
④当 BC 1 ,且 M 在 A 左侧时, 1 x 1 .
第 4 题图 1
第 4 题图 2
第 4 题图 3
因此△AMN 与△BCD 都是直角三角形,它们相似分 4 种情况讨论:
浙江省杭州市中考数学压轴题总复习含答案解析
![浙江省杭州市中考数学压轴题总复习含答案解析](https://img.taocdn.com/s3/m/afb6f60db84ae45c3a358c06.png)
2021年浙江省杭州市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。
从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。
预计2021年中考数学压轴题依然主要考查这些知识点。
1.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4√3,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG 交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上2.已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=45,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.3.在平面直角坐标系xOy中,过点N(6,﹣1)的两条直线l1,l2,与x轴正半轴分别交于M、B两点,与y轴分别交于点D、A两点,已知D点坐标为(0,1),A在y轴负半轴,以AN为直径画⊙P,与y轴的另一个交点为F.(1)求M点坐标;(2)如图1,若⊙P经过点M.①判断⊙P与x轴的位置关系,并说明理由;②求弦AF的长;(3)如图2,若⊙P与直线l1的另一个交点E在线段DM上,求√10NE+AF的值.4.如图①,在△ABC中,∠ABC=90°,AB=4,BC=3.点P从点A出发,沿折线AB ﹣BC以每秒5个单位长度的速度向点C运动,同时点D从点C出发,沿CA以每秒2个单位长度的速度向点A运动,点P到达点C时,点P、D同时停止运动.当点P不与点A、C重合时,作点P关于直线AC的对称点Q,连结PQ交AC于点E,连结DP、DQ.设点P的运动时间为t秒.(1)当点P与点B重合时,求t的值.(2)用含t的代数式表示线段CE的长.(3)当△PDQ为锐角三角形时,求t的取值范围.(4)如图②,取PD的中点M,连结QM.当直线QM与△ABC的一条直角边平行时,直接写出t的值.。
中考数学压轴题100题精选及答案(全)
![中考数学压轴题100题精选及答案(全)](https://img.taocdn.com/s3/m/a25cadac83d049649b665873.png)
(3)第(2)问中的一次函数的图象与 轴、 轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积 与四边形OABD的面积S满足: ?若存在,求点E的坐标;
若不存在,请说明理由.
【017】如图,已知抛物线 经过 , 两点,顶点为 .
【012】如图,在平面直角坐标系 中,半径为1的圆的圆心 在坐标原点,且与两坐标轴分别交于 四点.抛物线 与 轴交于点 ,与直线 交于点 ,且 分别与圆 相切于点 和点 .
(1)求抛物线的解析式;
(2)抛物线的对称轴交 轴于点 ,连结 ,并延长 交圆 于 ,求 的长.
(3)过点 作圆 的切线交 的延长线于点 ,判断点 是否在抛物线上,说明理由.
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
请直接写出相应的t值。
【004】如图,已知直线 与直线 相交于点 分别交 轴于 两点.矩形 的顶点 分别在直线 上,顶点 都在 轴上,且点 与点 重合.
浙江中考数学压轴题(DOC)
![浙江中考数学压轴题(DOC)](https://img.taocdn.com/s3/m/94b8328bc850ad02de8041df.png)
浙江中考数学压轴题、选择题1 •如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在点A处,已知OA二3, AB =1,则点几的坐标是A.(23) B . ((, 3)222c / 3/ 1C.(—, )D.(—, )2222i x +3y=4 —a2.已知关于x, y的方程组,其中-3W a w,l给出下列结论:—y=3a[x=5①是方程组的解;y= -1②当a=- 2时,x, y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4 - a的解;④若x Wl,贝U K y w.4其中正确的是【】A.①② B .②③C.②③④ D .①③④3.如图,已知点A (4, 0), O为坐标原点,P是线段0A上任意一点(不含端点O, A), 过P、0两点的二次函数y i和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线0B与AC相交于点 D .当0D=AD=3时,这两个二次函数的最大值之和等于【】A. V5B. -7534.如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A T B~ D^ SA的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是【】1中棋子围城三角形,其棵数 3, 6, 9, 12, •-6.勾股定理是几何中的一个重要定理•在我国古算书《周髀算经》中就有若勾三,股四,则弦五”的记载•如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系 验证勾股定理.图 2是由图1放入矩形内得到的,/ BAC=90 , AB=3 , AC=4,点D , E ,对应的函数值y 1, y 2, y 3的大小关系正确的是【A . y 1> y 2 > y 3B . y 1< y 2< y 3C . y 2> y 3 >y 18. 如图,直角三角形纸片 ABC 中,AB=3 , AC=4 , D 为斜边BC中点,第1次将纸片折叠, 使点A 与点D 重合,折痕与 AD 交与点P 1 ;设P 1D 的中点为D 1,第2次将纸片折叠,使 点A 与点D 1重合,折痕与 AD 交于点P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点称为三角形数•类似地,图 2中的4, 8,12, 16,…称为正方形数•下列数中既是三角形数又是正方形数的是【 Q ❷ O • • ••• 12A . 2010B . 2012C . 2014D . 20165.小明用棋子摆放图形来研究数的规律.F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为【】"27.已知二次函数y = - X- 7X+x 2, X 3,且 0v x 1<X 2v X 3,贝yD . y 2< y 3< y 1若自变量x 分别取x 1,A . 90B .211.如图,已知抛物线 y 1=-2x +2,直线y 2=2x+2,当x 任取一值时,x 对应的函数值分别 为 y i 、y 2. 若y i ^y,取y i 、y 2中的较小值记为 M ;若y i =y 2,记M=y i =y 2.例如:当x=1时,y 仁0, y 2=4, y i v y 2,此时M=0 .下列判断: ①当x > 0时,y i >y 2; ②当x v 0时,x 值越大,M 值越小;A 与点D 2重合,折痕与AD 交于点 P 3;…;设P n -l D n -2的中点为 D n - 1, n 次将纸片折叠,使点A 与点D n -1重合,折痕与AD 交于点P n (n >2),则AP 6的长为【C .9.如图,菱形 ABCD 中,AB=2 , / A=120 ° 点 P , Q , K 分别为线段 BC , CD , BD 上的 任意一点,则 PK+QK 的最小值为【B . .. 310.如图,在△ ABC 中,/ C=90° , M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点 B.已知P , Q 两点同时出发, 并同时到达终点•连结MP , MQ , PQ.在整个运动过程中,△ MPQ 的面积大小变化情况是A. 一直增大36 5 29】214D .刁】D .C . 2D.先增大后减小B. 一直减小13.如图,正方形 ABCD 的边长为4, 的路径匀速移动,设 P 点经过的路径长为 与x 的函数关系的是()15. (2013?湖州)如图,在10X10的网格中,每个小方格都是边长为 1的小正方形,每个小正方形的顶点称为格点. 若抛物线经过图中的三个格点, 则以这三个格点为顶点的三角形称为抛物线的 内接格点三角形”.以0为坐标原点建立如图所示的平面直角坐标系,若抛物 线与网格对角线 0B 的两个交点之间的距离为匚,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点, 则满足上述条件且对称轴平行于y 轴的抛物线条数是()积分别为S ABCD 和S BFDE ,现给出下列命题: ①若S ABCDS B FDE23,则 tan . EZFA.①是真命题, ②是真命题 ■-./3 3②若 DE 2 二 BD EF ,则 DF=2AD 则()B.①是真命题,②是假命题C.①是假命题, ②是真命题D.①是假命题,②是假命题A .在同一条直线上B . 在同一条抛物线上C .在同一反比例函数图象上D. 是同一个正方形的四个顶点14. (2013?舟山)对于点 A (X 1, y i ), B (X 2, y 2),定义一种运算:A ® B= (X 1+X 2)+ ( y i +y 2)-例 如,D ,A (- 5, 4),B (2,- 3), A ® B= (- 5+2) + (4- 3) =- 2.若互不重合的四点C , E , F ,满足 C ® D=D ® E=E ® F=F ® D ,贝U C , D , E , F 四点( ) P 为正方形边上一动点,沿 A D C B A x , △ APD 的面积是y ,则下列图象能大致反映 yx8 - 4Ox481216 XBC PA . 16B . 15C . 14c二、填空题1•根据下列表格的对应值:OA X判断方程ax 2+bx+c = 0 (0, a , b , c 为常数)一个解 x 的范围是 ______________________ 。
中考数学压轴题十大类型经典题目
![中考数学压轴题十大类型经典题目](https://img.taocdn.com/s3/m/a28c3a226fdb6f1aff00bed5b9f3f90f76c64dbf.png)
中考数学压轴题十大类型目录第一讲 中考压轴题十大类型之动点问题 1 第二讲 中考压轴题十大类型之函数类问题 7 第三讲 中考压轴题十大类型之面积问题 13 第四讲 中考压轴题十大类型之三角形存在性问题 19 第五讲 中考压轴题十大类型之四边形存在性问题 25 第六讲 中考压轴题十大类型之线段之间的关系 31 第七讲 中考压轴题十大类型之定值问题 38 第八讲 中考压轴题十大类型之几何三大变换问题 44 第九讲 中考压轴题十大类型之实践操作、问题探究 50 第十讲 中考压轴题十大类型之圆 56 第十一讲 中考压轴题综合训练一 62 第十二讲 中考压轴题综合训练二 68第一讲 中考压轴题十大类型之动点问题1.2011吉林如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm,BC =4cm,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s,△PAQ 的面积为y cm 2,这里规定:线段是面积为0的三角形解答下列问题:1 当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2. 2当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.3当动点P 在线段BC 上运动时,求出154 y S 梯形ABCD 时x 的值. 4直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.D C BA 2.2007河北如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒t >0.1当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;2当点P 运动到AD 上时,t 为何值能使PQ ∥DC3设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;,写出t 的取值范围;若不能,请说明理由. 备用图3.2008河北如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒0t >.1D F ,两点间的距离是 ;2射线QK 能否把四边形CDEF 分成面积相等的两部分若能,求出t 的值.若不能,说明理由;3当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; 4连结PG ,当PG AB ∥时,请直接..写出t 的值. 4.2011山西太原如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为8,0,点B 的坐标为11,4,动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t秒0t>,△MPQ的面积为S.1点C的坐标为________,直线l的解析式为__________.2试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.3试求题2中当t为何值时,S的值最大,并求出S的最大值.4随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形请直接写出t的值.5.2011四川重庆如图,矩形ABCD中,AB=6,BC=2错误!,点O是AB的中点,点P在AB的延长线上,且BP=3个单位长度的速度沿OA匀速运动,到达A点后,F从P点出发,以每秒1个单位长度的速度沿射线当两点相遇时停止运动.在点E、F的运动过程中,以和矩形ABCD在射线PA的同侧,设运动的时间为t秒1当等边△EFG的边FG恰好经过点C时,求运动时间t的值;2在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;3设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形若存在,求出对应的t的值;若不存在,请说明理由.备用图1备用图2三、测试提高1.2011山东烟台如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为41633y x=-+,点A、D的坐标分别为-4,0,0,4.动点P自A点出发,在AB上匀速运动.动点Q自点B出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t秒时,△OPQ的面积为S不能构成△OPQ的动点除外.1求出点B、C的坐标;2求S随t变化的函数关系式;3当t为何值时S有最大值并求出最大值.备用图第二讲中考压轴题十大类型之函数类问题12011浙江温州如图,在平面直角坐标系中,O是坐标原点,点A的坐标为-4,0,点B的坐标为0,bb>0.P是直线AB上的一个动点,作PC⊥x轴,垂足为C,记点P 关于y轴的对称点为P′ 点P′不在y轴上,连结P P′,P′A,P′C,设点P的横坐标为a.(1) 当b =3时,①直线AB 的解析式;②若点P ′的坐标是-1,m ,求m 的值;2若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值; 3是否同时存在a ,b ,使△P ′CA 为等腰直角三角形若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.2. 2010武汉如图,抛物线212y ax ax b=-+经过A -1,0,C 2,32两点,与x 轴交于另一点B . 1求此抛物线的解析式; 2若抛物线的顶点为M ,点P 为线段OB 上一动点 不与点B 重合,点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ=22y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围; 3在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与2中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形 若能,求m ,n 之间的数量关系;若不能,请说明理由.备用图3. 2011江苏镇江在平面直角坐标系xOy 中,直线1l 过点A 1,0且与y 轴平行,直线2l 过点B 0,2且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数k y x=k >0的图象过点E 且与直线1l 相交于点F . 1若点E 与点P 重合,求k 的值; 2连接OE 、OF 、EF .若k >2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标; 3是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等若存在,求E 点坐标;若不存在,请说明理由.4. 2010浙江舟山△ABC 中,∠A =∠B =30°,AB=ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O 如图,△ABC 可以绕点O 作任意角度的旋转.1当点B 在第一象限,,求点B 的横坐标; x y P'DO C B A P2如果抛物线2y ax bx c =++a ≠0的对称轴经过点C ,请你探究:①当a =,12b =-,c =,A ,B 两点是否都在这条抛物线上并说明理由; ②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上若存在,直接写出m 的值;若不存在,请说明理由.5.12若点N 为线段BMQ .当点N 在线段BM 上运动时点N 不与点B ,点M 面积为S ,求S 与t 之间的函数关系式及自变量3,求出所有符合条件的点P 4将△OAC 补成矩形,使得△,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标不需要计算过程. 三、测试提高1. 2011山东东营如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为30-,,0,1,点D是线段BC 上的动点与端点B 、C 不重合,过点D 作直线12y x b =+交折线OAB 于点E . 1记△ODE 的面积为S .求S 与b 的函数关系式;2当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. 第三讲 中考压轴题十大类型之面积问题1. 2011辽宁大连如图,抛物线y =ax 2+bx +c 经过A -1,0、B 3,0、C 0,3三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB .1求该抛物线的解析式;2抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;3在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.2. 2011湖北十堰如图,和点 B ,与y 轴交于点C 0,-3.1求抛物线的解析式;2如图1,己知点H 0,-1.问在抛物线上是否存在点G 点G 在y 轴的左侧,使得S △GHC =S △GHA 若存在,求出点G 的坐标,若不存在,请说明理由:3如图2,抛物线上点D 在x 轴上的正投影为点E ﹣2,0,F 是OC 的中点,连接DF ,P 为线段BD 上的一点,若∠EPF =∠BDF ,求线段PE 的长.3. 2010天津在平面直角坐标系中,已知抛物线2y x bx =-+c +与x 轴交于点A 、B 点A 在点B 的左侧,与y 轴的正半轴交于点C ,顶点为E . Ⅰ若2b =,3c =,求此时抛物线顶点E 的坐标;Ⅱ将Ⅰ中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;Ⅲ将Ⅰ中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE =2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式.4. 2011山东聊城如图,在矩形ABCD 中,AB =12cm,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s,点F 的速度为4cm/s,当点F 追上点G 即点F 与点G 重合时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2.1当t =1s 时,S 的值是多少2写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;3若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似请说明理由.5. 2011江苏淮安如图,在Rt△ABC中,∠C =90°,AC =8,BC =6,点P 在AB 上,AP =2,点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F 运动的时间为t 秒t >0,正方形EFGH 与△ABC 重叠部分面积为S .1当t =1时,正方形EFGH 的边长是 .当t =3时,正方形EFGH 的边长是 . 2当0<t ≤2时,求S 与t 的函数关系式;3直接答出:在整个运动过程中,当t 为何值时,S 最大最大面积是多少A EB FC GDA 备用图三、测试提高1. 2010山东东营如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点D 不与A ,B 重合,且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .1当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;2设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.第四讲 中考压轴题十大类型之 三角形存在性问题板块一、等腰三角形存在性1. 2011江苏盐城如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .1求点A 和点B 的坐标;2过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形若存在,求t 的值;若不存在,请说明理由.备用图2. 2009湖北黄冈如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t 单位:秒B AD E F G C B 备用图1 A C B 备用图2 A C1求A ,B ,C 三点的坐标和抛物线的顶点的坐标;2当t 为何值时,四边形PQCA 为平行四边形请写出计算过程;3当902t <<时,△PQF 的面积是否总为定值若是,求出此定值,若不是,请说明理由;4当t 为何值时,△PQF 为等腰三角形请写出解答过程.板块二、直角三角形3. 2009四川眉山如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 1,0. 1求该抛物线的解析式;2动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.4. 2010广东中山如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动点M 可运动到DA 的延长线上,当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:1说明△FMN ∽△QWP ;2设04x ≤≤即M 从D 到A 运动的时间段.试问x 为何值时,△PWQ 为直角三角形当x 在何范围时,△PQW 不为直角三角形3问当x 为何值时,线段MN 最短求此时MN 的值.板块三、相似三角形存在性 5. 2011湖北天门在平面直角坐标系中,抛物线2y ax bx =+ 3+与x 轴的两个交点分别为-3,0、B 1,0,过顶点C 作CH ⊥x 轴于点. 1直接填写:a = ,b = ,顶点C 的坐标为 ;2在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形若存在,求出点D 的坐标;若不存在,说明理由; 3若点P 为x 轴上方的抛物线上一动点点P 与顶点C 不重合,PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标. W QPNM F D CB A备用图三、测试提高1. 2009广西钦州如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为-1,0,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.1填空:点C 的坐标是_____,b =_____,c =_____;2求线段QH 的长用含t 的式子表示;3依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似若存在,求出所有t 的值;若不存在,说明理由.第五讲 中考压轴题十大类型之四边形存在性问题1. 2009黑龙江齐齐哈尔直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.1直接写出A 、B 两点的坐标;2设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式;3当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2. 2010河南在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.1求抛物线的解析式;2若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.3若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3. 2011黑龙江鸡西已知直线y =+与x 轴、y 轴分别交于A 、B 两点,∠ABC =60°,BC 与x 轴交于点C .1试确定直线BC 的解析式;2若动点P 从A 点出发沿AC 向点C 运动不与A 、C 重合,同时动点Q 从C 点出发沿CBA 向点A 运动不与C 、A 重合,动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围;3在2的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形若存在,请直接写出N 点的坐标;若不存在,请说明理由.4. 2007河南如图,对称轴为直线x =27的抛物线经过点A 6,0和B0,4.1求抛物线解析式及顶点坐标;2设点Ex ,y 是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;3①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形②是否存在点E ,使四边形OEAF 为正方形若存在,求出点E 的坐标;若不存在,请说明理由.5. 2010黑龙江大兴安岭如图,在平面直角坐标系中,函数2y x =+12的图象分别交x轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M,且点M 为线段OB 的中点. 1求直线AM 的解析式;2试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;3若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形若存在,请直接写出点H 的坐标;若不存在,请说明理由.三、测试提高 1. 2009辽宁抚顺已知:如图所示2=++y ax x c a ≠0与x C .1求出此抛物线的解析式,2在抛物线上有一点D ,D 的坐标,并求出直线AD 的解析式;3在2中的直线AD P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.第六讲 中考压轴题十大类型之线段之间的关系1. 2010天津在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.Ⅰ若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;Ⅱ若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.2. 2011四川广安四边形ABCD 是直角梯形,BC ∥AD ,∠=90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A 1 0-,,B 1 2-,,D 3,0.连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .1求抛物线的解析式;2抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;3设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大并求出最大值.3. 2011四川眉山如图,在直角坐标系中,已知点A 0,1,B 4-,4,将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B . 1 求抛物线的解析式和点C 的坐标;2 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+;3 在2的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.4. 2011福建福州已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x轴交于A 、B 两点B 在A 点右侧,点H 、B 关于直线3:33l y x =+ 1求A 、B 两点坐标,并证明点A 在直线l 上; 2求二次函数解析式;3过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.5. 2009湖南郴州 如图1,已知正比例函数和反比例函数的图象都经过点M -2,-1,且y B O D C A xEyB O DC A x温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与xP -1,-2为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .1写出正比例函数和反比例函数的关系式;2当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等如果存在,请求出点Q 的坐标,如果不存在,请说明理由;3如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值. 图1 图26. 2010江苏苏州如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为3,0、0,4. 1求抛物线的解析式;2设()M m n ,M B O A 、、、,求点M 的坐标; 3在2的条件下,试问:22228PA PB PM ++>是否总成立请说明理由.三、测试提高1. 2009浙江舟山如图,已知点A -4,8和点B 2,n 在抛物线2=y ax 上.1求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;2平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C -2,0和点D -4,0是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.第七讲 中考压轴题十大类型之定值问题1. 2011天津已知抛物线1C :21112y x x =-+,点F 1,1. Ⅰ求抛物线1C 的顶点坐标;Ⅱ①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P P P x y ,01P x <<,连接PF ,并延长交抛物线1C 于点Q Q Q x y ,,试判断112PF QF+=是否成立请说明理由; Ⅲ将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2. 2009湖南株洲如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x轴上,点B 坐标为3,m 0m >,线段AB 与y 轴相交于点D ,以P 1,0为顶点的抛物线过点B 、D .1求点A 的坐标用m 表示; 2求抛物线的解析式;3设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.3. 2008山东济南已知:抛物线2y ax bx c =++a ≠0,顶点C1,3-,与x 轴交于A 、B 两点,(10)A -,. 1求这条抛物线的解析式; 2如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点P 与A 、B 两点不重合,过点P 作断PM PNBE AD+是否为PM ⊥AE 于M ,PN ⊥DB 于N ,请判定值 若是,请求出此定值;若不是,请说明理由;3在2的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE相交于点F 、GF 与A 、E 不重合,G 与E 、B 不重合,请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.4. 2011湖南株洲孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题: 1若测得OA OB ==如图1,求a 的值;2对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; 3对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. 2009湖北武汉如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .1求抛物线的解析式;2已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; 3在2的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.三、测试提高1. 2009湖南湘西在直角坐标系xOy与x 轴交于两点A 、B ,与y 的坐标是3,0.将直线y kx =沿y 轴向上平移3(1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积;(4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.、第八讲 中考压轴题十大类型之 几何三大变换问题1. 2009山西太原问题解决:如图1,将正方形纸片ABCD 折叠,使点B 落在CD 边上一方法指导:图1 图2 图3 图4αθ4HB 2B 3A 3A 222B 1A 1A 011点E 不与点C ,D 重合,压平后得到折痕MN .当12CE CD =时,求AMBN 的值. 类比归纳:在图1中,若13CE CD =,则AMBN 的值等于 ;若14CE CD =,则AMBN的值等于 ;若1CE CD n=n 为整数,则AMBN 的值等于 .用含n 的式子表示 联系拓广: 如图2,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E 不与点C D ,重合,压平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AMBN 的值等于 .用含m n ,的式子表示 2. 2011陕西如图①,在矩形ABCD 中,将矩形折叠,使B落在边AD 含端点上,落点记为E ,这时折痕与边BC 或边CD 含端点交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.1由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形;2如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF ”的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;3如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”若存在,说明理由,并求出此时点E 的坐标;若不存在,为什么图① 图② 图③3. 2010江西南昌课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题. 实验与论证设旋转角∠A 1A 0B 1=αα<∠A 1A 0A 2,θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示. 1用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;图1-图4中,连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线0H 垂直且被它平分的线段若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想图2NA B CD E F M图1A BCDE FM N设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合其中,A 1与B 1重合,现将正n 边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转αn1800<<α. 3设θn 与上述“θ3,θ4,…”的意义一样,请直接写出θn 的度数;4试猜想在n 边形且不添加其他辅助线的情形下,是否存在与直线A 0H 垂直且被它平分的线段若存在,请将这条线段用相应的顶点字母表示出来不要求证明;若不存在,请说明理由.4. 2009山东德州已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC于F ,连接DF ,G 为DF 中点,连接EG ,CG . 1求证:EG =CG ;2将图①中△BEF 绕B 点逆时针旋转45o,如图②所示,取DF 中点G ,连接EG ,CG .问1中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由. 3将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问1中的结论是否仍然成立通过观察你还能得出什么结论均不要求证明5. 2010江苏苏州刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90°,B ∠=306cm °,;A BC ∠==图②中,90D =°,45E ∠=°, 4cm DE =.图③是刘卫同学所做的一个实验:他将DEF △的直角边DE 与△ABC 的斜边AC 重合在一起,并将DEF △沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上移动开始时点与点重合. 1在DEF △沿AC 方向移动的过程中,刘卫同学发现:F C 、两点间的距离逐渐_________.填“不变”、“变大”或“变小” 2刘卫同学经过进一步地研究,编制了如下问题:问题①:当DEF △移动至什么位置,即AD 的长为多少时,F C 、的连线与AB 平行 问题②:当DEF △移动至什么位置,即AD 的长为多少时,以线段AD FC BC 、、的长度为三边长的三角形是直角三角形问题③:在DEF △的移动过程中,是否存在某个位置,使得15FCD ∠=°?如果存在,求出AD 的长度;如果不存在,请说明理由. 请你分别完成上述三个问题的解答过程.三、测试提高1. 2009湖南常德如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:F BA D E G图①F A D G图② F A E 图③ ①图②F ED AB图③D。
2021年浙江省杭州市中考数学压轴题总复习(附答案解析)
![2021年浙江省杭州市中考数学压轴题总复习(附答案解析)](https://img.taocdn.com/s3/m/04ae25e03b3567ec112d8aa4.png)
2021年浙江省杭州市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。
从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。
预计2021年中考数学压轴题依然主要考查这些知识点。
1.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB于点E,DF∥AB交边AC于点F.
(1)如图1,试判断四边形AEDF的形状,并说明理由;
(2)如图2,若AD=4√3,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG 交AD于点M,连接FH交EG于点N.
(i)求EN•EG的值;
(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上
2.已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=4
5,点E在对角线AC上(不
与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;
(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;
(3)当△DFC是等腰三角形时,求AD的长.。
2024杭州中考数学压轴题
![2024杭州中考数学压轴题](https://img.taocdn.com/s3/m/f2271c819a89680203d8ce2f0066f5335b816775.png)
中考数学试卷一、单项选择题(共12分)1.如图图形中是中心对称图形的为()A.B. C. D.2.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对3.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√334.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=35.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。
A.B.C.D.6.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d二、填空题(共24分)7.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。
8.已知方程x2+mx﹣6=0的一个根为﹣2,则另一个根是。
9.如图,正方形ABCD的面积为4,点E,F,G,H分别为边AB,BC,CD,AD的中点,则四边形EFGH的面积为____.三、解答题(共20分)10.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。
(1)求证:△ADE∽△MAB;(2)求DE的长。
11.已知△ABC和△DEF中,有ABDE =BCEF=CAFD=23,且△DEF和△ABC的周长之差为15厘米,求△ABC和△DEF的周长。
16.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件。
(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润。
12.如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长.13.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30∘方向,同时测得岛礁P正东方向上的避风港M在北偏东60∘方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达多少?(结果保留根号)14.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E。
备战2023年杭州中考数学真题分类汇编(5年中考1年模拟)14一次函数和反比例函数综合题含详解
![备战2023年杭州中考数学真题分类汇编(5年中考1年模拟)14一次函数和反比例函数综合题含详解](https://img.taocdn.com/s3/m/24eba51f2bf90242a8956bec0975f46526d3a749.png)
专题14一次函数和反比例函数综合题1.(2022•杭州)设函数11k y x=,函数221(y k x b k =+,2k ,b 是常数,10k ≠,20)k ≠.(1)若函数1y 和函数2y 的图象交于点(1,)A m ,点(3,1)B ,①求函数1y ,2y 的表达式;②当23x <<时,比较1y 与2y 的大小(直接写出结果).(2)若点(2,)C n 在函数1y 的图象上,点C 先向下平移2个单位,再向左平移4个单位,得点D ,点D 恰好落在函数1y 的图象上,求n 的值.2.(2021•杭州)在直角坐标系中,设函数111(k y k x =是常数,10k >,0)x >与函数222(y k x k =是常数,20)k ≠的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为(1,2)-,①求1k ,2k 的值;②当12y y <时,直接写出x 的取值范围;(2)若点B 在函数333(k y k x=是常数,30)k ≠的图象上,求13k k +的值.3.(2020•杭州)设函数1k y x =,2(0)k y k x=->.(1)当23x时,函数1y 的最大值是a ,函数2y 的最小值是4a -,求a 和k 的值.(2)设0m ≠,且1m ≠-,当x m =时,1y p =;当1x m =+时,1y q =.圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?4.(2018•杭州)设一次函数(y kx b k =+,b 是常数,0)k ≠的图象过(1,3)A ,(1,1)B --两点.(1)求该一次函数的表达式;(2)若点2(22,)a a +在该一次函数图象上,求a 的值.(3)已知点1(C x ,1)y 和点2(D x ,2)y 在该一次函数图象上,设1212()()m x x y y =--,判断反比例函数1m y x+=的图象所在的象限,说明理由.5.(2022•西湖区一模)已知函数12y x m =+,2(y mx m m =-+为常数,0)m ≠.(1)若点(1,1)-在1y 的图象上,①求m 的值.②求函数1y 与2y 的交点坐标.(2)当0m >,且210y y <<时,求自变量x 的取值范围.6.(2022•钱塘区一模)已知点(,)A m n 在一次函数12(y kx k k =+是常数,0)k ≠的图象上,也在反比例函数23y x=的图象上.(1)当3n =时,求m 和k 的值.(2)当4k =-时,求点A 的坐标,并直接写出当12y y <时,自变量x 的取值范围.7.(2022•淳安县一模)如图,反比例函数3y x=的图象和一次函数y kx b =+的图象交于A 、B 两点,点A 的横坐标和点B 的纵坐标都是1.(1)在第一象限内,写出关于x 的不等式3kx b x + 的解集是.(2)求一次函数的表达式.(3)若点(,)P m n 在反比例函数图象上,且关于y 轴对称的点Q 恰好落在一次函数的图象上,求22m n +的值.8.(2022•富阳区一模)已知一次函数(3)(0)y k x k =-≠.(1)求证:点(3,0)在该函数图象上.(2)若该函数图象向上平移2个单位后过点(4,2)-,求k 的值.(3)若0k <,点1(A x ,1)y ,2(B x ,2)y 在函数图象上,且12y y <,判断120x x -<是否成立?请说明理由.9.(2022•临安区一模)在平面直角坐标系中,设一次函数1(y mx n m =+,n 为常数,且0m ≠,)m n ≠-与反比例函数2m n y x+=的图象交于点(1,6)A .(1)若5n m =;①求m ,n 的值;②当16y 时,求2y 的取值范围;(2)当点(4,2)B 在反比例函数3mn y x=图象上,求22m n +的值.10.(2022•钱塘区二模)如图(含备用图),在直角坐标系中,已知直线3y kx =+与x 轴相交于点(2,0)A ,与y 轴交于点B .(1)求k 的值及AOB ∆的面积;(2)点C 在x 轴上,若ABC ∆是以AB 为腰的等腰三角形,直接写出点C 的坐标;(3)点(3,0)M 在x 轴上,若点P 是直线AB 上的一个动点,当PBM ∆的面积与AOB ∆的面积相等时,求点P 的坐标.11.(2022•西湖区校级一模)已知一次函数(12)1y m x m =-++;(1)若一次函数图象经过点(2,0)P ,求m 的值;(2)若一次函数的图象经过第一、二、三象限;①求m 的取值范围;②若点1(1,)M a y -,2(,)N a y ,在该一次函数的图象上,比较1y 和2y 大小.12.(2022•萧山区校级一模)已知:一次函数32y x =-的图象与某反比例函数的图象的一个公共点的横坐标为1.(1)求该反比例函数的解析式;(2)将一次函数32y x =-的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标.13.(2022•萧山区一模)已知一次函数(0)y kx b k =+≠与反比例函数(0)m y m x=≠的图象交于(,2)A a ,(1,3)B .(1)求这两个函数的表达式;(2)若点1(,)P h y 在一次函数的图象上,点2(,)Q h y 在反比例函数的图象上,且12y y >,求h 的取值范围.14.(2022•余杭区一模)如图,已知一次函数1(0)y kx b k =+≠和反比例函数2(0)m y m x=≠的图象相交于点(1,2)A ,(2,)B a -.(1)求一次函数和反比例函数的表达式.(2)将直线1y 向上平移3个单位后得到直线3y ,当321y y y >>时,求x 的取值范围.15.(2022•富阳区二模)已知反比例函数(0)k y k x=≠的图象经过点(2,3)A .(1)求这个反比例函数的表达式:(2)判断点(1,6)B -是否在这个函数图象上,并说明你的理由;(3)点1(C x ,1)y ,2(D x ,2)y 是图象上的两点,若12x x <,比较1y 和2y 的大小,并说明你的理由.16.(2022•西湖区校级模拟)平面直角坐标系xOy 中,双曲线(0)m y m x=≠经过点(3,2)A .(1)求m 的值;(2)该坐标系内,还存在直线1(0)y kx k =-≠.①当直线经过点A ,求k 的值;②若当3x >时,总有1m kx x->,请直接写出k 的取值范围.17.(2022•富阳区一模)如图,一次函数y kx b =+的图象与反比例函数m y x =的图象交于(4,)A n -,(2,4)B -两点.(1)求反比例函数和一次函数的解析式;(2)设点1(M x ,1)y 、2(N x ,2)y 是反比例函数m y x=图象上的两个点,若12x x <,试比较1y 与2y 的大小;(3)求AOB ∆的面积.18.(2022•西湖区校级二模)已知点(2,)A a -,(1,)B b -,(3,)C c 都在反比例函数(0)k y k x=≠的图象上.(1)若1b a =+,求c 的值.(2)若a b >,试比较b ,c 的大小关系,并说明理由.19.(2022•西湖区校级模拟)设一次函数131(y ax a a =-+是常数,0)a ≠和反比例函数2(k y k x=是常数,0)k ≠.(1)无论a 取何值,该一次函数图象始终过一个定点,直接写出这个定点坐标;(2)若45x时,该一次函数的最大值是3,求a 的值;(3)若一次函数1y 与反比例函数2y 图象两个交点关于原点对称,请判断反比例函数2y 分布在哪些象限,并说明理由.20.(2022•下城区校级二模)已知一次函数(2)1(y a x a a =++-是常数,且0)a ≠.(1)若该一次函数的图象与x 轴相交于点(2,0),求一次函数的解析式.(2)当13x -时,函数有最大值5,求出此时a 的值.21.(2022•江干区校级模拟)一次函数1(y ax a a =-+为常数,且0)a <.(1)若点(2,3)-在一次函数1y ax a =-+的图象上,求a 的值;(2)当12x -时,函数有最大值2,求a 的值.22.(2022•拱墅区模拟)在直角坐标系中,设函数1(k y k x=常数)与函数2y x k =+的图象交于点A ,且点A 的横坐标为2.(1)求k 的值;(2)求出两个函数图象的交点坐标,并直接写出当12y y <时,x 的取值范围.23.(2022•拱墅区模拟)如图,在平面直角坐标系中,一次函数(0)y ax b a =+≠的图象分别交x 轴,y 轴于A ,B 两点,与反比例函数(0)k y k x=≠的图象交于C ,D 两点,DE x ⊥轴于点E ,点C 的坐标为(6,1)-,3DE =.(1)求反比例函数与一次函数的表达式;(2)若点P 在反比例函数图象上,且POA ∆的面积等于8,求P 点的坐标.专题14一次函数和反比例函数综合题1.(2022•杭州)设函数11k y x=,函数221(y k x b k =+,2k ,b 是常数,10k ≠,20)k ≠.(1)若函数1y 和函数2y 的图象交于点(1,)A m ,点(3,1)B ,①求函数1y ,2y 的表达式;②当23x <<时,比较1y 与2y 的大小(直接写出结果).(2)若点(2,)C n 在函数1y 的图象上,点C 先向下平移2个单位,再向左平移4个单位,得点D ,点D 恰好落在函数1y 的图象上,求n 的值.【答案】见解析【详解】(1)把点(3,1)B 代入11k y x=,131k =,解得:13k =,∴函数1y 的表达式为13y x=,把点(1,)A m 代入13y x=,解得3m =,把点(1,3)A ,点(3,1)B 代入22y k x b =+,22313k b k b =+⎧⎨=+⎩,解得214k b =-⎧⎨=⎩,∴函数2y 的表达式为24y x =-+;(2)如图,当23x <<时,12y y <;(3)由平移,可得点D 坐标为(2,2)n --,2(2)2n n ∴--=,解得:1n =,n ∴的值为1.2.(2021•杭州)在直角坐标系中,设函数111(k y k x=是常数,10k >,0)x >与函数222(y k x k =是常数,20)k ≠的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为(1,2)-,①求1k ,2k 的值;②当12y y <时,直接写出x 的取值范围;(2)若点B 在函数333(k y k x =是常数,30)k ≠的图象上,求13k k +的值.【答案】见解析【详解】(1)①由题意得,点A 的坐标是(1,2), 函数111(k y k x =是常数,10k >,0)x >与函数222(y k x k =是常数,20)k ≠的图象交于点A ,121k ∴=,22k =,12k ∴=,22k =;②由图象可知,当12y y <时,x 的取值范围是1x >;(2)设点A 的坐标是0(x ,)y ,则点B 的坐标是0(x -,)y ,10k x y ∴=⋅,30k x y =-⋅,130k k ∴+=.3.(2020•杭州)设函数1k y x =,2(0)k y k x=->.(1)当23x时,函数1y 的最大值是a ,函数2y 的最小值是4a -,求a 和k 的值.(2)设0m ≠,且1m ≠-,当x m =时,1y p =;当1x m =+时,1y q =.圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?【答案】见解析【详解】(1)0k > ,23x,1y ∴随x 的增大而减小,2y 随x 的增大而增大,∴当2x =时,1y 最大值为2k a =,①;当2x =时,2y 最小值为42k a -=-,②;由①,②得:2a =,4k =;(2)圆圆的说法不正确,理由如下:设0m m =,且010m -<<,则00m <,010m +>,∴当0x m =时,100k p y m ==<,当01x m =+时,1001k q y m ==>+,0p q ∴<<,∴圆圆的说法不正确.方法二、当x m =时,1k p y m ==,当1x m =+时,11k q y m ==+,1(1)k k k p q m m m m ∴-=-=++,∴当1m <-时,则0(1)k p q m m -=>+,p q ∴>,当10m -<<时,则0(1)k p q m m -=<+,p q ∴<,当0m >时,则0(1)k p q m m -=>+,p q ∴>,∴圆圆的说法不正确.4.(2018•杭州)设一次函数(y kx b k =+,b 是常数,0)k ≠的图象过(1,3)A ,(1,1)B --两点.(1)求该一次函数的表达式;(2)若点2(22,)a a +在该一次函数图象上,求a 的值.(3)已知点1(C x ,1)y 和点2(D x ,2)y 在该一次函数图象上,设1212()()m x x y y =--,判断反比例函数1m y x+=的图象所在的象限,说明理由.【答案】见解析【详解】(1) 一次函数(y kx b k =+,b 是常数,0)k ≠的图象过(1,3)A ,(1,1)B --两点,∴31k b k b +=⎧⎨-+=-⎩,得21k b =⎧⎨=⎩,即该一次函数的表达式是21y x =+;(2)点2(22,)a a +在该一次函数21y x =+的图象上,22(22)1a a ∴=++,解得,1a =-或5a =,即a 的值是1-或5;(3)反比例函数1m y x+=的图象在第一、三象限,理由: 点1(C x ,1)y 和点2(D x ,2)y 在该一次函数21y x =+的图象上,1212()()m x x y y =--,2121212()(2121)2()m x x x x x x ∴=-+--=-,21212()10m x x ∴+=-+>,∴反比例函数1m y x+=的图象在第一、三象限.5.(2022•西湖区一模)已知函数12y x m =+,2(y mx m m =-+为常数,0)m ≠.(1)若点(1,1)-在1y 的图象上,①求m 的值.②求函数1y 与2y 的交点坐标.(2)当0m >,且210y y <<时,求自变量x 的取值范围.【答案】见解析【详解】(1)① 点(1,1)-在12y x m =+的图象上,12m ∴=-+,3m ∴=;②12y x m =+ ,2(y mx m m =-+为常数,0)m ≠.∴两个函数与y 轴的交点都是(0,)m ,3m = ,∴函数1y 与2y 的交点坐标(0,3);(2)2(1)y mx m m x =-+=-- ,∴函数2(y mx m m =-+为常数,0)m ≠过点(1,0),即与x 轴的交点是(1,0), 两个函数与y 轴的交点都是(0,)m ,0m ∴>,且210y y <<时,求自变量x 的取值范围01x <<.6.(2022•钱塘区一模)已知点(,)A m n 在一次函数12(y kx k k =+是常数,0)k ≠的图象上,也在反比例函数23y x=的图象上.(1)当3n =时,求m 和k 的值.(2)当4k =-时,求点A 的坐标,并直接写出当12y y <时,自变量x 的取值范围.【答案】见解析【详解】(1)当3n =时,则点为(,3)A m ,点A 在反比例函数23y x =的图象上,33m ∴=,1m ∴=,(1,3)A ∴,代入12(y kx k k =+是常数,0)k ≠得,32k k =+,解得1k =;(2)当4k =-时,则148y x =--,解483y x y x =--⎧⎪⎨=⎪⎩,得126x y ⎧=-⎪⎨⎪=-⎩或322x y ⎧=-⎪⎨⎪=-⎩,∴点A 的坐标为1(2-,6)-或3(2-,2)-,观察图象,当12y y <时x 的取值范围是3122x -<<-或0x >.7.(2022•淳安县一模)如图,反比例函数3y x=的图象和一次函数y kx b =+的图象交于A 、B 两点,点A 的横坐标和点B 的纵坐标都是1.(1)在第一象限内,写出关于x 的不等式3kx b x + 的解集是.(2)求一次函数的表达式.(3)若点(,)P m n 在反比例函数图象上,且关于y 轴对称的点Q 恰好落在一次函数的图象上,求22m n +的值.【答案】见解析【详解】(1) 反比例函数3y x=的图象和一次函数的图象交于A 、B 两点,点A 的横坐标和点B 的纵坐标都是1,(1,3)A ∴,(3,1)B ,∴在第一象限内,不等式3kx b x + 的解集为13x ,故答案为:13x;(2)设一次函数的解析式为y kx b =+,经过(1,3)A ,(3,1)B 点,∴331k b k b +=⎧⎨+=⎩,解得14k b =-⎧⎨=⎩,∴一次函数的解析式为4y x =-+;(3) 点(,)P m n ,(,)Q m n ∴-,在反比例函数图象上,3mn ∴= 点Q 恰好落在一次函数的图象上,4n m ∴=+,4m n ∴-=-,222()216622m n m n mn ∴+=-+=+=.8.(2022•富阳区一模)已知一次函数(3)(0)y k x k =-≠.(1)求证:点(3,0)在该函数图象上.(2)若该函数图象向上平移2个单位后过点(4,2)-,求k 的值.(3)若0k <,点1(A x ,1)y ,2(B x ,2)y 在函数图象上,且12y y <,判断120x x -<是否成立?请说明理由.【答案】见解析【详解】(1)在(3)y k x =-中令3x =,得0y =,∴点(3,0)在(3)y k x =-图象上;(2)一次函数(3)y k x =-图象向上平移2个单位得(3)2y k x =-+,将(4,2)-代入得:2(43)2k -=-+,解得4k =-;(3)120x x -<不成立,理由如下:点1(A x ,1)y ,2(B x ,2)y 在(3)y k x =-图象上,11(3)y k x ∴=-,22(3)y k x =-,1212()y y k x x ∴-=-,12y y < ,120y y ∴-<,即12()0k x x -<,而0k <,120x x ∴->,120x x ∴-<不成立.9.(2022•临安区一模)在平面直角坐标系中,设一次函数1(y mx n m =+,n 为常数,且0m ≠,)m n ≠-与反比例函数2m n y x+=的图象交于点(1,6)A .(1)若5n m =;①求m ,n 的值;②当16y 时,求2y 的取值范围;(2)当点(4,2)B 在反比例函数3mn y x=图象上,求22m n +的值.【答案】见解析【详解】(1)①将(1,6)A 代入一次函数解析式,得6m n +=,5n m = ,1m ∴=,5n =;②根据题意,得56x +,解得1x,∴当1x 时,2y 的取值范围206y < ;(2)6m n += ,将点(4,2)B 代入反比例函数3mn y x=,得8mn =,根据222()2m n m mn n +=++,223616m n ∴=++,2220m n ∴+=.10.(2022•钱塘区二模)如图(含备用图),在直角坐标系中,已知直线3y kx =+与x 轴相交于点(2,0)A ,与y 轴交于点B .(1)求k 的值及AOB ∆的面积;(2)点C 在x 轴上,若ABC ∆是以AB 为腰的等腰三角形,直接写出点C 的坐标;(3)点(3,0)M 在x 轴上,若点P 是直线AB 上的一个动点,当PBM ∆的面积与AOB ∆的面积相等时,求点P 的坐标.【答案】见解析【详解】(1)将点(2,0)A 代入直线3y kx =+,得023k =+,解得32k =-,332y x ∴=-+.当0x =时,3y =.(0,3)B ∴,3OB =.当0y =时,3302x -+=,2x ∴=,(2,0)A ∴,2OA =,1123322AOB S OA OB ∆∴=⋅=⨯⨯=.(2)如图2,①当AB BC =时,点C 与点(2,0)A 关于y 轴对称,故(2,0)C -符合题意;②当AB AC =时,由(2,0)A ,(0,3)B 得到AB ==,由AC AC ='=得到2C ',0)、(2C '',0).综上所述,符合条件的点C 的坐标是(2,0)-或2+,0)或(2-0);(3)(3,0)M ,3OM ∴=,321AM ∴=-=.由(1)知,3AOB S ∆=,3PBM AOB S S ∆∆∴==;①当点P 在x 轴下方时,3131||1||32222PBM PAM ABM P P S S S AM y y ∆∆∆=+=+⋅⋅=+⨯⨯=,||3P y ∴=,点P 在x 轴下方,3P y ∴=-.当3y =-时,代入332y x =-+得,3332x -=-+,解得4x =.(4,3)P ∴-;②当点P 在x 轴上方时,1313||1||32222PBM APM ABM P P S S S AM y y ∆∆∆=-=⋅⋅-=⨯⨯-=,||9P y ∴=,点P 在x 轴上方,9P y ∴=.当9y =时,代入332y x =-+得,3932x =-+,解得4x =-.(4,9)P ∴-.11.(2022•西湖区校级一模)已知一次函数(12)1y m x m =-++;(1)若一次函数图象经过点(2,0)P ,求m 的值;(2)若一次函数的图象经过第一、二、三象限;①求m 的取值范围;②若点1(1,)M a y -,2(,)N a y ,在该一次函数的图象上,比较1y 和2y 大小.【答案】见解析【详解】(1) 一次函数(12)1y m x m =-++的图象经过点(2,0)P ,0(12)21m m ∴=-⨯++,解得,1m =,即m 的值是1;(2)① 一次函数(12)1y m x m =-++的图象经过第一、二、三象限,∴12010m m ->⎧⎨+>⎩,解得,112m -<<;② 一次函数(12)1y m x m =-++的图象经过第一、二、三象限,120m ∴->,∴该函数y 随x 的增大而增大,点1(1,)M a y -,2(,)N a y 在该一次函数的图象上,1a a -<,12y y ∴<.12.(2022•萧山区校级一模)已知:一次函数32y x =-的图象与某反比例函数的图象的一个公共点的横坐标为1.(1)求该反比例函数的解析式;(2)将一次函数32y x =-的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标.【答案】见解析【详解】(1)把1x =代入32y x =-,得1y =,设反比例函数的解析式为k y x=,把1x =,1y =代入得,1k =,∴该反比例函数的解析式为1y x=;(2)平移后的图象对应的解析式为32y x =+,解方程组321y x y x =+⎧⎪⎨=⎪⎩,得133x y ⎧=⎪⎨⎪=⎩或11x y =-⎧⎨=-⎩.∴平移后的图象与反比例函数图象的交点坐标为1(3,3)和(1,1)--.13.(2022•萧山区一模)已知一次函数(0)y kx b k =+≠与反比例函数(0)m y m x=≠的图象交于(,2)A a ,(1,3)B .(1)求这两个函数的表达式;(2)若点1(,)P h y 在一次函数的图象上,点2(,)Q h y 在反比例函数的图象上,且12y y >,求h 的取值范围.【答案】见解析【详解】(1)把(1,3)B 代入(0)m y m x=≠得133m =⨯=,∴反比例函数解析式为3y x=,把(,2)A a 代入3y x =得23a =,解得32a =,则3(2A ,2),把3(2A ,2),(1,3)B 代入y kx b =+得3223k b k b ⎧+=⎪⎨⎪+=⎩,解得25k b =-⎧⎨=⎩,∴一次函数解析式为25y x =-+;(2)由图象可知,当12y y >,h 的取值范围是0h <或312h <<.14.(2022•余杭区一模)如图,已知一次函数1(0)y kx b k =+≠和反比例函数2(0)m y m x=≠的图象相交于点(1,2)A ,(2,)B a -.(1)求一次函数和反比例函数的表达式.(2)将直线1y 向上平移3个单位后得到直线3y ,当321y y y >>时,求x的取值范围.【答案】见解析【详解】(1) 反比例函数2(0)m y m x=≠的图象过点(1,2)A ,122m ∴=⨯=,即反比例函数:22y x=,当2x =-时,1a =-,即(2,1)B --,1y kx b =+ 过(1,2)A 和(2,1)B --,则221k b k b +=⎧⎨-+=-⎩,解得11k b =⎧⎨=⎩,∴一次函数为11y x =+;(2)如图,设2y 与3y 的图象交于C ,D两点,1y 向上平移3个单位得3y 且11y x =+,34y x ∴=+,联立42y x y x =+⎧⎪⎨=⎪⎩,解得22x y ⎧=-+⎪⎨=⎪⎩22x y ⎧=--⎪⎨=-⎪⎩,(2C ∴--2,(2D -+,2,321y y y >>,22x ∴--<<-或21x -<<.15.(2022•富阳区二模)已知反比例函数(0)k y k x=≠的图象经过点(2,3)A .(1)求这个反比例函数的表达式:(2)判断点(1,6)B -是否在这个函数图象上,并说明你的理由;(3)点1(C x ,1)y ,2(D x ,2)y 是图象上的两点,若12x x <,比较1y 和2y 的大小,并说明你的理由.【答案】见解析【详解】(1) 反比例函数(0)k y k x =≠的图象经过点(2,3)A ,236k ∴=⨯=,∴这个函数的解析式为6y x =;(2)把(1,6)B -代入2y x =-,则661≠-,故点B 不在这个函数图象上;(3)60k => ,∴反比例函数(0)k y k x=≠的图象在一、三象限,且在每个象限y 随x 的增大而减小,∴当两点在同一象限时,12y y >;当两点在不同象限时,12y y <.16.(2022•西湖区校级模拟)平面直角坐标系xOy 中,双曲线(0)m y m x=≠经过点(3,2)A .(1)求m 的值;(2)该坐标系内,还存在直线1(0)y kx k =-≠.①当直线经过点A ,求k 的值;②若当3x >时,总有1m kx x ->,请直接写出k 的取值范围.【答案】见解析【详解】(1)将点(3,2)A 代入双曲线m y x =,得326m =⨯=,6m ∴=;(2)①将点(3,2)A 代入1y kx =-,得312k -=,解得1k =;② 当3x >时,总有1m kx x->,k ∴的取值范围是:1k.17.(2022•富阳区一模)如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(4,)A n -,(2,4)B -两点.(1)求反比例函数和一次函数的解析式;(2)设点1(M x ,1)y 、2(N x ,2)y 是反比例函数m y x =图象上的两个点,若12x x <,试比较1y 与2y 的大小;(3)求AOB ∆的面积.【答案】见解析【详解】(1)将点(2,4)B -代入反比例函数m y x =,得2(4)8m =⨯-=-,∴反比例函数解析式:8y x-=,将点(4,)A n -代入8y x-=,得48n -=-,解得2n =,(4,2)A ∴-,将A ,B 点坐标代入一次函数y kx b =+,得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,∴一次函数解析式:2y x =--;(2)若12x x <,分三种情况:①120x x <<,12y y <,②120x x <<,12y y >,③120x x <<,12y y <;(3)设一次函数与y 轴的交点为D ,则D 点坐标为(0,2)-,2OD ∴=,(4,2)A - ,(2,4)B -,112422622AOB AOD BOD S S S ∆∆∆∴=+=⨯⨯+⨯⨯=,AOB ∴∆的面积为6.18.(2022•西湖区校级二模)已知点(2,)A a -,(1,)B b -,(3,)C c 都在反比例函数(0)k y k x =≠的图象上.(1)若1b a =+,求c 的值.(2)若a b >,试比较b ,c 的大小关系,并说明理由.【答案】见解析【详解】(1)把(2,)A a -,(1,)B b -分别代入(#0)k y k x =中,得12a k =-,b k =-,1b a =+ ,112k k ∴-=-+,解得2k =-,∴反比例函数的解析式为2y x=-,把(3,)C c 代入2y x =-中,得23c =-;(2)b c <,理由:a b > ,12k k ∴->-,解得0k >,0b k ∴=-<,03k c =>,b c ∴<.19.(2022•西湖区校级模拟)设一次函数131(y ax a a =-+是常数,0)a ≠和反比例函数2(k y k x=是常数,0)k ≠.(1)无论a 取何值,该一次函数图象始终过一个定点,直接写出这个定点坐标;(2)若45x时,该一次函数的最大值是3,求a 的值;(3)若一次函数1y 与反比例函数2y 图象两个交点关于原点对称,请判断反比例函数2y 分布在哪些象限,并说明理由.【答案】见解析【详解】(1) 一次函数131(3)1y ax a x a =-+=-+,当3x =时,11y =,∴无论a 取何值,该一次函数图象始终过定点(3,1);(2)当0a >时,当5x =时,一次函数15313y a a =-+=,解得1a =,当0a <时,当4x =时,一次函数14313y a a =-+=,解得2a =(不合题意,舍去),综上,1a =;(3)反比例函数2y 分布在第一、三象限,理由如下:一次函数1y 与反比例函数2y 图象两个交点关于原点对称,310a ∴-+=,解得13a =,∴一次函数113y x =经过第一、三象限,∴反比例函数2y 分布在第一、三象限.20.(2022•下城区校级二模)已知一次函数(2)1(y a x a a =++-是常数,且0)a ≠.(1)若该一次函数的图象与x 轴相交于点(2,0),求一次函数的解析式.(2)当13x -时,函数有最大值5,求出此时a 的值.【答案】见解析【详解】(1)将(2,0)代入(2)1y a x a =++-,得2(2)10a a ++-=,解得5a =-,∴一次函数解析式:36y x =-+;(2)当20a +<时,即2a <-时,当1x =-时,(2)15y a a =-++-=,解得3a =-,当20a +>时,即2a >-,当3x =,3(2)15y a a =++-=,解得1a =-,综上,3a =-或1-.21.(2022•江干区校级模拟)一次函数1(y ax a a =-+为常数,且0)a <.(1)若点(2,3)-在一次函数1y ax a =-+的图象上,求a 的值;(2)当12x -时,函数有最大值2,求a 的值.【答案】见解析【详解】(1)把(2,3)-代入1y ax a =-+得213a a -+=-,解得4a =-;(2)0a < 时,y 随x 的增大而减小,则当1x =-时,y 有最大值2,把1x =-代入函数关系式得21a a =--+,解得12a =-,所以12a =-.22.(2022•拱墅区模拟)在直角坐标系中,设函数1(k y k x=常数)与函数2y x k =+的图象交于点A ,且点A 的横坐标为2.(1)求k 的值;(2)求出两个函数图象的交点坐标,并直接写出当12y y <时,x 的取值范围.【答案】见解析【详解】(1) 函数1(k y k x =常数)与函数2y x k =+的图象交于点A ,且点A 的横坐标为2,∴22k k =+,解得4k =-;(2)4k =- ,14y x-∴=,24y x =-,解44y x y x -⎧=⎪⎨⎪=-⎩得22x y =⎧⎨=-⎩,∴两个函数图象的交点坐标为(2,2)-,∴函数14(y k x=-常数)与函数24y x =-的图象的交点在第四象限,观察图象,当12y y <时,x 的取值范围是0x >且2x ≠.23.(2022•拱墅区模拟)如图,在平面直角坐标系中,一次函数(0)y ax b a =+≠的图象分别交x 轴,y 轴于A ,B 两点,与反比例函数(0)k y k x=≠的图象交于C ,D 两点,DE x ⊥轴于点E ,点C 的坐标为(6,1)-,3DE =.(1)求反比例函数与一次函数的表达式;(2)若点P 在反比例函数图象上,且POA ∆的面积等于8,求P 点的坐标.【答案】见解析【详解】(1) 点(6,1)C -在反比例函数(0)k y k x =≠的图象上,6(1)6k ∴=⨯-=-,∴反比例函数的关系式为6y x =-, 点D 在反比例函数6y x =-上,且3DE =,3y ∴=,代入求得:2x =-,∴点D 的坐标为(2,3)-.C 、D 两点在直线y ax b =+上,则6123a b a b +=-⎧⎨-+=⎩,解得122a b ⎧=-⎪⎨⎪=⎩,∴一次函数的关系式为122y x =-+;(2)设点P 的坐标是(,)m n .把0y =代入122y x =-+,解得4x =,即(4,0)A ,则4OA =,POA ∆ 的面积等于8,∴1||82OA n ⨯⨯=,解得:||4n =,14n ∴=,24n =-,∴点P 的坐标是3(2-,4),3(2,4)-.。
中考数学压轴题集锦精选100题(含答案)
![中考数学压轴题集锦精选100题(含答案)](https://img.taocdn.com/s3/m/880351fbcc7931b764ce1561.png)
中考数学压轴题集锦精选100题(含答案)一、中考压轴题1.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC.(1)判断OB和BP的数量关系,并说明理由;(2)若⊙O的半径为2,求AE的长.【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP;(2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC=30°,继而求得∠E=90°,继而在Rt△AEP中求得答案.【解答】解:(1)OB=BP.理由:连接OC,∵PC切⊙O于点C,∴∠OCP=90°,∵OA=OC,∠OAC=30°,∴∠OAC=∠OCA=30°,∴∠COP=60°,∴∠P=30°,在Rt△OCP中,OC=OP=OB=BP;(2)由(1)得OB=OP,∵⊙O的半径是2,∴AP=3OB=3×2=6,∵=,∴∠CAD=∠BAC=30°,∴∠BAD=60°,∵∠P=30°,∴∠E=90°,在Rt△AEP中,AE=AP=×6=3.【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.2.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.3.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.4.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.5.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.6.用两种方法解答:已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1)的值.【分析】本题主要是利用韦达定理来计算.已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,有四个等式可供使用:m+n=2﹣p①,mn=1②,m2+(p﹣2)m+1=0③,n2+(p﹣2)n+1=0④.通过变形方法,合理地选择解题方法.【解答】解:∵m、n是x2+(p﹣2)x+1=0的根,∴m+n=2﹣p,mn=1.方法一:m2+(p﹣2)m+1=0,n2+(p﹣2)n+1=0.即m2+pm+1=2m,n2+pn+1=2n.原式=2m×2n=4mn=4.方法二:(m2+mp+1)(n2+np+1)=(m2+mp)(n2+np)+m2+mp+n2+np+1=m2n2+m2np+mpn2+mnp2+m2+mp+n2+np+1=1+mp+np+p2+m2+n2+mp+np+1=2+p2+m2+n2+2(m+n)p=2+p2+m2+n2+2(2﹣p)p=2+p2+m2+n2+4p﹣2p2=2+(m+n)2﹣2mn+4p﹣2p2+p2=2+(2﹣p)2﹣2+4p﹣2p2+p2=4﹣4p+p2+4p﹣p2=4.【点评】本题主要是通过根与系数的关系来求值.注意把所求的代数式转化成m+n=2﹣p,mn=1的形式,正确对所求式子进行变形是解题的关键.7.如图,⊙O是等边△ABC的外接圆,AB=2,M、N分别是边AB、AC的中点,直线MN交⊙O于E、F两点,BD∥AC交直线MN于点D.求出图中线段DM上已有的一条线段的长.【分析】连接OA交MN于点G,则OA⊥BC,由三角形的中位线的性质可得MN的长,易证得△BMD≌△AMN,有DM=MN,由相交弦定理得ME•MF=MA•MB,就可求得EM,DE的值.【解答】解:∵M,N分别是边AB,AC的中点∴MN∥BC,MN=BC=1又∵BD∥AC∴∠DBA=∠A=60°∵BM=AM,∠BMD=∠AMN∴△BMD≌△AMN∴DM=MN=1连接OA交MN于点G,则OA⊥BC∴OA⊥EF∴EG=FG,MG=FN由相交弦定理得:ME•MF=MA•MB∴EM(EM+1)=1解得EM=(EM=不合题意,舍去)∴DE=DM﹣EM=∴DE(3﹣DE)=1解得DE=(DE=不合题意,舍去).【点评】本题利用了三角形的中位线的性质,等边三角形的性质,全等三角形的判定和性质,一元二次方程的解法求解.8.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.9.如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积;(4)求OA的长.[(2),(3),(4)中的结果保留π].【分析】(1)先求出圆的半径,再根据切线的性质进行解答;(2)根据位置Ⅰ中的长与数轴上线段ON相等求出的长,再根据弧长公式求出的长,进而可得出结论;(3)作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形,在Rt△NPH中,根据sin∠NPH==即可∠NPH、∠MP A的度数,进而可得出的长,【解答】解:(1)∵⊙P的直径=4,∴⊙P的半径=2,∵⊙P与直线有一个交点,∴位置Ⅰ中的MN与数轴之间的距离为2;位置Ⅱ中的半⊙P与数轴的位置关系是相切;故答案为:2,相切;(2)位置Ⅰ中的长与数轴上线段ON相等,∵的长为=π,NP=2,∴位置Ⅲ中的圆心P在数轴上表示的数为π+2.(3)点N所经过路径长为=2π,S半圆==2π,S扇形==4π,半⊙P所扫过图形的面积为2π+4π=6π.(4)如图,作NC垂直数轴于点C,作PH⊥NC于点H,连接P A,则四边形PHCA为矩形.在Rt△NPH中,PN=2,NH=NC﹣HC=NC﹣P A=1,于是sin∠NPH==,∴∠NPH=30°.∴∠MP A=60°.从而的长为=,于是OA的长为π+4+π=π+4.【点评】本题考查的是直线与圆的关系、弧长的计算、扇形的面积公式,在解答此题时要注意Ⅰ中的长与数轴上线段ON相等的数量关系.10.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.11.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.12.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.13.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.15.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)所求概率为;(2)方法①(树状图法)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为,方法②(列表法)1 2 3 4第一次抽取第二次抽取1(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.17.如图,反比例函数的图象经过点A(4,b),过点A作AB⊥x轴于点B,△AOB 的面积为2.(1)求k和b的值;(2)若一次函数y=ax﹣3的图象经过点A,求这个一次函数的解析式.【分析】(1)由△AOB的面积为2,根据反比例函数的比例系数k的几何意义,可知k的值,得出反比例函数的解析式,然后把x=4代入,即可求出b的值;(2)把点A的坐标代入y=ax﹣3,即可求出这个一次函数的解析式.【解答】解:(1)∵反比例函数的图象经过点A,AB⊥x轴于点B,△AOB的面积为2,A(4,b),∴OB×AB=2,×4×b=2,∴AB=b=1,∴A(4,1),∴k=xy=4,∴反比例函数的解析式为y=,即k=4,b=1.(2)∵A(4,1)在一次函数y=ax﹣3的图象上,∴1=4a﹣3,∴a=1.∴这个一次函数的解析式为y=x﹣3.【点评】本题主要考查了待定系数法求一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.18.图(1)是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面的两个问题:(1)在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2,且△A1B1C1与△ABC的相似比是2,△A2B2C2与△ABC的相似比是;(2)在图(2)中用与△ABC,△A1B1C1,△A2B2C2全等的格点三角形(每个三角形至少使用一次),拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.【分析】(1)△A1B1C1与△ABC的相似比是2,则让△ABC的各边都扩大2倍就可.△A2B2C2与△ABC的相似比是;△ABC的直角边是2,所以△A2B2C2与的直角边是即一个对角线的长度.斜边为2.依此画图即可;(2)拼图有审美意义即可,答案不唯一.【解答】解:【点评】本题主要考查了相似图形的画法,做这类题时根据的是相似图形的性质,即相似比相等.对应角相等.19.如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,(1)求的长;(2)若,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.【分析】(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长;(2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论.【解答】解:(1)连接OE、OF,∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F,∴∠A=90°,∠OEA=∠OF A=90°∴四边形AFOE是正方形∴∠EOF=90°,OE=AE=∴的长==π.(2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1,连接OM1、OR,∵M1N1∥MN∴∠DM1N1=∠DMN=60°∴∠EM1N1=120°∵MA、M1N1切⊙O于点E、R∴∠EM1O=∠EM1N1=60°在Rt△EM1O中,EM1===1∴DM1=AD﹣AE﹣EM1=+5﹣﹣1=4.过点D作DK⊥M1N1于K在Rt△DM1K中DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2,∴当d=2时,直线MN与⊙O相切,当1≤d<2时,直线MN与⊙O相离,当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4,∴当2<d≤4时,MN直线与⊙O相交.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.20.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.【分析】(1)可通过连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.(2)本题中由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.【解答】解:(1)DE=BD证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴=,∴DE=BD;(2)∵AB=5,BD=BC=3,∴AD=4,∴S△ABC=•AC•BE=•CB•AD,∴BE=4.8.【点评】本题主要考查了等腰三角形的性质,圆周角定理等知识点的运用,用等腰三角形三线合一的特点得出圆周角相等是解题的关键.21.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.22.如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是22.5°,∠B2的度数是67.5°;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n∁n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).【分析】根据条件可以先求出圆的各段弧的度数,根据圆周角等于所对弧的度数的一半,就可以求出圆周角的度数.【解答】解:(1)垂直于AD的两条弦B1C1,B2C2把圆周4等分,则是圆的,因而度数是45°,因而∠B1的度数是22.5°,同理的度数是135度,因而,∠B2的度数是67.5°;(2)∵圆周被6等分∴===360°÷6=60°∵直径AD⊥B1C1∴==30°,∴∠B1==15°∠B2==×(30°+60°)=45°∠B3==×(30°+60°+60°)=75°;(3)B n∁n把圆周2n等分,则弧BnD的度数是:,则∠B n AD=,在直角△AB n D中,.【点评】本题是把求圆周角的度数的问题转化为求弧的度数的问题,依据是圆周角等于所对弧的度数的一半.23.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?【分析】(1)设降低的百分率为x,则降低一次后的数额是25(1﹣x),再在这个数的基础上降低x,则变成25(1﹣x)(1﹣x)即25(1﹣x)2,据此即可列方程求解;(2)每人减少的税额是25x,则4个人的就是4×25x,代入(1)中求得的x的值,即可求解;(3)每个人减少的税额是25x,乘以总人数16000即可求解.【解答】解:(1)设降低的百分率为x,依题意有,25(1﹣x)2=16,解得,x1=0.2=20%,x2=1.8(舍去);(2)小红全家少上缴税25×20%×4=20(元);(3)全乡少上缴税16000×25×20%=80 000(元).答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80 000元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.24.在△ABC中,AB=AC,D为BC上一点,由D分别作DE⊥AB于E,DF⊥AC于F.设DE=a,DF=b,且实数a,b满足9a2﹣24ab+16b2=0,并有=2566,∠A使得方程x2﹣x•sin A+sin A﹣=0有两个相等的实数根.(1)试求实数a,b的值;(2)试求线段BC的长.【分析】(1)由题意可知:2a2b=2566,则2a2b=248,则a2b=48.化简9a2﹣24ab+16b2=0得:(3a﹣4b)2=0,则3a﹣4b=0,即3a=4b,则根据,可求得a与b的值;(2)要求BC的长需求出BD和CD的长,知BD、CD分别是直角三角形BDE和直角三角形CDF中的斜边.又知在△ABC中,AB=AC,则∠B=∠C,则根据三角函数只要知道∠B或∠C的读数即可,要求∠B或∠C的读数需求的∠A的读数,根据判别式可以求得∠A的读数.【解答】解:(1)由条件有,解得;(2)又由关于x的方程的判别式△=sin2A﹣sin A+=(sin A﹣)2=0,则sin A=,而∠A为三角形的一个内角,所以∠A1=60°或∠A2=120° 2分当∠A=60°时,△ABC为正三角形,∠B=∠C=60°于是分别在Rt△BDE和Rt△CDF中有BD=,CD=所以BC=BD+DC=.当∠A=120°时,△ABC为等腰三角形,∠B=∠C=30°同上方法可得BC=14. 3分所以线段BC的长应为或14.【点评】考查了解直角三角形以及判别式的应用.25.某市城建部门经过长期市场调查发现,该市年新建商品房面积P(万平方米)与市场新房均价x(千元/平方米)存在函数关系P=25x;年新房销售面积Q(万平方米)与市场新房均价x(千元/平方米)的函数关系为Q=﹣10;(1)如果年新建商品房的面积与年新房销售面积相等,求市场新房均价和年新房销售总额;(2)在(1)的基础上,如果市场新房均价上涨1千元,那么该市年新房销售总额是增加还是减少?变化了多少?结合年新房销售总额和积压面积的变化情况,请你提出一条合理。
2014浙江省各市中考压轴题集锦及答案
![2014浙江省各市中考压轴题集锦及答案](https://img.taocdn.com/s3/m/4d469efbf61fb7360b4c6595.png)
浙江省杭州市2014年中考数学试卷10.(3分)(2014•杭州)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()cos∠AGB=15.(4分)(2014•杭州)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为.16.(4分)(2014•杭州)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于(长度单位).21.(10分)(2014•杭州)在直角坐标系中,设x轴为直线l,函数y=﹣x,y=x的图象分别是直线l1,l2,圆P(以点P为圆心,1为半径)与直线l,l1,l2中的两条相切.例如(,1)是其中一个圆P的圆心坐标.(1)写出其余满足条件的圆P的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.22.(12分)(2014•杭州)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.23.(12分)(2014•杭州)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.浙江省丽水市、衢州市2014年中考数学试卷9.(3分)(2014•丽水)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()A. B. C.4 D.310.(3分)(2014•丽水)如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣ B.y=﹣ C.y=﹣ D.y=﹣14.(4分)(2014•丽水)有一组数据如下:3,a,4,6,7.它们的平均数是5,那么这组数据的方差为.16.(4分)(2014•丽水)如图,点E,F在函数y=(x>0)的图象上,直线EF分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是,△OEF的面积是(用含m的式子表示)22.(10分)(2014•丽水)如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.23.(10分)(2014•丽水)提出问题:(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:(3)在(2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.24.(12分)(2014•丽水)如图,二次函数y=ax2+bx(a≠0)的图象经过点A (1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y 轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?浙江省台州市2014年中考数学试卷9.(4分)(2014•台州)如图,F是正方形ABCD的边CD上的一个动点,BF 的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是()A .45°B.50°C.60°D.不确定10.(4分)(2014•台州)如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()A .4:3 B.3:2 C.14:9 D.17:914.(5分)(2014•台州)抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.15.(5分)(2014•台州)如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.16.(5分)(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n= (用含字母x和n的代数式表示).23.(12分)(2014•台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.24.(14分)(2014•台州)研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.定义:六个内角相等的六边形叫等角六边形.(1)研究性质①如图1,等角六边形ABCDEF中,三组正对边AB与DE,BC与EF,CD 与AF分别有什么位置关系?证明你的结论②如图2,等角六边形ABCDEF中,如果有AB=DE,则其余两组正对边BC 与EF,CD与AF相等吗?证明你的结论③如图3,等角六边形ABCDEF中,如果三条正对角线AD,BE,CF相交于一点O,那么三组正对边AB与DE,BC与EF,CD与AF分别有什么数量关系?证明你的结论.(2)探索判定三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?2014年浙江省绍兴市中考数学试卷9.(4分)(2014年浙江绍兴)将一张正方形纸片,按如图步骤①,②,沿虚线对着两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()A.B.C.D.10.(4分)(2014年浙江绍兴)如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为()A.50秒B.45秒C.40秒D.35秒14.(5分)(2014年浙江绍兴)用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是.15.(5分)(2014年浙江绍兴)如图,边长为n的正方形OABC的边OA,OC 在坐标轴上,点A1,A2…A n﹣1为OA的n等分点,点B1,B2…B n﹣1为CB的n等分点,连结A1B1,A2B2,…A n﹣1B n﹣1,分别交曲线y=(x>0)于点C1,C2,…,C n﹣1.若C15B15=16C15A15,则n的值为.(n为正整数)16.(5分)(2014年浙江绍兴)把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为2、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是.21.(10分)(2014年浙江绍兴)九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度.(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).备用数据:tan60°=1.732,tan30°=0.577,=1.732,=1.414.22.(12分)(2014年浙江绍兴)如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?23.(6分)(2014年浙江绍兴)(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.25.(14分)(2014年浙江绍兴)如图,在平面直角坐标系中,直线l平行x 轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.。
2024年中考数学压轴题型-专题05 与反比例函数有关问题的压轴题之三大题型(解析版)
![2024年中考数学压轴题型-专题05 与反比例函数有关问题的压轴题之三大题型(解析版)](https://img.taocdn.com/s3/m/fcd9fe486d175f0e7cd184254b35eefdc8d315fc.png)
专题05与反比例函数有关问题的压轴题之三大题型目录【题型一反比例函数与一次函数综合问题】 (1)【题型二实际问题与反比例函数综合问题】 (10)【题型三反比例函数与几何综合问题】 (18)【题型一反比例函数与一次函数综合问题】(1)求k 的值,并在图中画出函数k y x =的图象;(2)直接写出不等式24k x x+>的解集.【答案】(1)6k =,画图见解析;(2)30x -<<或1x >.(2)解:由()1,6A ,()3,B n -,根据函数图象可得:不等式24k x x+>的解集为:30x -<<【变式训练】1.(2023·浙江杭州·模拟预测)如图,一次函数图象交于1A a -(,),B 两点,与x 轴交于点由图可知:当12y y >时,3x >或1x -<<(2)解:点()3,C k 在函数1y kx b =+的图像上,得3k b k +=,2b k =-,12(2)y kx k k x =-=-,当2x =时,10y =,即过定点(2,0).【点睛】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求函数解析式,反比例函数图像上点的坐标特征,函数与不等式的关系,数形结合是解题的关键.(【点睛】本题主要考查了一次函数与反比例函数综合,待定系数法求函数解析式,熟练掌握待定系数法求函数解析式是解题的关键.4.(2023·浙江杭州·统考二模)设函数(1)若函数1y和函数2y的图像交于点①求b,n的值.210y y <<∴x 的取值范围是203x <<或1443x <<.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题,掌握反比例函数和一次函数图像与性质是解题关键.【题型二实际问题与反比例函数综合问题】例题:(2023·浙江衢州·统考中考真题)视力表中蕴含着很多数学知识,如:每个“E ”形图都是正方形结构,同一行的“E ”是全等图形且对应着同一个视力值,不同的检测距离需要不同的视力表.素材1国际通用的视力表以5米为检测距离,任选视力表中7个视力值n ,测得对应行的“E ”形图边长b (mm ),在平面直角坐标系中描点如图1.探究1检测距离为5米时,归纳n 与b 的关系式,并求视力值1.2所对应行的“E ”形图边长.素材2图2为视网膜成像示意图,在检测视力时,眼睛能看清最小“E ”形图所成的角叫做分辨视角θ,视力【变式训练】(1)求EF的长.(2)求y关于x的函数解析式,在图2中画出图像,并写出至少一条该函数性质.(3)若要求CD不小于3dm,求OE的取值范围.【答案】(1)80dm(2)240.3yx=+,图象及性质见解析性质:当0x >时,y 随x 的增大而减小;(3)由3y ≥,240.33x+≥,则0.3243x x +≥,解得809x ≤,()2m S 之间的函数表达式;(2)现将另一长、宽、高分别为0.2m ,0.3m ,0.2m 与长方体A 相同重量的长方体于该水平玻璃桌面上.若桌面所受压强()Pa P 与受力面积()2m S 之间的关系满足((2)当气体体积为32m时,气球内气体的压强是多少?(3)当气球内气体的压强大于180kpa时,气球就会爆炸.【答案】(1)画图见解析;90 pV =;(2)气球内气体的压强是45kPa;(3)00.5V<<【分析】(1)根据描点,连线即可画出函数图象;设函数解析式为把()1,90代入k p V=,∴90k pV ==;∴函数关系式为:90p V=;(2)当气体体积为2m 3时,气球内气体的压强是(3)当气球内气体的压强大于180kpa 时,气球就会爆炸.即∴90>180V,【题型三反比例函数与几何综合问题】【变式训练】【答案】10【分析】设4,A xx⎛⎫⎪⎝⎭,根据平行四边形对边平行得到点象为4yx=-及中点性质得到【答案】223/223【分析】设CD 的中点为E ,连接OE 股定理求出22112OE =+=,然后【详解】如图所示,设CD 的中点为∵四边形ABCD 是正方形,OA OB =∴根据对称性可得,OE 是AOB ∠∴AOF BOF ∠=∠,∵点E 在反比例函数1(0)y x x =>的图象上,∴()1,1E ,∴22112OE =+=,【答案】24【分析】设4OA a =,则AB 轴,点P 在CD 上,可得P 由于点Q 在反比例函数y =【答案】3【分析】过点B '作B C x '⊥轴于点C 的坐标,即可求解.【详解】解:如图所示,过点B '作∵A 的坐标为()4,0-,则4OA =,将∴4AO A O '==,∴OB '=2OB =,在Rt AOB △中,cos BO BOA AB ∠==【答案】8323【分析】根据题意得出AE 值;先根据反比例函数解析式求出点310y x =-,求出103OF =【详解】解:∵顶点A 的坐标是∴6AE =,又ABCD Y 的面积是24,∴4AD BC ==,则()4,2D ,∴428k =⨯=,y【答案】1322(1)求双曲线k y x=的解析式,并直接写出点。
2014年杭州中考数学真题+解析(Word版)
![2014年杭州中考数学真题+解析(Word版)](https://img.taocdn.com/s3/m/31cee414ff00bed5b9f31d26.png)
2014年杭州市各类高中招生文化考试数学 解析版一、仔细选一选(本题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1.()232a a ?=( )A.312a - B.26a - C.312a D.26a 【答案】C【解析】()()2224323212a a a a a ?=??【方法指导】本题考查幂的运算。
解决此类题的关键是熟练掌握幂的运算法则:(1)a m ·a n =a m +n (m ,n 为整数,a ≠0);(2)(a m )n =a mn (m ,n 为整数,a ≠0);(3)(ab )n =a n b n (n为整数,ab ≠0);(4)a m ÷a n =a m -n (m ,n 为整数,a ≠0).2.已知某几何体的三视图(单位:cm ),则该几何体的侧面积等于( )A.212cm pB.215cm pC.224cm pD.230cm p 【答案】B【解析】有图可知该几何体是圆锥体,其底面圆周的直径为6,半径r=3 ,高为4,有勾股定理可知母线长l=5,有公式rl π=s ,得S=15π 。
【方法指导】本题考查三视图和圆锥的侧面积的计算。
解决此类题的关键 是熟练的掌握几何体的三视图的特点,掌握常见的几何体的表面积和体积的的计算方法。
3.在直角三角形ABC 中,已知90C?,40A ?,3BC =,则AC=( )A.3sin 40B.3sin 50C.3tan 40D.3tan 50 【答案】D 【解析】∵40A?,∴50B ?∵tan 50=ACBC, ∴tan503tan50AC BC =?故答案选D【方法指导】本题考查的是三角函数。
解决此题的关键是掌握锐角三角函数的概念及意义,然后分别判断即可。
主视图 左视图俯视图(第2题)第3题图4.已知边长为a 的正方形的面积为8,则下列说法中,错误的是( ) A.a 是无理数B.a 是方程280x -=的解C.a 是8的算术平方根D.a 满足不等式组3040a a ì->ïí-<ïî【答案】D【解析】 有题意可得),0(8a 2>=a 22a =32,98a 42<<∴<=<a 所以选项D 是错误的;【方法指导】本题考查实数的运算,数与方程,不等式的联系,本题中容易忽略条件“a 是正方形的边长”而出问题;解决此类型的题目关键是审题要细心。
2024年中考数学考前押题密卷(浙江卷)(全解全析)
![2024年中考数学考前押题密卷(浙江卷)(全解全析)](https://img.taocdn.com/s3/m/4ef1f39488eb172ded630b1c59eef8c75ebf957e.png)
2024年中考考前押题密卷(浙江卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列手机中的图标是轴对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可.【解析】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项符合题意;D.不是轴对称图形,故此选项不合题意.故选:C.【点睛】本题考查的是轴对称图形的概念,正确掌握相关定义是解题关键.2.已知,则的值为()A.B.C.12D.18【答案】B【分析】根据二次根式的被开方数是非负数,由非负数的性质列式求出x的值;然后将x的值代入求出y的值,最后代入待求式,进行计算即可.【解析】解:由题意得:,解得x=3,把x=3代入,可得y=3,所以==.故选:B.【点睛】本题考查二次根式有意义的条件,关键是掌握二次根式有意义的条件以及求代数式的值的方法.3.下列运算结果正确的是()A.m2+m2=2m4B.a2•a3=a5C.(mn2)3=mn6D.m6÷m2=m3【答案】B【分析】直接利用合并同类项法则、同底数幂的乘除运算法则、积的乘方运算分别计算,进而判断得出答案.【解析】解:A.m2+m2=2m2,故此选项不合题意;B.a2•a3=a5,故此选项符合题意;C.(mn2)3=m3n6,故此选项不合题意;D.m6÷m2=m4,故此选项不合题意.故选:B.【点睛】此题主要考查了合并同类项、同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.4.在五边形ABCDE中,∠A=∠E=120°,∠B=130°,∠C=70°,则∠D=()A.100°B.110°C.120°D.130°【答案】A【分析】根据多边形内角和公式解题即可.【解析】解:多边形的内角和为180°×(n﹣2),∴五边形ABCDE的内角和为180°×(5﹣2)=540°,∴∠D=540°﹣∠A﹣∠B﹣∠C﹣∠E=540°﹣120°﹣130°﹣70°﹣120°=100°.故选:A.【点睛】本题主要考查了多边形的内角和求法,关键是多边形内角和公式的应用.5.下列调查适合做普查的是()A.调查游客对我市景点的满意程度B.调查我省中小学生的身高情况C.调查九年级(3)班全班学生本周末参加社区活动的时间D.调查我市中小学生保护水资源的意识【答案】C【分析】全面调查是对需要调查的对象逐个调查,这种调查能够收集全面、广泛、可靠的资料,但调查费用较高,时间延续较长,适合于较小的调查范围,抽样调查适合于较广的调查范围,据此可得到结.【解析】解:A、调查游客对我市景点的满意程度,范围较广,适合于抽样调查,该选项不符合题意;B、调查我省中小学生的身高情况,人数多,范围广,适合于抽样调查,该选项不符合题意;C、调查九年级(3)班全班学生本周末参加社区活动的时间,人数少,范围小,适合于全面调查,即普查,该选项符合题意;D、调查我市中小学生保护水资源的意识,人数多,范围广,适合于抽样调查,该选项不符合题意;故选:C.【点睛】本题考查了判断全面调查与抽样调查,了解全面调查与抽样调查的区别是解题的关键.6.一个正棱柱的正(主)视图和俯视图如图所示,则该三棱柱的侧(左)视图的面积为()A.8B.16C.8D.8【答案】A【分析】求出正三棱锥底面边长的高,然后求解侧视图的面积.【解析】解:由题意可知,底面三角形是正三角形,边长为4,高为2,所以侧视图的面积为:4×=8.故选:A.【点睛】本题考查三视图求解几何体的侧视图,求解底面三角形的高是解题的关键,是基础题.7.如图,为做好疫情防控,小航同学在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,请根据图中信息,如果把这50个纸杯整齐叠放在一起时,它的高度为()A.56cm B.57cm C.58cm D.59cm【答案】B【分析】根据题中所给图形,求出一个杯子高度及叠放后每个杯子漏出部分的高度即可得到答案.【解析】解:由图可知,右边8个杯子叠放高度比左边3个杯子高15﹣10=5(cm),∴杯子叠放后每个杯子漏出来部分的高度为5÷5=1cm,则一个杯子高度为10﹣2=8(cm),∴把这50个纸杯整齐叠放在一起时,它的高度为8+49=57(cm),故选:B.【点睛】本题考查数学知识解决实际问题,读懂题意,数形结合,分析出叠放后每个杯子漏出来部分的高度是解决问题的关键.8.将一副三角板如图放置,则下列结论中正确的是()①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=45°;④如果∠CAD=150°,必有∠4=∠C.A.①②③B.③④C.①②④D.①②③④【答案】D【分析】根据平行线的性质与判定,余角的性质,等逐项分析并选择正确的选项即可.【解析】解:①∵∠2=30°,∴∠1=60°,∴∠1=∠E,∴AC∥DE,故①正确;②∵∠1+∠2=90°,∠2+∠3=90°,∴∠BAE+∠CAD=∠2+∠1+∠2+∠3=90°+90°=180°,故②正确;③∵BC∥AD,∴∠1+∠2+∠3+∠C=180°,又∵∠C=45°,∠1+∠2=90°,∴∠3=45°,∴∠2=90°﹣45°=45°,故③正确;④∵∠CAD=150°,∠DAE=90°,∴∠1=∠CAD﹣∠DAE=150°﹣90°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,∴∠4=∠C,故④正确;故选:D.【点睛】本题考查三角板中的角度计算,平行线的性质与判定,能够掌握数形结合思想是解决本题的关键.9.在学习勾股定理时,甲同学用四个相同的直角三角形(直角边长分别为a,b,斜边长为c)构成如图所示的正方形;乙同学用边长分别为a,b的两个正方形和长为b,宽为a的两个长方形构成如图所示的正方形,甲、乙两位同学给出的构图方案,可以证明勾股定理的是()A.甲B.乙C.甲,乙都可以D.甲,乙都不可以【答案】A【分析】由图形中的面积关系,应用完全平方公式即可解决问题.【解析】解:甲同学的方案:∵大正方形的面积=小正方形的面积+直角三角形的面积×4,∴(a+b)2=c2+ab×4,∴a2+b2+2ab=c2+2ab,∴a2+b2=c2,因此甲同学的方案可以证明勾股定理;乙同学的方案:∵大正方形的面积=矩形的面积×2+两个小正方形的面积,∴(a+b)2=a2+2ab+b2,∴得不到a2+b2=c2,因此乙同学的方案不可以证明勾股定理.故选:A.【点睛】本题考查勾股定理的证明,关键是应用面积法,完全平方公式.10.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边分别作正方形BAHI,正方形BCFG与正方形CADE,延长BG,FG分别交AD,DE于点K,J,连结DH,IJ.图中两块阴影部分面积分别记为S1,S2.若S1:S2=1:4,S四边形边BAHE=18,则四边形MBNJ的面积为()A.5B.6C.8D.9【答案】B【分析】先证△CAB≌△DAH(SAS),得∠ADH=90°,则H、D、E三点共线,再证=,则BC =FC=FG=BG=2GJ,AC=AD=DE=CE=BC+GJ=3GJ,然后由S四边形BAHE=S△ADH+S梯形ADEB=18,求出GJ=,证△FAN≌△EBM(ASA),则S△FAN=S△EBM,最后由S四边形MBNJ =S矩形CFJE﹣S四边形BCFN﹣S△EBM=S矩形CFJE﹣S△ABC,即可得出结果.【解析】解:∵四边形BAHI和四边形CADE都是正方形,∴AC=AD,AB=AH,∠CAD=∠ABI=∠BAH=∠ADE=90°,∴∠CAB+∠BAD=∠DAH+∠BAD,∴∠CAB=∠DAH,在△CAB和△DAH中,,∴△CAB≌△DAH(SAS),∴∠ADH=∠ACB=90°,∵∠ADE=90°,∴H、D、E三点共线,∵四边形BCFG和四边形CADE都是正方形,延长BG、FG分别交AD、DE于点K、J,∴四边形ADJF和四边形BEDK都是矩形,且AF=BE,∠AFN=∠BEM=90°,四边形DKGJ是正方形,四边形CFJE是矩形,∵S1:S2=1:4,∴=,∴BC=FC=FG=BG=2GJ,∵四边形CADE是正方形,∴∠ADE=90°,AC=AD=DE=CE=BC+GJ=3GJ,在Rt△ACB中,由勾股定理得:AB===GJ,在Rt△ADH中,由勾股定理得:DH===2GJ,∵S四边形BAHE=S△ADH+S梯形ADEB=18,∴AD•DH+(AD+BE)•DE=×3GJ×2GJ+(3GJ+GJ)×3GJ=18,解得:GJ=(负值已舍去),∵∠ABC+∠EBM=180°﹣∠ABI=180°﹣90°=90°,∠ABC+∠CAB=90°,∴∠CAB=∠EBM,即∠FAN=∠EBM,在△FAN和△EBM中,,∴△FAN≌△EBM(ASA),∴S△FAN=S△EBM,∴S△ABC=S四边形BCFN+S△FAN=S四边形BCFN+S△EBM,∴S四边形MBNJ=S矩形CFJE﹣S四边形BCFN﹣S△EBM=S矩形CFJE﹣S△ABC=FC•CE﹣AC•BC=2GJ×3GJ﹣×3GJ×2GJ=3GJ2=3×()2=6,故选:B.【点睛】本题考查了勾股定理、正方形的判定与性质、矩形的判定与性质、全等三角形的判定与性质、矩形面积、梯形面积与三角形面积的计算等知识,证明△FAN≌△EBM是解题的关键.第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)11.分解因式6xy2﹣3x2y=.【答案】3xy(2y﹣x)【分析】原式提取公因式3xy即可.【解析】解:原式=3xy(2y﹣x).故答案为:3xy(2y﹣x).【点睛】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.如图,▱ABCD的对角线AC、BD相交于点O,AC+BD=22,AB=9.则△OCD的周长为.【答案】20【分析】由平行四边形的性质得OC=AC,OD=BD,CD=AB=9,则OC+OD=(AC+BD)=11,即可求出OC+OD+CD的值.【解析】解:∵四边形ABCD是平行四边形,对角线AC与BD交于点O,∴OC=OA=AC,OD=OB=BD,CD=AB=9,∵AC+BD=18,∴OC+OD=(AC+BD)=×22=11,∴OC+OD+CD=11+9=20,∴△OCD的周长为20,故答案为:20.【点睛】此题重点考查平行四边形的性质、三角形的周长等知识,证明OC=AC,OD=BD,并且求得OC+OD=11是解题的关键.13.如图,将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,再将△DCE沿CD 对折得到△DCF,若DF刚好垂直于BC,则∠A的大小为°.【答案】45【分析】由等腰三角形的性质可得∠ABC=∠ACB,由折叠的性质可得∠A=∠E=∠F,∠DCE=∠DCF,由外角性质可求∠BCF=∠A=∠E=∠F,由直角三角形的性质可求解.【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,∴∠A=∠E,∵将△DCE沿CD对折得到△DCF,∴∠E=∠F,∠DCE=∠DCF,∵∠DCE=∠ABC+∠A,∠DCF=∠ACB+∠BCF,∴∠BCF=∠A,∴∠BCF=∠A=∠E=∠F,∵DF⊥BC,∴∠BCF=∠F=45°,∴∠A=45°,故答案为:45.【点睛】本题考查了翻折变换,等腰三角形的性质,外角的性质,灵活运用折叠的性质是本题的关键.14.已知一组数据x1,x2,x3,x4,x5的方差是,那么x1﹣5,x2﹣5,x3﹣5,x4﹣5,x5﹣5的方差是.【答案】【分析】方差是用来衡量一组数据波动大小的量,每个数都减去5所以波动不会变,方差不变.【解析】解:由题意知,原数据的平均数为,新数据的每一个数都减去了5,则平均数变为﹣5,则原来的方差=[(x1﹣)2+(x2﹣)2+…+(x5﹣)2]=,现在的方差=[(x1﹣5﹣+5)2+(x2﹣5﹣+5)2+…+(x5﹣5﹣+5)2]=[(x1﹣)2+(x2﹣)2+…+(x5﹣)2]=,所以方差不变.故答案为:.【点睛】本题考查了方差,本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.15.直线y=kx+6k交x轴于点A,交y轴于点B,以原点O为圆心,3为半径的⊙O与l相交,则k的取值范围为.【答案】﹣<k<【分析】根据题意得到A(﹣6,0),B(0,6k),设⊙O于AB相切于C,连接OC,求得∠OAC=30°,于是得到结论.【解析】解:∵直线y=kx+6k交x轴于点A,交y轴于点B,∴A(﹣6,0),B(0,6k),设⊙O与AB相切于C,连接OC,∴OA=6,OC=3,∠ACO=90°,∴OC=OA,∴∠OAC=30°,当⊙O与l相交时,OB=|6k|<2,∴﹣<k<,故答案为﹣<k<.【点睛】本题考查了直线与圆的位置关系,一次函数图象与系数的关系,正确的作出图形是解题的关键.16.在二次函数y=x2﹣2tx+3中,t为大于0的常数.(1)若此二次函数的图象过点(2,1),则t等于;(2)如果A(m﹣2,a),B(4,b),C(m,a)都在此二次函数的图象上,且a<b<3,则m的取值范围是.【答案】(1);(2)3<m<4或m>6【分析】(1)将(2,1)代入y=x2﹣2tx+3计算得出t值即可;(2)先根据点AC的纵坐标相等,可得对称轴x=t=m﹣1,再分两种情况讨论得出结果即可.【解析】解:(1)将(2,1)代入y=x2﹣2tx+3得:1=4﹣4t+3,解得:t=,故答案为:.(2)∵A(m﹣2,a),C(m,a)都在二次函数图象上,∴二次函数y=x2﹣2tx+3的对称轴为直线x=t==m﹣1,∵t>0,∴m﹣1>0,解得m>1,∵m﹣2<m,∴A点在对称轴左侧,C点对称轴右侧,在二次函数y=x2﹣2tx+3中,令x=0,y=3,∴抛物线与y轴的交点坐标为(0,3),∴点(0,3)关于对称轴对称点的坐标为(2m﹣2,3),∵b<3,∴4<2m﹣2,解得m>3,①当点A(m﹣2,a),B(4,b)都在对称轴左侧时,∵y随x的增大而减小,且a<b,∴4<m﹣2,解得m>6,此时m满足的条件为:m>6;②当点A(m﹣2,a)在对称轴左侧,点B(4,b)在对称轴右侧时,∵a<b,∴点B(4,b)到对称轴的距离大于点A到对称轴的距离,∴4﹣(m﹣1)>m﹣1﹣(m﹣2),解得:m<4,此时,m满足的条件是:3<m<4,综上分析,3<m<4或m>6.故答案为:3<m<4或m>6.【点睛】本题考查了二次函数的性质,解题的关键是分类讨论.三、解答题(本大题共8个小题,共66分.解答应写出文字说明,证明过程或演算步骤)17.以下是某同学化简分式的部分运算过程:解:原式=……第一步=第二步=.……第三步……(1)上面第二步计算中,中括号里的变形的依据是通分;(2)上面的运算过程中第三步出现了错误;(3)请你写出完整的正确解答过程,并从﹣2,2,0中选一个作为x的值代入求值.【分析】(1)根据分式的性质,即可求解;(2)根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可;(3)取x=0,代入计算即可.【解析】解:(1)上面第二步计算中,中括号里的变形是通分,通分的依据是分式的基本性质,故答案为:通分;(2)第三步出现错误,原因是分子相减时未变号,原式=[﹣]×,=[﹣]×,=×,=×,=.故答案为:三.(3)当x=0时,上式==.【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键.18.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(﹣1,5),B(﹣4,3),C(﹣2,2).(1)△A1B1C1与△ABC关于原点O成中心对称,画出△A1B1C1,并写出点A1,B1,C1的坐标;(2)将△ABC绕原点O顺时针旋转90°得到△A2B2C2,画出△A2B2C2;(3)求(2)的旋转过程中点C经过的路径长.【分析】(1)利用中心对称的性质分别作出A,B,C的对应点A1,B1,C1,再顺次连接,写出点A1,B1,C1的坐标即可.(2)利用旋转变换的性质分别作出A,B,C的对应点A2,B2,C2,再顺次连接即可.(3)利用弧长公式求得点C经过的路径长.【解析】解:(1)如图1,△A1B1C1即为所求.A1(1,﹣5),B1(4,﹣3),C1(2,﹣2);(2)如图2,△A2B2C2即为所求;(3),点C经过的路径长为.【点睛】本题考查作图﹣平移变换,旋转变换,解题的关键是掌握平移变换,旋转变换的性质,属于中考常考题型.19.如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.(1)求证:∠BED=∠CFE;(2)当∠BAC=44°时,求∠DEF的度数.【分析】利用边角边定理证明△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.【解析】(1)证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,,∴△DBE≌△CEF(SAS),∴∠BED=∠CFE;(2)解:由(1)知:△DBE≌△CEF,∴∠1=∠3,∵∠A+∠B+∠C=180°,∠B=∠C,∴∠B=(180°﹣44°)=68°,∴∠1+∠2=180°﹣68°=112°,∴∠3+∠2=112°,∴∠DEF=180°﹣112°=68°.【点睛】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.20.跳绳是驿城区某校体育活动的特色项目.体育组为了了解八年级学生1分钟跳绳次数情况,随机抽取20名八年级学生进行1分钟跳绳测试(单位:次),数据如下:100110114114120122122131144148152155156165165165165174188190对这组数据进行整理和分析,结果如下:平均数众数中位数145a b请根据以上信息解答下列问题:(1)填空:a=165,b=150.(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级500名学生中,约有多少名学生能达到优秀.(3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由.【分析】(1)根据众数和中位数的定义解答即可;(2)用总人数乘样本中1分钟跳绳165次及以上所占比例即可;(3)根据中位数的意义解答即可.【解析】解:(1)在被抽取20名八年级学生进行1分钟跳绳测试成绩中,165出现的次数最多,故众数a=165;把被抽取20名八年级学生进行1分钟跳绳测试成绩从小到大排列,排在中间的两个数分别是148,152,故中位数b==150.故答案为:165;150;(2)500×=175(名),答:估计八年级500名学生中,约有175名学生能达到优秀;(3)超过年级一半的学生,理由如下:∵152>150,∴推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查众数、中位数以及用样本估计总体等知识,解题的关键是熟练掌握基本概念.21.A、B两地相距120km,甲车从A地驶往B地,乙车从B地以80km/h的速度匀速驶往A地,乙车比甲车晚出发m h.设甲车行驶的时间为x(h),甲、乙两车离A地的距离分别为y1(km)、y2(km),图中线段OP表示y1与x的函数关系.(1)甲车的速度为60km/h;(2)若两车同时到达目的地,在图中画出y2与x的函数图象,并求甲车行驶几小时后与乙车相遇;(3)若甲、乙两车在距A地60km至72km之间的某处相遇,直接写出m的范围.【分析】(1)甲车的速度为120÷2=60(km/h);(2)求出乙车比甲车晚出发0.5h,即可画出图象,再求出y1=60x,y2=﹣80x+160,联立解析式解方程组即可得到答案;(3)求得y1=60x,y2=120﹣80(x﹣m)=﹣80x+120+80m,联立解方程组可得y1=y2=60(+m),根据甲、乙两车在距A地60km至72km之间的某处相遇,可列60<60(+m)<72,即可解得答案.【解析】解:(1)由图可得,甲车的速度为120÷2=60(km/h),故答案为:60;(2)∵乙车从B地以80km/h的速度匀速驶往A地,两车同时到达目的地,∴乙车行驶时间为120÷80=1.5(h),∵2﹣1.5=0.5(h),∴乙车比甲车晚出发0.5h,画出y2与x的函数图象如下:图象CD即为y2与x的函数图象,由题意得y1=60x,设CD的函数表达式为y2=﹣80x+b,将(2,0)代入y2=﹣80x+b,得b=160,∴y2=﹣80x+160,由﹣80x+160=60x,解得x=,∴甲车出发后h与乙车相遇,答:甲车出发后h与乙车相遇;(3)根据题意得y1=60x,y2=120﹣80(x﹣m)=﹣80x+120+80m,由60x=﹣80x+120+80m得:x=+m,当x=+m时,y1=y2=60(+m),∵甲、乙两车在距A地60km至72km之间的某处相遇,∴60<60(+m)<72,解得<m<,∴m的范围是<m<.【点睛】本题考查一次函数的应用,涉及待定系数法,解题的关键是数形结合数形的应用.22.某校八年级学生在数学课上进行了项目化学习研究,某小组研究如下:【提出驱动性问题】机场监控问题.【设计实践任务】选择“素材1”“素材2”,设计了“任务1”“任务2”“任务3”的实践活动.请你尝试帮助他们解决相关问题.机场监控问题的思考素材1如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行.素材22号试飞机(看成点Q)一直保持在1号机P的正下方从原点O处沿45°角爬升,到高4km 的A 处便立刻转为水平飞行,再过1min 到达B 处开始沿直线BC 降落,要求1min 后到达C(10,3)处.问题解决任务1求解析式和速度求出OA 段h 关于s 的函数解析式,直接写出2号机的爬升速度;任务2求解析式和坐标求出BC 段h 关于s 的函数解析式,并预计2号机着陆点的坐标;任务3计算时长通过计算说明两机距离PQ 不超过3km 的时长是多少.【分析】(1)设OA 段h 关于s 的函数解析式为正比例函数的一般形式,根据OA 与水平方向的夹角求出k 值,从而求出对应函数解析式;根据勾股定理,求出点O 与A 的距离,1号机与2号机在水平方向的速度相同,由速度=路程÷时间求出2号机的爬升速度即可;(2)先求出点B 的坐标,再利用待定系数法求出BC 段h 关于s 的函数解析式;当h =0时对应s 的值,从而求得2号机着陆点的坐标;(3)分别求出2号机在OA 段和BC 段PQ =3时对应的s 的值,根据图象,当s 处于这两者之间时PQ 不超过3km ,根据时间=路程÷速度求解即可.【解析】解:任务1:设OA 段h 关于s 的函数解析式为h =ks ,∴k ==tan45°=1,∴h =s ,∴当h =4时,s =4,∴OA 段h 关于s 的函数解析式为h =s (0≤s ≤4);2号机从O 点到达A 点飞行的路程为OA ==4(km ),所用时间为min ,∴2号机的爬升速度为4÷=3(km /min ).任务2:B 点的横坐标为4+1×3=7,∴B点的坐标为(7,4).设BC段h关于s的函数解析式为h=k1s+b(k1、b为常数,且k1≠0).将坐标B(7,4)和C(10,3)分别代入h=k1s+b,得,解得,∴BC段h关于s的函数解析式为h=﹣s+.当h=0时,0=﹣s+,解得s=19,∴预计2号机着陆点的坐标为(19,0).任务3:当2号机在OA段,且PQ=3时,5﹣s=3,解得s=2;当2号机在BC段,且PQ=3时,5﹣(﹣s+)=3,解得s=13,根据图象可知,当2≤s≤13时,两机距离PQ不超过3km,∴两机距离PQ不超过3km的时长是(13﹣2)÷3=(min).【点睛】本题考查一次函数的应用,理解题意并利用待定系数法求出函数关系式是解题的关键.23.【操作与发现】如图①,在正方形ABCD中,点N,M分别在边BC、CD上.连接AM、AN、MN.∠MAN=45°,将△AMD 绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而可得:DM+BN=MN.(1)【实践探究】在图①条件下,若CN=6,CM=8,则正方形ABCD的边长是12.(2)如图②,在正方形ABCD中,点M、N分别在边DC、BC上,连接AM、AN、MN,∠MAN=45°,若tan∠BAN=,求证:M是CD的中点.(3)【拓展】如图③,在矩形ABCD中,AB=12,AD=16,点M、N分别在边DC、BC上,连接AM、AN,已知∠MAN=45°,BN=4,则DM的长是8.【分析】(1)先证△AMN≌△EAN(SAS),得MN=EN.则MN=BN+DM.再由勾股定理得MN=10,则BN+DM=10,设正方形ABCD的边长为x,则BN=BC﹣CN=x﹣6,DM=CD﹣CM=x﹣8,得x﹣3+x ﹣4=5,求解即可;(2)设BN=m,DM=n,由(1)得MN=BN+DM=m+n,再由锐角三角函数定义得AB=3BN=3m,则CN=BC﹣BN=2m,CM=CD﹣DM=3m﹣n,然后在Rt△CMN中,由勾股定理得出方程,得3m=2n,即可解决问题;(3)延长AB至P,使BP=BN=4,过P作BC的平行线交DC的延长线于Q,延长AN交PQ于E,连接EM,则四边形APQD是正方形,得PQ=DQ=AP=AB+BP=16,设DM=a,则MQ=16﹣a,证△ABN∽△APE,得PE=BN=,则EQ=,然后在Rt△QEM中,由勾股定理得出方程,求解即可.【解析】(1)解:∵四边形ABCD是正方形,∴AB=CD=AD,∠BAD=∠C=∠D=90°,由旋转的性质得:△ABE≌△ADM,∴BE=DM,∠ABE=∠D=90°,AE=AM,∠BAE=∠DAM,∴∠BAE+∠BAM=∠DAM+∠BAM=∠BAD=90°,即∠EAM=90°,∵∠MAN=45°,∴∠EAN=90°﹣45°=45°,∴∠MAN=∠EAN,在△AMN和△AEN中,,∴△AMN≌△AEN(SAS),∴MN=EN,∵EN=BE+BN=DM+BN,∴MN=BN+DM,在Rt△CMN中,由勾股定理得:MN===10,则BN+DM=10,设正方形ABCD的边长为x,则BN=BC﹣CN=x﹣6,DM=CD﹣CM=x﹣8,∴x﹣6+x﹣8=10,解得:x=12,即正方形ABCD的边长是12;故答案为:12;(2)证明:设BN=m,DM=n,由(1)可知,MN=BN+DM=m+n,∵∠B=90°,tan∠BAN=,∴tan∠BAN==,∴AB=3BN=3m,∴CN=BC﹣BN=2m,CM=CD﹣DM=3m﹣n,在Rt△CMN中,由勾股定理得:(2m)2+(3m﹣n)2=(m+n)2,整理得:3m=2n,∴CM=2n﹣n=n,∴DM=CM,即M是CD的中点;(3)解:延长AB至P,使BP=BN=4,过P作BC的平行线交DC的延长线于Q,延长AN交PQ于E,连接EM,如图③所示:则四边形APQD是正方形,∴PQ=DQ=AP=AB+BP=12+4=16,设DM=a,则MQ=16﹣a,∵PQ∥BC,∴△ABN∽△APE,∴===,∴PE=BN=,∴EQ=PQ﹣PE=16﹣=,由(1)得:EM=PE+DM=+a,在Rt△QEM中,由勾股定理得:()2+(16﹣a)2=(+a)2,解得:a=8,即DM的长是8;故答案为:8.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、旋转的性质、勾股定理、锐角三角函数定义、相似三角形的判定与性质等知识;本题综合性强,熟练掌握正方形的性质和矩形的性质,证明三角形全等和三角形相似是解题的关键,属于中考常考题型.24.如图1,E点为x轴正半轴上一点,⊙E交x轴于A、B两点,交y轴于C、D两点,P点为劣弧上一个动点,且A(﹣1,0)、E(1,0).(1)的度数为120°;(2)如图2,连结PC,取PC中点G,连结OG,则OG的最大值为;(3)如图3,连接AC、AP、CP、CB.若CQ平分∠PCD交PA于Q点,求AQ的长;(4)如图4,连接PA、PD,当P点运动时(不与B、C两点重合),求证:为定值,并求出这个定值.【分析】(1)由已知条件可以得到CD垂直平分AE,所以CA=CE,由于CE=AE,所以可以证得三角形ACE为等边三角形,得到∠CEB=120°;(2)由于直径AB⊥CD,根据垂径定理,可以得到O是CD的中点,又G是CP的中点,连接PD,则OG∥PD,OG=,要求OG最大值,只需要求PD最大值,由于P是劣弧上的一动点,故当P,E,D三点共线,即PD为直径时,PD最大,此时OG最大;(3)由于直径AB⊥CD,根据垂径定理,可以得到,所以∠ACD=∠CPA,又CQ平分∠DCP,所以∠PCQ=∠DCQ,可以证明∠ACQ=∠AQC,所以AC=AQ,由(1)可得,AC=AE=2,所以AQ =2;(4)由直径AB⊥CD,可以得到AB垂直平分CD,所以AC=AD,∠CAD=2∠CAE=120°,将△ACP 绕A点顺时针旋转120°至△ADM,可以证明M,D,P三点共线,所以PC+PD=PM,可以证明△PAM 是顶角为120°的等腰三角形,过A做AG⊥PM于G,由于∠APM=30°,可以通过勾股定理或者三角函数证明PM=PA,所以=.【解析】解:(1)连接AC,CE,∵A(﹣1,0)、E(1,0),∴OA=OE=1,∵OC⊥AE,∴AC=CE,∵AE=CE,∴AC=CE=AE,∴∠CAE=60°,∴∠BEC=2∠CAB=120°,∴的度数为120°,故答案为:120;(2)由题可得,AB为⊙E直径,且AB⊥CD,由垂径定理可得,CO=OD,连接PD,如图2,又∵G为PC的中点,∴OG∥PD,且OG=,当D,E,P三点共线时,此时DP取得最大值,且DP=AB=2AE=4,∴OG的最大值为2,故答案为:2;(3)连接AC,BC,∵直径AB⊥CD,∴,∴∠ACD=∠CPA,∵CQ平分∠DCP,∴∠DCQ=∠PCQ,∴∠ACD+∠DCQ=∠CPA+∠PCQ,∴∠ACQ=∠AQC,∴AQ=AC,∵∠CAO=60°,AO=1,∴AC=2,∴AQ=2;(4)由题可得,直径AB⊥CD,∴AB垂直平分CD,如图4,连接AC,AD,则AC=AD,由(1)得,∠DAC=120°,将△ACP绕A点顺时针旋转120°至△ADM,∴△ACP≌△ADM,∴∠ACP=∠ADM,PC=DM,∵四边形ACPD为圆内接四边形,∴∠ACP+∠ADP=180°,∴∠ADM+∠ADP=180°,∴M、D、P三点共线,∴PD+PC=PD+DM=PM,过A作AG⊥PM于G,则PM=2PG,⋅∠APM=∠ACD=30°,在Rt△APG中,∠APM=30°,设AG=x,则AP=2x,∴,∴∴,∴∴为定值.【点睛】本题是一道圆的综合题,重点考查了垂径定理在圆中的应用,最后一问由“共顶点,等线段”联想到旋转,是此题的突破口,同时,要注意顶角为120度的等腰三角形腰和底边比是固定值.。
历年浙教版杭州地区初三数学中考压轴题精选及答案
![历年浙教版杭州地区初三数学中考压轴题精选及答案](https://img.taocdn.com/s3/m/c91650e4caaedd3382c4d312.png)
杭州地区中考数学压轴题精选25.(本小题满分10分)为了参加市科技节展览,同学们制造了一个截面为抛物线形的隧道模型,用了三种正方形的钢筋支架.在画设计图时,如果在直角坐标系中,抛物线的函数解析式为2y x c =-+,正方形ABCD 的边长和正方形EFGH 的边长之比为5:1,求:(1)抛物线解析式中常数c 的值;(2)正方形MNPQ 的边长.26.(本小题满分12分)在三角形ABC 中,60,24,16O B BA cm BC cm ∠===.现有动点P 从点A 出发,沿射线AB 向点B 方向运动;动点Q 从点C 出发,沿射线CB 也向点B 方向运动.如果点P 的速度是4cm /秒,点Q 的速度是2cm /秒,它们同时出发,求:(1)几秒钟后,ΔPBQ 的面积是ΔABC 的面积的一半?(2)在第(1)问的前提下,P,Q 两点之间的距离是多少?24、(本题12分)如图,在矩形ABCD 中,AD=8,点E 是AB 边上的一点,AE=22,过D,E 两点作直线PQ ,与BC 边所在的直线MN 相交于点F 。
(1)求tan ∠ADE 的值;(2)点G 是线段AD 上的一个动点(不运动至点A,D ),GH ⊥DE 垂足为H ,设DG 为x ,四边形AEHG 的面积为y ,请求出y 与x 之间的函数关系式;(3)如果AE=2EB ,点O 是直线MN 上的一个动点,以O 为圆心作圆,使⊙O 与直线PQ相切,同时又与矩形ABCD 的某一边相切。
问满足条件的⊙O 有几个?并求出其中一个圆的半径。
25(本题14分)如图,抛物线2y ax bx c =++经过点O(0,0),A(4,0),B(5,5),点C 是y 轴负半轴上一点,直线l 经过B,C 两点,且5tan 9OCB ∠=(1)求抛物线的解析式;(2)求直线l 的解析式;(3)过O,B 两点作直线,如果P 是直线OB 上的一个动点,过点P 作直线PQ 平行于y轴,交抛物线于点Q 。
2014年中考数学压轴题精编--浙江篇(试题及答案)
![2014年中考数学压轴题精编--浙江篇(试题及答案)](https://img.taocdn.com/s3/m/7f0b0ba9f01dc281e43af0ce.png)
2014年中考数学压轴题精编—浙江篇1.(浙江省杭州市)在平面直角坐标系xOy 中,抛物线的解析式是y =41x2+1,点C 的坐标为(-4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1)写出点M 的坐标;(2)当四边形CMQP 是以MQ ,PC 为腰的梯形时. ①求t 关于x 的函数解析式和自变量x 的取值范围;②当梯形CMQP 的两底的长度之比为1 :2时,求t 的值.1.解:(1)∵OABC 是平行四边形,∴AB ∥OC ,且AB =OC =4∵A ,B 在抛物线上,y 轴是抛物线的对称轴,∴A ,B 的横坐标分别是2和-2代入y =41x2+1,得A (2,2),B (-2,2) ∴M (0,2) ················································· 2分 (2)①过点Q 作QH ⊥x 轴于H ,连接CM 则QH =y ,PH =x -t 由△PHQ ∽△COM ,得:2y =4tx ,即t =x -2y ∵Q (x ,y )在抛物线y =41x2+1上 ∴t =-21x2+x -2 ··········································· 4分 当点P 与点C 重合时,梯形不存在,此时,t =-4,解得x =1±5 当Q 与B 或A 重合时,四边形为平行四边形,此时,x =±2∴x 的取值范围是x ≠1±5且x ≠±2的所有实数 ········································ 6分 ②分两种情况讨论:ⅰ)当CM >PQ 时,则点P 在线段OC 上∵CM ∥PQ ,CM =2PQ ,∴点M 纵坐标为点Q 纵坐标的2倍 即2=2(41x2+1),解得x =0 ∴t =-21×02+0-2=-2 ········································································· 8分 ⅱ)当CM <PQ 时,则点P 在OC 的延长线上 ∵CM ∥PQ ,CM =21PQ ,∴点Q 纵坐标为点M 纵坐标的2倍 即41x2+1=2×2,解得:x =±32 ························································· 10分 x y O B C A11P Q M xyOBC A11P QH M当x =-32时,得t =-21×(-32)2-32-2=-8-32 当x =32时,得t =-21×(32)2+32-2=32-8 ································· 12分2.(浙江省台州市)如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转,DE ,DF 分别交线段..AC 于点M ,K . (1)观察:①如图2、图3,当∠CDF =0°或60°时,AM +CK _______MK (填“>",“<”或“=”).②如图4,当∠CDF =30°时,AM +CK _______MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果MK 2+CK 2=AM 2,请直接写出∠CDF 的度数和AM MK的值. 2.解:(1)①= ②> ··················································································· 4分 (2)> ································································································ 6分 证明:作点C 关于FD 的对称点G ,连接GK 、GM 、GD 则GD =CD ,GK =CK ,∠GDK =∠CDK ∵D 是AB 的中点,∴AD =CD =GD ∵∠A =30°,∴∠CDA =120°∵∠EDF =60°,∴∠GDM +∠GDK =60° ∠ADM +∠CDK =60°∴∠ADM =∠GDM . ·············································································· 9分 又∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM∵GM +GK >MK ,∴AM +CK >MK . ······················································· 10分 (3)∠CDF =15°,AMMK=23. ···························································· 12分 DB CAF EM K 图1DBC A(F ,K )EM 图2DBC A FEK图3(M )DBCAF EM K图4DBC AFEMKG3.(浙江省台州市)如图,Rt △ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP =AQ .点D ,E 分别是点A ,B 以Q ,P 为对称中心的对称点,HQ ⊥AB 于Q ,交AC 于点H .当点E 到达顶点A 时,P ,Q 同时停止运动.设BP 的长为x ,△HDE 的面积为y .(1)求证:△DHQ ∽△ABC ;(2)求y 关于x 的函数解析式并求y 的最大值;(3)当x 为何值时,△HDE 为等腰三角形?3.解:(1)∵A 、D 关于点Q 成中心对称,HQ ⊥AB , ∴∠HQD =∠C =90°,HD =HA∴∠HDQ =∠A . ··················································································· 3分 ∴△DHQ ∽△ABC . ··············································································· 4分 (2)①如图1,当0<x≤2。
2021年浙江省中考数学三轮复习冲刺压轴题最后猜想:四边形
![2021年浙江省中考数学三轮复习冲刺压轴题最后猜想:四边形](https://img.taocdn.com/s3/m/2068609f31b765ce0408145a.png)
2021年浙江省中考数学三轮复习冲刺压轴题最后猜想:四边形1.(1)问题呈现:如图①,在一次数学折纸活动中,有一张矩形纸片ABCD ,点E在AD上,点F在BC上,小华同学将这张矩形纸片沿EF翻折得到四边形C′D′EF,C′F交AD于点H ,小华认为△EFH 是等腰三角形,你认为小华的判断符合题意吗?请说明理由.(2)问题拓展:如图②,在“问题呈现”的条件下,当点C的对应点C′落在AD上时,已知DE=a ,CD=b ,CF=c ,写出a、b、c满足的数量关系,并证明你的结论.(3)问题应用:如图③,在平行四边形ABCD中,AB=3,AD=4.将平行四边形ABCD沿对角线AC 翻折得到△ACE ,AE交BC于点F .若点F为BC的中点,则平行四边形ABCD的面积为________.2.(1)(探究证明)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH ,EF分别交AD、BC于点E、F ,GH分别交AB、DC于点G、H ,求证:EFGH =ABAD;(2)(结论应用)如图②,将矩形ABCD沿EF折叠,使得点B和点D重合,若AB=2,BC=3.求折痕EF的长;(3)(拓展运用)如图③,将矩形ABCD沿EF折叠.使得点D落在AB边上的点G处,点C落在点P处,得到四边形EFPG ,若AB=2,BC=3,EF=2√103,请求BP的长.3.如图,矩形ABCD中,AB=4,BC=5,M为AB的中点,点P是BC边上一点(不与B ,C重合),连接MP ,PF⊥MP交CD于点F .点B ,B'关于MP对称,点C ,C′关于PF对称,连接B'C .(1)求证:△PFC∽△MPB .(2)①当BP=2时,B'C'=________;②求B'C的最小值.(3)是否存在点P ,使点B',C′重合?若存在,请求出此时M ,F的距离;若不存在,请说明理由.4.如图,在△ABC中,∠C=90°,且BC,AC,AB是三个连续的偶数,在边AB上取点M,N(点M 在BN之间),使BM=3AN.点D,E分别是边AC,BC的中点,当点P从点D出发沿DE方向匀速运动到点E时,点Q恰好从点M出发沿BA方向匀速运动到点N.记QN=x,PD=y,当Q为AB中点时,y=2.(1)求BC,AC,AB的长.(2)求y关于x的函数表达式.(3)①连结PQ,当PQ所在直线与△ABC的某一边所在的直线垂直时,求所有满足条件的x的值.②过点P作PH⊥AB于点H,当△PQH为等腰三角形时,求x的值.5.如图1,在△ABC中,BD为∠ABC的平分线,点D在AC上.(1)求证:ADCD =ABBC(2)如图2,已知AE为BC边的中线,且AE=BE.在射线BD上取一点A'使AE=A'E,A'E交AC于点F,过点A'作AB的垂线,交BA的延长线于点G,连接EG交BD于点H,连接CH.①求证:四边形AGA′F为矩形;②若tanC=34,△BGH的面积为S,请求出△CEH的面积(用含S的代数式表示).6.△ABC为等边三角形,AB=8,AD⊥BC于点D,点E为线段AD上一点,AE=2√3.以AE为边作等边三角形AEF,连接CE,N为CE的中点.(1)如图1,当点E和点F在直线AC两侧时,EF与AC交于点M,连接MN,①求证:ME=MF;②求线段MN的长;(2)将图1中的△AEF绕点A逆时针旋转,旋转角为α,点M为线段EF的中点,连接BE,MN,DM,①如图2,当α=90°时,请直接写出DMBE的值;②连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出tan∠DAN的值.7.如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在边CD延长线上,且满足∠MAN=90°,联结MN ,AC ,MN与边AD交于点E .(1)求证:AM=AN(2)如果∠CAD=2∠NAD,求证:AM2=√2AB⋅AE;(3)MN交AC点O ,若CMBM =k,则OMON=________(直接写答案、用含k的代数式表示).8.综合与探究问题情境在Rt△ABC中,∠BAC=90°,AB=AC ,点D是射线BC上一动点,连接AD ,将线段AD绕点A逆时针旋转90°至AE ,连接DE ,CE .(1)探究发现如图1,BD=CE ,BD⊥CE ,请证明;探究猜想;(2)如图2,当BD=2DC时,猜想AD与BC之间的数量关系,并说明理由;(3)探究拓广当点D在BC的延长线上时,探究并直接写出线段BD ,DC ,AD之间的数量关系.9.综合与实践.问题情境:综合与实践课上,同学们开展了以“图形的旋转”为主题的数学活动.实践操作:如图1,将等腰Rt△AEF绕正方形ABCD的顶点A逆时针方向旋转,其中∠AEF=90,EA=EF ,连接CF ,点H为CF的中点,连接HD ,HE ,DE ,得到△DHE .(1)应用探究:勤奋组:如图2,当点E恰好落在正方形ABCD的对角线AC上时,判断△DHE的形状,并说明理由;(2)善思组:如图3,当点E恰好落在正方形ABCD的边AB上时,(1)中的结论还成立吗?请说明理由;深入探究:(3)创新小组:为定值,请你直接写出其值________.发现若连接BE ,在旋转Rt△AEF的过程中,BECF10.如图,在平行四边形ABCD中,过点D作DE⊥AC于点E,DE的延长线交AB于点F,过点B作BG//DF 交DC于点G,交AC于点M.过点G作GN⊥DF于点N.(1)求证:四边形NEMG为矩形;(2)若AB=26,GN=8,sin∠CAB=513,求线段AC的长.11.已知:正方形ABCD的边长为4,E是边CB上的一个动点,过点D作DF⊥DE,交BA的延长线于点F,EF交对角线AC于点M,DE交AC于点N.(1)求证:CE=AF;(2)求证:FM=EM;(3)随着点E在边CB上的运动,NA⋅MC的值是否变化?若不变,请求出NA⋅MC的值;若变化,请说明理由.12.如图,在折纸游戏中,正方形ABCD沿着BE,BF将BC,AB翻折,使A,C两点恰好落在点P .(1)求证:∠EBF=45° .(2)如图,过点P作MN//BC,交BF于点Q .①若BM=5,且MP⋅PN=10,求正方形折纸的面积.②若QP=12BC,求AMBM的值.13.如图(1)证明推断:如图(1),在正方形ABCD 中,点E ,Q 分别在边BC,AB 上,DQ ⊥AE 于点O ,点G ,F 分别在边CD,AB 上,GF ⊥AE .求证:AE =FG ; (2)类比探究:如图(2),在矩形ABCD 中,BC AB=k (k 为常数).将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形FEPG,EP 交CD 于点H ,连接AE 交GF 于点O.试探究GF 与AE 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,当时k =34,若tan ∠CGP =43,GF =2√5,求CP 的长.14.点E 是矩形ABCD 边AB 延长线上的一动点,在矩形ABCD 外作Rt △ECF ,其中∠ECF =90°,过点F 作FG ⊥BC ,交BC 的延长线于点G ,连接DF ,交CG 于点H.(1)发现:如图1,若AB =AD ,CE =CF ,猜想线段DH 与HF 的数量关系是________;(2)探究:如图2,若AB =nAD ,CF =nCE ,则(1)中的猜想是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)拓展:在(2)的基础上,若射线FC 过AD 的三等分点,AD =3,AB =4,则直接写出线段EF 的长.15.如图,过正方形ABCD 的顶点A 作AP ⊥AQ ,将∠PAQ 绕点A 旋转,AP 交射线CB 交于点E ,AQ 交射线CD 交于点F ,连接EF ,M 为EF 的中点,连接BM .(1)求证:AE=AF;(2)写出CF与BM的数量关系,并说明理由;(3)若BC=4,BE=2,直接写出BM的长.16.在矩形ABCD中,AB=2BC,点E是直线AB上的一点,点F是直线BC上的一点,且满足AE=2CF,连接EF交AC于点G.(1)tan∠CAB=________;(2)如图1,当点E在AB上,点F在线段BC的延长线上时,①求证:EG=FG;②求证:CG=√5BE;4(3)如图2,当点E在BA的延长线上,点F在线段BC上时,AC与DF相交于点H,①EG=FG这个结论是否仍然成立?请直接写出你的结论:②当CF=1,BF=2时,请直接写出GH的长.17.(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.求证:FG=AE;(2)类比探究:如图(2),在矩形ABCD中,BCAB =23将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形EFGP,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,若BEBF =34,GF=2√10,求CP的长.18.教材呈现:如图是华师版九年级上册数学教材第103页的部分内容.已知:如图①,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=12AB.(1)请写出完整的证明过程.(2)结论应用:如图②,BE、CF是锐角△ABC的两条高,M、N分别是BC、EF的中点,判断EF与MN的位置关系,并证明你的结论.(3)在(2)的条件下,若EF=6,BC=24,则MN的长为________.19.如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC、CF为邻边作▱DCFE,连接CE.(1)若四边形DCFE是菱形,判断四边形CEDG的形状,并证明你的结论.(2)在(1)条件下,连接DF,若BC=√3,求DF的长.20.如图,在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标是(8,6),点M为OA边上的一动点(不与点O、A重合),连接CM,过点M作直线l⊥CM,交AB于点D,在直线l上取一点E(点E在点M右侧),使得CMME =43,过点E作EF//AO,交BO于点F,连接BE,设OM=m(0<m<8).(1)填空:点E的坐标为________(用含m的代数式表示);(2)判断线段EF的长度是否随点M的位置的变化而变化?并说明理由;(3)①当m为何值时,四边形BCME的面积最小,请求出最小值;②在x轴正半轴上存在点G,使得△GEF是等腰三角形,请直接写出3个符合条件的点G的坐标(用含m的代数式表示).21.已知等腰Rt△ABC和等腰Rt△AEF中,∠ACB=∠AFE=90°,AC=BC ,AF=EF ,连接BE ,点Q为线段BE的中点.(1)如图1,当点E在线段AC上,点F在线段AB上时,连接CQ ,若AC=8,EF=2 √2,求线段CQ的长度.(2)如图2,B、A、E三点不在同一条直线上,连接CE ,且点F正好落在线段CE上时,连接CQ、FQ ,求证:CQ=FQ .(3)如图3,AC=8,AE=4 √2,以BE为斜边,在BE的右侧作等腰Rt△BEP ,在边CB上取一点M ,使得MB=2,连接PM、PQ ,当PM的长最大时,请直接写出此时PQ2的值.22.请完成下面的几何探究过程:(1)观察填空:如图1,在Rt△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则①∠CBE的度数为________;②当BE=________时,四边形CDBE为正方形.(2)探究证明:如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍得到线段CE,连DE,BE则:①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;②当CD⊥AB时,求证:四边形CDBE为矩形(3)拓展延伸:如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.23.探索与应用:如图(1)问题解决:如图1.在平行四边形纸片ABCD(AD>AB)中,将纸片沿过点A的直线折叠,使点B落在AD上的点B′处,折线AE交BC于点E,连接B'E.求证:四边形ABEB′是菱形.(2)规律探索:如图2,在平行四边形纸片ABCD(AD>AB)中,将纸片沿过点P的直线折叠,点B 恰好落在AD上的点Q处,点A落在点A′处,得到折痕FP,那么△PFQ是等腰三角形吗?请说明理由. (3)拓展应用:如图3,在矩形纸片ABCD(AD>AB)中,将纸片沿过点P的直线折叠,得到折痕FP,点B落在纸片ABCD内部点B′处,点A落在纸片ABCD外部点A′处,A′B′与AD交于点M,且A′M =B′M.已知:AB=4,AF=2,求BP的长.24.定义:若一个三角形存在两个内角之差是第三个内角的两倍,则称这个三角形为关于第三个内角的“差倍角三角形”.例如,在ΔABC中,∠A=100°,∠B=60°,∠C=20°,满足∠A−∠B=2∠C,所以ΔABC是关于∠C的“差倍角三角形”.(1)若等腰ΔABC是“差倍角三角形”,求等腰三角形的顶角∠A的度数;(2)如图1,ΔABC中,AB=3,AC=8,BC=9,小明发现这个ΔABC是关于∠C的“差倍角三角形”.他的证明方法如下:证明:在BC上取点D,使得BD=1,连结AD,(请你完成接下去的证明)(3)如图2,五边形ABCDE内接于圆,连结AC,AD与BE相交于点F,G,AB=BC=DE,ΔABE是关于∠AEB的“差倍角三角形”.①求证:四边形CDEF是平行四边形;②若BF=1,设AB=x,y=S四边形CDEFSΔAEG,求y关于x的函数关系式.25.如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系,已知OA=8,OC=10,将矩形OABC绕点O逆时针方向旋转α(0<α<180°)得到矩形ODEF.(1)当点E恰好落在y轴上时,如图1,求点E的坐标.(2)连接AC,当点D恰好落在对角线AC上时,如图2,连接EC,EO,①求证:△ECD≌△ODC;②求点E的坐标.(3)在旋转过程中,点M是直线OD与直线BC的交点,点N是直线EF与直线BC的交点,若BM=12BN,请直接写出点N的坐标.26.如图1,在Rt△ABC中,∠ABC=90°,D,E分别为边BC,AC上的点,连接DE,过D作DF⊥DE交AC边于点F(F不与点C重合),点G为射线DF上一点,连接EG,使∠BAC=∠DEG=α.(1)连接CG,求证:△DEF∽△CGF;(2)当α=45°时,请探究AE,BD与CG三者满足的数量关系,并证明;CD,AC=10,请直(3)如图2,点M,N分别为EG和AC的中点,连接MN.若tanα=2,BD=13接写出MN的最小值.27.如图(1)问题发现如图1,Rt△ABC中,∠ACB=90°,AC=3,BC=4.CD⊥AB于点D,则CD的长为________;(2)问题探究如图2,矩形ABCD中,AB=3,BC=4,点M、N分别在BD,BC上,求CM+MN的最小值;(3)问题解决有一度假山庄,它的平面图为矩形ABCD,现在山庄管理人员想在山庄内找到一点G(点G不在AB、BC、AD上)与CD共同构成一个三角形的绿化区,并且度假山庄大门E到点G的距离与到拐角B的距离相等,如图3,经过测量得知AB=30m,BC=40m,BE=10m,请问绿化区△GCD的面积是否存在最小值,若存在,请求出最小值;若不存在,请说明理由.28.如图,平面直角坐标系中,四边形ABCO为矩形,C点在x轴上,A点在y轴上,B点坐标是(3,3√3).点E从点A出发,沿AO向点O运动,速度为每秒√3个单位长度,同时点F从点A出发,沿AB向点B 运动,速度为每秒1个单位长度,当一点到达终点时,另一点也随之停止运动.将△AEF沿直线EF折叠,点A的对应点为G点,设运动时间为t秒.(1)当点G落在线段OB上时,t=________;当点G落在线段CB上时,t=________;(2)在整个运动过程中,求△EFG与△ABO重叠部分的面积S与t的函数表达式,并写出t的取值范围;(3)当点G落在线段BC上时,是否在x轴上存在点N,直线EF上存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.29.正方形ABCD的边长是5,点M是直线AD上一点,连接BM,将线段BM绕点M逆时针旋转90°得到线段ME,在直线AB上取点F,使AF=AM,且点F与点E在AD同侧,连接EF,DF.(1)如图1,当点M在DA延长线上时,求证:△ADF≌△ABM;(2)如图2,当点M在线段AD上时,四边形DFEM是否还是平行四边形,说明理由;(3)在(2)的条件下,线段AM与线段AD有什么数量关系时,四边形DFEM的面积最大?并求出这个面积的最大值.30.如图1,正方形ABCD的边长为5,点E为正方形CD边上一动点,过点B作BP⊥AE于点P ,将△APB 绕点A逆时针旋转90°得△AP′D,延长BP交P′D于点F ,连结CP.(1)判断四边形的AP′FP的形状,并说明理由;(2)若DF=1,求S△CPB;(3)如图2,若点E恰好为CD的中点时,请判断CP与DF的数量关系,请说明理由.31.已知矩形OABC在平面直角坐标系中,点A(1,0),点C(0,2),点O(0,0),把矩形OABC绕点O顺时针旋转135°,得到矩形ODEF,点A ,B ,C的对应点分别为D ,E ,F .DE交y轴于点M .(1)如图①,求∠FOM的大小及OM的长;(2)将矩形ODEF沿y轴向上平移,得到矩形O′D′E′F′,点O ,D ,E ,F的对应点分别为O′,D′,E′,F′,设OO′=t(0<t≤2).①如图②,直线D′E′与x轴交于点N ,若CN//BO,求t的值;②若矩形O′D′E′F′与矩形OABC重叠部分面积为S,当重叠部分为五边形时,试用含有t的式子表示S,并写出t的取值范围(直接写出答案即可).32.在平面直角坐标系中,矩形OABC的顶点A ,C分别在x轴、y轴上,点B的坐标为(2,2√3),将矩形OABC绕点A顺时针旋转α,得到矩形O1AB1C1,点O ,B ,C的对应点分别为O1,B1,C1.(1)如图①,当α=45°时,O1C1与AB相交于点E ,求点E的坐标;(2)如图②,当点O1落在对角线OB上时,连接BC1,四边形OAC1B是何特殊的四边形?并说明理由;(3)连接BC1,当BC1取得最小值和最大值时,分别求出点B1的坐标(直接写出结果即可).33.如图,在平面直角坐标系xOy中,已知A(9,0)、B(9,12),点M、N分别是线段OB、AB上的动点,个单位、2个单位,作MH⊥OA于H.现点M、N分别从点O、A同时出发,当其中一点速度分别是每秒53到达端点时,另一个点也随之停止运动,设运动时间为t秒(t≥0).(1)是否存在t的值,使四边形BMHN为平行四边形?若存在,求出t的值;若不存在,说明理由;(2)是否存在t的值,使△OMH与以点A、N、H为顶点的三角形相似?若存在,求出t的值;若不存在,说明理由;(3)是否存在t的值,使四边形BMHN为菱形?若存在,求出t的值;若不存在,请探究将点N的速度改变为何值时(匀速运动),能使四边形BMHN在某一时刻为菱形.34.如图所示,BA⊥x轴于点A ,点B的坐标为(﹣1,2),将△OAB沿x轴负方向平移3个单位,平移后的图形为△EDC .(1)直接写出点C和点E的坐标;(2)在四边形ABCD中,点P从点A出发,沿“AB→BC→CD”移动,移动到点D停止.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t为何值时,点P的横坐标与纵坐标互为相反数;②用含t的式子表示点P在运动过程中的坐标(写出过程);③当5秒<t<7秒时,四边形ABCP的面积为4,求点P的坐标.35.如图(1),在平面直角坐标系中,点A ,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD ,连接AC ,BD ,构成平行四边形ABDC .(1)请写出点C的坐标为________,点D的坐标为________,S四边形ABDC________;(2)点Q在y轴上,且S△QAB=S四边形ABDC ,求出点Q的坐标;(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.答案1. (1)解:小华的判断是正确的.在矩形ABCD中,AD∥BC,∴∠HEF=∠EFC.由折叠,得∠HFE=∠EFC,∴∠HFE=∠HEF∴HE=HF∴△EFH是等腰三角形(2)解:a2+b2=c2.在矩形ABCD中,∠D=90°,由折叠,得∠D′=∠D=90°,D′E=DE=a,C′D′=CD=b,C′F=CF=c,由问题呈现,得C′E=C′F=c.在Rt△C′D′E中,D′E2+C′D′2=C′E2,∴a2+b2=c2.(3)3√72. (1)证明:如图①,过点A作AP∥EF,交BC于P,过点B作BQ∥GH,交CD于Q,BQ交AP 于T.∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BGHQ都是平行四边形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠BAT+∠ABT=90°.∵四边形ABCD是矩形,∴∠ABP=∠C=90°,AD=BC,∴∠ABT+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP∽△BCQ,∴EFGH =ABAD.(2)解:如图②中,连接BD.∵四边形ABCD是矩形,∴∠C=90°,AB=CD=2,∴BD=√BC2+CD2=√32+22=√13, ∵D,B关于EF对称,∴BD⊥EF,∴EFBD =ABAD,∴√13=23,∴EF=2√133.(3)解:如图③中,过点F作FH⊥EG于H,过点P作PJ⊥BF于J.∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=3,∠A=90°,∴2√103DG = 23,∴DG=√10,∴AG=√DG2−AD2=√10−9=1,由翻折可知:ED=EG,设ED=EG=x,在Rt△AEG中,∵EG2=AE2+AG2,∴x2=AG2+AE2,∴x2=(3﹣x)2+1,∴DE =EG =53, ∵FH ⊥EG ,∴∠FHG =∠HGP =∠GPF =90°, ∴四边形HGPF 是矩形, ∴FH =PG =CD =2,∴EH =√FF 2−FH 2=(2√103)=23,∴GH =FP =CF =EG ﹣EH =53﹣23=1,∵PF ∥EG ,EA ∥FB , ∴∠AEG =∠JPF , ∵∠A =∠FJP =90°, ∴△AEG ∽△JFP , ∴AE FJ =AG PJ =EG FP,∴43FJ=1PJ =531,∴FJ =45,PJ =35,∴BJ =BC ﹣FJ ﹣CF =3﹣45﹣1=65,在Rt △BJP 中,BP =√BJ 2+PJ 2=√(35)2+(65)2=3√55.3. (1)证明:∵PF ⊥MP , ∴∠FPC+∠MPB =90°, ∵∠PMB+∠MPB =90°, ∴∠FPC =∠PMB , ∵∠FCP =∠B , ∴△PFC ∽△MPB ;(2)解:①1 ②如图2,连接MB',CM ,∵M 为AB 的中点,∴MB =MB'=2,∴MB'+ CB'≥CM ,∴当点B'在线段CM 上时,CB'有最小值,∵CM =√BC 2+BM 2=√25+4=√29,∴CB'的最小值=√29﹣2;(3)解:存在,理由如下:如图4,设B',C'重合点为N ,连接PN ,MN ,NF ,∵点B ,N 关于MP 对称,点C ,N 关于PF 对称,∴BP =PN ,PC =PN ,MN =BM =2,FN =CF ,∠B =∠MNP =90°,∠C =∠PNF =90°, ∴点M ,点N ,点F 三点共线,PB =PC =PN =52, ∵∠MPF =90°,∴∠MPB+∠FPC =90°=∠MPB+∠BMP , ∴∠BMP =∠FPC , 又∵∠B =∠C =90°, ∴△BMP ∽△CPF , ∴BPCF =BM CP, ∴CF =52×522=258,∴MF =MN+NF =2+ 258=418.4. (1)解:设AC=x ,则BC=x-2,AB=x+2,由勾股定理,得(x −2)2+x 2=(x +2)2,解得x =8,或x =0(舍去), ∴BC=6,AC=8,AB=10.(2)解:设AN=a ,则BM=3a ,y =kx +b ,∵ED 为△ABC 的中位线,∴ED= AB 2=5由题意,得{x =0y =5,{x =10−4a y =0,{x =5−ay =2, 把{x =0y =5,{x =10−4a y =0,{x =5−ay =2代入y =kx +b , 得{b =5k(10−4a)+b k(5−a)+b =2=0,解得{a =57b =5k =−710,∴y =−710x +5(3)解:① 1)当PQ ⊥BC 时,四边形ADPQ 为平行四边形,则DP=AQ ,y =a +x ,即−710x +5=57+x , 解得x =300119;2)当PQ⊥AC时,四边形PQBE为平行四边形,则PE=BQ,5−y=10−a−x,即5−(−710x+5)=10−57−x,解得x=650119;3)当PQ⊥AB时(如图1),作DH⊥AB于H,则AH=a+x−y=165,即57+x−(−710x+5)=165,解得x=524119.∴当x=300119,650119,524119时,PQ所在直线与△ABC的某一边所在的直线垂直.(3)②如图2,作PH⊥AB于点H,则QH=PH=EBsinB= 3×45=125,AH= 57+x−125=y+ADcosA=y+4×45,把y=−710x+5,代入,得5 7+x−125=−710x+5+4×45,解得x=692119.(3)②如图3,作PH⊥AB于点H,则QH=PH=EBsinB= 3×45=125,AH= 57+x+125=y+ADcosA=y+4×45,把y=−710x+5,代入,得5 7+x+125=−710x+5+4×45,解得x=3561195. (1)证明:方法1.过点D作DM∥AB交BC于点M.则△ABC∽△DMC,∠1=∠2,ADCD =BMCM∴DMCM=ABBC∵BD为∠ABC的平分线∴∠1=∠3 ∴∠2=∠3∴DM=BM∴ADCD =BMCM=DMCM=ABBC即ADCD=ABBC方法2.过点C作CM∥AB交BD的延长线于点M,通过相似可证. 方法3.过点D作BA,BC的垂线,通过两个等高三角形面积比可证.(2)解:①证明:由题意知,AE=BE=CE∴∠3=∠4,∠BAC=90°即AC⊥AB又∠1=∠3,A′G=AB∴∠1=∠4,AG∥AC∴A′E∥AB∴四边形AGA′F为平行四边形∵A′G⊥AB∴▱AGA′F为矩形②解:由题意,在Rt△ABC中,可设AB=3t,AC=4t,则BC=5t∴EF=32t,A′E=52t,∴AG=A′F=52t−32t=t在△BEG中由(1)可得: EHGH =BEBG=52t3t+t=58∵AE为BC边的中线,∴S△CEH=S△BEH∴S△CEHS△BEH=S△BEHS△BGH=EHGH=58∴S△CEH=58S△BGH=58S6. (1)解:①如图1中,∵△ABC是等边三角形,AD⊥BC,∴∠CAD= 12CAB=30°,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,∴∠EAM=∠FAM=30°,∴ME=MF.②∵AE=AF,EM=MF,∴AM⊥EF,∵AM=AE•cos30°=2 √3×√32=3,∵等边三角形中AC=AB=8,∴CM=AC-AM=5,∵EM=MF= √3,∴CE= √CM2+ME2=√52+(√3)2=2√7,∵CN=NE,∴MN= 12EC= √7.(2)①√32;②7√397. (1)证明:∵四边形ABCD是正方形,∴AB=AD,∠CAD=45°=∠ACB,∠BAD=90°=∠CDA=∠B,∴∠BAM+∠MAD=90°,∵∠MAN=90°,∴∠MAD+∠DAN=90°,∴∠BAM=∠DAN,∵AD=AB,∠ABC=∠ADN=90°,∴△ABM≅△ADN(ASA)∴AM=AN;(2)证明:∵AM=AN,∠MAN=90°∴∠MNA=45°,∵∠CAD=2∠NAD=45°,∴∠NAD=22.5°,∴∠CAM=∠MAN−∠CAD−∠NAD=22.5°,∴∠CAM=∠NAD,∠ACB=∠MNA=45°,∴△AMC~△AEN,∴AMAE =ACAN,∴AM⋅AN=AC⋅AE,∵AN=AM,AC=√2AB,∴AM2=√2AB⋅AE;(3)kk+28. (1)解:由题意得,∠BAC=∠DAE=90°∵∠BAD+∠CAD =∠CAE+∠CAD∴∠BAD=∠CAE∵线段AD绕点A逆时针旋转90°至AE ∴AD=AE又∵AB=AC,∴△BAD≌△CAE∴BD=CE,∠B=∠ACE=45°∴∠ECD=90°,BD⊥CE.(2)解:由(1)得:△BAD≌△CAE ∴BD=CE,∠B=∠ACE=45°∵CD=13BC,BD=2DC,即BD=23BC,∴BD=CE=23BC,∵AD=AE∴DE=√AD2+AE2=√2AD∴∠B=∠ACB=45°∴∠BCE=∠ACB+∠ACE =90°∴CD2+CE2=DE2,即(13BC)2+(23BC)2=2AD2,∴AD=√106BC;(3)解:如图,过点A作AM⊥BC交BC于点M∵∠BAC=90°,AB=AC∴BM=CM=12BC∴AM=BM=CM=12BC∴AM=12BC=12(BD−CD),DM=CM+CD=12BC+CD=12(BD+CD)∵AM2+DM2=AD2∴[12(BD−CD)]2+[12(BD+CD)]2=AD2∴BD2+CD2=2AD2.9. (1)解:结论:△DHE是等腰直角三角形.理由:如图2中,∵四边形ABCD是正方形,∴∠CDF=90°,∠DCA=45°,∵点H是CF的中点,∴DH=DH=HF=12CF,∵∠CEF=90°,CH=HF,∴EH=CH=HF=12CF,∴DH=HE,∵DH=CH=HE,∴∠HCD=∠HDC,∠HCE=∠HEC,∵∠DHF=∠HDC+∠HCD,∠FHE=∠HCE+∠HEC,∴∠DHE=2∠DCH+2∠HCE=2∠DCA=90°,∴△DHE是等腰直角三角形.(2)解:如图3中,结论成立.理由:连接BH,过点H作HG⊥AB于G.∵四边形ABCD是正方形,∠EAF=45°∴A,F,A共线,∵CB=CD,∠BCH=∠DCH=45°,CH=CH,∴△BCH≌△DCH(SAS),∴DH=BH,∠CDH=∠CBH,∵∠FEA=∠HGA=∠CBA=90°,∴EF∥GH∥BC,∴BGEG =CHHF,∵CH=HF,∴GB=GE,∵HG⊥BE,∴HB=HE,∴∠HBE=∠HEB,HE=HD,∵∠CDA=∠CBA=90°,∠CDH=∠ABH,∴∠ADH=∠ABH=∠HEB,∵∠HEB+∠AEH=180°,∴∠ADH+∠AEH=180°,∴∠DHE+∠DAE=180°,∵∠DAE=90°,∴∠DHE=90°,∴△DHE是等腰直角三角形.(3)√2210. (1)解:∵DE⊥AC,GN⊥DF,∴∠GNE=∠MEN=90°,∵BG//DF,∴∠MGN+∠GNE=180°,∴∠MGN=90°,∴四边形NEMG是矩形.(2)解:∵四边形NEMG是矩形,GN=8,∴∠AMB=∠AMG=90°,ME=GN=8,∵sin∠CAB= 513,AB=26,∴MB= AB⋅sin∠CAB=10,∴AM=√AB2−MB2=24,∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,∴∠CAB=∠ACD,在△ABM 和△CDE 中,{∠BMA =∠DEC∠CAB =∠ACD AB =CD,∴△ABM ≌△CDE ,∴CE=AM=24,∴AC=AM+CE-ME=24+24-8=40.11. (1)解:∵四边形ABCD 是正方形,∴DC =DA,∠DCE =∠DAF =90°,又∵∠CDE +∠ADE =90°,∠ADF +∠ADE =90°, ∴∠CDE =∠ADF ,∴△ECD ≅△FAD (ASA)∴CE =AF .(2)解:作EI//AB ,交AC 于点I ,连接DM ,∵△ECD ≅△FAD ,DF ⊥DE ,∴DF=DE ,∠FDE=90°,则△FDE 为等腰直角三角形.∵AC 为正方形对角线,∠IEC=∠B=90°,∴∠EIC =∠ECI =45°,∴CE =IE ,又∵FA =CE ,∴FA =EI ,∵EI//FA ,∴∠IEM =∠AFM ,∠EIM =∠FAM ,∴△FAM ≌△EM(ASA),∴FM =ME .(3)解:不变由(1),(2)可知△FDE为等腰直角三角形,FM=EM,∴DM⊥FE,∠MDE=∠MDF=45°,∵∠DNA=45°+∠CDN=∠MDE+∠CDN=∠MDC,又∵∠DAN=∠DCM=45°,∴△AND∽△CDM.∴ANCD =ADCM.∴NA⋅MC=AD⋅CD=4×4=16.12. (1)证明:∵正方形ABCD沿着BE,BF将BC,AB翻折,使A,C两点恰好落在点P . ∴△ABF≌△PBF,△BPE≌△BCE,∴AE=A′E,BE=B′E,∠PBF =12∠ABP,∠PBE =12∠PBC,∴∠EBF=∠PBF+∠PBE= 12(∠ABP+∠CBP)=12∠CBA=45∘(2)解:①由折叠的性质可得∠BPE=∠C=90°,∴∠MPB+∠NPE=90°,∵MN//BC,正方形ABCD∴四边形MBCN为矩形,∴∠PMB=∠ENP=90°,BM=CN=5;∴∠MPB+∠MBP=90°,∴∠NPE=∠MBP,∴△MBP∽△NPE,∴PMNE =BMPN,∴PM·PN=BM·NE∵BM=5,且MP⋅PN=10,∴NE=2,∴CE=PE=3,∴PN=√PE2−NE2=√32−22=√5,∴PM=2√5∴MN=AD=3√5正方形折纸的面积= AD2=45;②由折叠可知∠AFB=∠BPE,AF=PF,∵AD//MN∴∠AFB=∠FQP,∴∠BPE=∠FQP,∴PF=QP=12BC=AF,∴AF=FD=12BC,设EC=x,则DE= DC-x =BC-x;PE=x,∵在直角三角形DEF中,EF2=DF2+DE2∴(12BC+x)2=(12BC)2+(BC−x)2,∴x=13BC,∴PE=CE=13BC,∴EF=56BC,∵AD//MN∴△MBP∽△NPE,∴PNDF =PEEF=25,∵AF=FD=12BC,∴PN=15BC,∴MQ=MN-PQ-PN=BC-12BC-15BC=310BC,∵AD//MN∴△MBQ∽△ABF,∴BMAB =MQAF=310BC12BC=35,∴AMBM =2313. (1)证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ,∴∠QAO+∠OAD=90°,∵AE⊥DQ,∴∠ADO+∠OAD=90°,∴∠QAO=∠ADO,∴△ABE≅△DAQ(ASA),∴AE=DQ,∵DQ⊥AE,GF⊥AE,∴DQ∥GF,∵FQ∥DG,∴四边形DQFG是平行四边形,∴GF=DQ,∵AE=DQ,∴AE=FG;(2)解:结论:GFAE=k .理由如下:如图2中,过G作GM⊥AB于M,∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∼△GMF,∴GFAE =GMAB,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴GFAE =ADAB=BCAB=k(3)解:如图3中,过点P作PM⊥BC交BC的延长线于M.∵FB//GC,FE//GP,∴∠CGP =∠BFE ,∴tan ∠CGP =tan ∠BFE =43=BE BF ,∴设BE =4k ,BF =3k ,则EF =AF =5k ,AB =BF +AF =3k +5k =8k ,∵FG AE =34,FG =2√5, ∴AE =8√53,∴(4k)2+(8k)2=(8√53)2, ∴k =23或k =−23(不合题意,舍去),∴BE =83,BF =2,EF =AF =103,AB =163,∵BC AB =k =34, ∴BC =4,∴CE =BC −BE =4−83=43,AD =PE =BC =4,∵∠EBF =∠FEP =∠PME =90°,∴∠FEB =∠EPM ,∴△FEB ∼△EPM ,∴EF PE=BF ME =BE MP , ∴1034=2ME =83MP ,∴解之得:ME =125,MP =165, ∴CM =EM −CE =125−43=1615,∴CP =√CM 2+PM 2=√(1615)2+(165)2=16√101514. (1)DH=HF (2)解:DH =HF 仍然成立,理由如下:∵四边形ABCD 是矩形,FG ⊥BC ,∠ECF =90°,∴∠CGF =∠ECF =∠EBC =90°∴∠FCG +∠BCE =90°,∵∠BCE +∠CEB =90°,∴∠FCG =∠CEB ,∴ΔFCG ∼ΔCEB ,∴GF BC =FC CE =n ,∴四边形ABCD 是矩形,AB =nAD ,∴CD BC =n , ∴GF BC =CD BC ,∴GF =CD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,∵FG ⊥BC ,∴CD//FG ,∴∠HDC =∠HFG ,∠HCD =∠HGF ,在ΔHCD 和ΔHGF 中,{∠HDC =∠HFGCD =GF∠HCD =∠HGF, ∴ΔHCD ≌ΔHGF(ASA),∴DH =HF(3)解:如图所示,延长FC 交AD 于R ,∵四边形ABCD 是矩形,∴AB =CD =4,AD =BC =3,∠RDC =90°,RD//CH ,∵AB =nAD ,CF =nCE ,∴n =AB AD =43,∴CE =43CF ,分两种情况:①当AR =13AD 时,∵AD =3,∴AR =1,DR =2,在Rt ΔCDR 中,由勾股定理得:CR =√DR 2+CD 2=√22+42=2√5,∵RD//CH ,DH =DF ,∴RC =CF =2√5,∴CE =34×2√5=32√5,②当DR =13AD 时,同理可得:DR =1,DC =√17,CF =RC =√17,CE =3√174, 由勾股定理得:EF =√CF 2+CE 2=(√4)=5√174, 综上所说,若射线FC 过AD 的三等分点,AD =3,AB =4,则线段EF 的长为5√52或5√17415. (1)解:∵四边形ABCD 是正方形∴AB =AD, ∠BAD =∠ABC =∠ACB =∠ADF =90°,BC =DC又AP ⊥AQ∴∠EAF =90°∴∠EAB =∠FAD =90°−∠BAF, ∠ABE =180°−90°=90°∴∠ABE =∠ADF∴△ABE ≌△ADF(ASA)∴AE =AF(2)解:CF =√2BM ,理由如下;过点F 作FG//BM 交BC 于G ,如图则EBBG =EMMF∵M为EF中点∴EM=MF∴EB=BG∵△ABE≌△ADF∴EB=DF∴BG=DF又BC=DC∴CG=CF∴FG=√CG2+CF2=√2CF∵EM=MF,EB=BG∴BM=12FG=√22CF∴CF=√2BM(3)解:①当点E在线段CB的延长线上时由(2)知,BG=BE=2∴CG=CF=2∴√2BM=CF=2∴BM=√2②当点E在线段CB上时过点F作FG//BM交BC于G,如下图所示同理可得BG=BE=2∴CG=CF=BC+BG=6∴√2BM =CF =6∴BM =3√2综上所述,BM 的长为√2或3√216. (1)12(2)解:①证明:过点E 作EH ⊥AB ,交AC 于点H ,则∠AEH =90°.∵四边形ABCD 是矩形,∴∠B =∠AEH =90°.∴EH ∥BF ,∴∠EHG =∠FCG ,∠HEG =∠CFG ,在Rt △ABC 和Rt △AEH 中,∵AB =2BC ,∴tan ∠CAB =BC AB =EH AE =12, ∴AE =2EH ,∵AE =2CF ,∴EH =CF ,∴△EHG ≌△FCG (ASA ),∴EG =FG .②证明:设EH =x ,则AE =2x ,Rt △AEH 中,根据勾股定理得,AH =√AE 2+EH 2=√5 x ,∵EH ∥BF ,∴AH HC =AE EB, ∴√5x HC=2x EB , ∴CH =√52BE , ∵△EHG ≌△FCG ,∴HG =CG ,∴CG =√54BE .(3)解:①成立;过点E 作EI ∥BC 交AC 于点I ,如图2所示:∵四边形ABCD 是矩形,∴∠AEI =∠ABC =90°,AB ∥CD ,AB =CD ,在Rt △AEI 和Rt △ABC 中,∠ABC =∠AEI =90°,AB =2BC , ∴tan ∠IAE =IE AE =BC AB =12, ∴AE =2IE ,∵AE =2CF ,∴IE =CF ,∵EI ∥BC ,∴∠EIG =∠FCG ,∠IEG =∠CFG ,在△EIG 和△FCG 中,{∠EIG =∠FCGEI =CF∠IEG =∠CFG, ∴△EIG ≌△FCG (ASA ),∴EG =FG ;②解:过点F 作FP ∥AB 交AC 于P ,如图3所示:则FP ∥CD ,∠CFP =∠ABC =90°,∴∠CPF =∠CAB ,在Rt △CFP 和Rt △ABC 中,AB =2BC ,∴tan ∠CPF =CF PF =tan ∠CAB =BC AB =12, ∴PF =2CF ,∵AE =2CF ,∴AE =PF =2,同(2)得:△AEG ≌△PFG (AAS ),∴AG =PG ,∵BF =2,CF =1,∴BC =3,CD =AB =2BC =6,∴AC =√AB 2+BC 2=√62+32=3 √5,∵FP ∥AB ,∴△CPF ∽△CAB ,∴PC AC=CF BC =13, ∴PC =13 AC =√5,PA =AC ﹣PC =2 √5,∴AG =PG =12 PA =√5,∵FP ∥CD ,∴△PFH ∽△CDH ,∴PH CH =PF CD=26=13, ∴PH =14 PC =√54, ∴GH =PG+PH =√5+√54=5√54. 17. (1)解:如图(1),∵四边形ABCD 是正方形,∴AB =DA ,∠ABE =90°=∠DAQ .∴∠QAO+∠OAD =90°.∵AE ⊥DQ ,∴∠ADO+∠OAD =90°.∴∠QAO =∠ADO .∴△ABE ≌△DAQ (ASA ),∴AE =DQ .∵四边形ABCD 是正方形,AE ⊥DQ ,AE ⊥GF ,∴DG ∥QF ,DQ ∥GF ,∴四边形DQFG 是平行四边形,∴DQ=GF ,∴FG=AE ;(2)GFAE =23.理由:如图(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四边形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵BCAB =23,∴GFAE =23.(3)解:如图(3)中,作PM⊥BC交BC的延长线于M.由BE :BF =3:4 ,设BE =3k ,BF =4k ,则EF =AF =5k , ∵GF AE =23,GF =2√10, ∴AE =3√10,在直角三角形ABE 中,根据勾股定理,得BE 2+AB 2=AE 2, ∴(3k)2+(9k)2=(3√10)2∴k =1或﹣1(舍去),∴BE =3,AB =9,∵BC :AB =2:3,∴BC =6,∴BE =CE =3,AD =PE =BC =6,∵∠EBF =∠FEP =∠PME =90°,∴∠FEB+∠PEM =90°,∠PEM+∠EPM =90°, ∴∠FEB =∠EPM ,∴△FBE ∽△EMP ,∴FB EM=FE EP =BE PM , ∴4EM =56=3PM ,∴EM =245,PM =185,∴CM =EM ﹣EC =245﹣3=95,∴PC =√CM 2+PM 2=√(95)2+(185)2 = 95√5. 18. (1)证明:取BC 中点为E ,连接DE .∵CD是斜边AB上的中线∴BD=12AB,又∵BE=12BC∴DE为Rt△ABC中位线∴DE//AC,DE=12AC∵∠ACB=90°,∴DE⊥BC∴DE垂直平分BC∴CD=BD∴CD=12AB(2)MN垂直平分EF证明:连接MF,ME∵BE、CF是锐角△ABC两条高∴BE⊥AC,CF⊥AB∴∠BEC=90°,∠CFB=90°∴在Rt△BEC中,M为BC中点,EM=12BC在Rt△CFB中,FM=12BC,∴MF=ME,又∵N为EF中点,∴MN为EF中垂线.(3)3√1519. (1)解:四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∴GB=GC=GD,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE//CG,∴DE =GC ,∴四边形CEDG 是平行四边形,∵GD =GC ,∴四边形CEDG 是菱形(2)解:∵CD =CF ,GB =GD =GC =CF ,∴△CDG 是等边三角形,∴CD =BG ,GCD =∠DGC =60°,∴∠DCF =∠BGC =120°,∴△BGC ≌△DCF(SAS),∴DF =BC =√3.20.(1)(m+ 92,34 m )(2)解:设直线BO 的解析式为:y=kx ,把点B 的坐标是(8,6),代入上式可得:6=8k ,解得:k= 34,∴直线BO 的解析式为:y= 34 x ,∵点E 的坐标为(m+ 92,34 m ),EF//AO ,∴点F 的坐标为(m ,34 m ),∴EF = m+ 92 -m= 92,即:线段EF 的长度不会随点M 的位置的变化而变化(3)解:①连接CE ,过点E 作EQ ⊥BC 于点Q ,∵点E 的坐标为(m+ 92,34 m ),∴EQ=6- 34 m ,∵OC=6,OM=m ,∴CM= √36+m 2,∵OC MN =OM NE=CM ME =43, ∴ME= 34 CM= 34√36+m 2,∴四边形BCME 的面积= 12CM ⋅ME +12BC ⋅QE = 38m 2−3m +752 = 38(m −4)2+632,即:当m=4时,四边形BCME 的面积最小值为:632;②(a )当点G 为顶角顶点时,如图,则G(m+92+m 2,0),即:G(m +94,0),(b )当点E 为顶角顶点时,如图,则EG=EF= 92,EH= 34 m ,GH= √(92)2−(34m)2=34√36−m 2, ∴G(m +92+34√36−m 2,0)或G(m +92−34√36−m 2,0),综上所述:G的坐标可以是:G(m+94,0)或G(m+92+34√36−m2,0)或G(m+92−34√36−m2,0).21. (1)解:∵等腰Rt△ABC和等腰Rt△AEF ,∠ACB=∠AFE=90°,∴AC=BC=8,AF=EF=2√2,∴AB=√AC2+BC2=√2AC=8√2,AE=√2EF=4,∴CE=AC-AE=8-4=4,∴BE=√CE2+BC2=4√5,∵Q是线段BE的中点,∴CQ=12BE=2√5;(2)证明:如图,延长FQ至K,使KQ= FQ,连接KB,延长FC至G点,∵Q为BE的中点,∴FQ=KQ,在△EFQ与△BKQ中,{FQ= KQ∠FQE=∠KQBEQ=BQ),∴△EFQ≌△BKQ (SAS),∴EF= BK,∠FEQ =∠KBQ,∴AF= BK, EF ∥BK,∴∠KBC=∠BCG,∴∠ACB=90°,∴∠FCA+∠BCG = 180°-∠ACB=90°,∵∠FAC+∠FCA=∠AFE=90°,∴∠BCG =∠FAC,又∠KBC =∠BCG,∴∠FAC=∠KBC,在△AFC与△BKC中,{AF= BK∠FAC=∠KBCAC= BC),∴△AFC≌△BKC(SAS),∴CF= CK,∠FCA=∠KCB,∴∠FCK =∠FCA+∠ACK =∠KCB+∠ACK = 90°,∴△FCK为等腰直角三角形,又Q为FK中点,∴CQ=FQ;(3)680+128√171722. (1)45°;2√2(2)证明:①∠CBE=∠A,理由如下:由旋转的性质得:∠BCE=∠ACD,∵BC=2AC,CE=2CD,∴BCAC =CECD=2,∴ΔBCE∽ΔACD,∴∠CBE=∠A;②∵CD⊥AB,∴∠ADC=∠BDC=90°,由①得:ΔBCE∽ΔACD,∴∠BEC=∠ADC=90°,又∵∠DCE=90°,∴四边形CDBE是矩形;(3)解:在点D的运动过程中,若ΔBCD恰好为等腰三角形,存在两种情况:①当CD=BD时,则∠DCB=∠DBC,∵∠DBC+∠A=90°,∠ACD+∠DCB=90°,∴∠A=∠ACD,∴CD=AD,∴CD=BD=AD,AB,∴AD=12∵AB=√AC2+BC2=√22+42=2√5,∴AD=√5;②当BD=BC=4时,AD=AB−BD=2√5−4;综上所述:若ΔBCD恰好为等腰三角形,此时AD的长为√5或2√5−423. (1)解:由平行四边形的性质可知AD//BC,∴∠AB′E=∠CEB′,由翻折可知∠AB′E=∠ABE,∴∠CEB′=∠ABE,。
杭州市七年级数学压轴题专题
![杭州市七年级数学压轴题专题](https://img.taocdn.com/s3/m/e15d9a13172ded630a1cb697.png)
杭州市七年级数学压轴题专题一、七年级上册数学压轴题1.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(∠D =30°)的直角顶点放在点O 处,一边OE 在射线OA 上,另一边OD 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t 秒后,OD 恰好平分∠BOC .①此时t 的值为 ;(直接填空) ②此时OE 是否平分∠AOC ?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠DOE ?请说明理由; (3)在(2)问的基础上,经过多长时间OC 平分∠DOB ?请画图并说明理由. 2.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值. a = b = c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.3.已知在数轴上,一动点P 从原点出发向左移动4个单位长度到达点A ,再向右移动7个单位长度到达点B . (1)求点A 、B 表示的数;(2)数轴上是否存在点P ,使点P 到点A 和点B 的距离之和为9,若存在,写出点P 表示的数;若不存在,说明理由;(3)若小虫M 从点A 出发,以每秒0.5个单位长度沿数轴向右运动,另一只小虫N 从点B 出发,以每秒0.2个单位长度沿数轴向左运动.设两只小虫在数轴上的点C 处相遇,点C 表示的数是多少?4.数轴上点A 对应的数为a ,点B 对应的数为b ,且多项式261224x y xy -+的二次项系数为a ,常数项为b . (1)线段AB 的长= ;(2)如图,点P ,Q 分别从点A ,B 同时出发沿数轴向右运动,点P 的速度是每秒2个单位长度,点Q 的速度是每秒4个单位长度,当BQ =2BP 时,点P 对应的数是多少? (3)在(2)的条件下,点M 从原点与点P ,Q 同时出发沿数轴向右运动,速度是每秒x 个单位长度(24x <<),若在运动过程中,2MP -MQ 的值与运动的时间t 无关,求x 的值.5.已知多项式622437x y x y x ---,次数是b ,4a 与b 互为相反数,在数轴上,点A 表示a ,点B 表示数b .(1)a= ,b= ;(2)若小蚂蚁甲从点A 处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B 处以4个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O 处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t 秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t .(写出解答过程)(3)若小蚂蚁甲和乙约好分别从A ,B 两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s 时一起重新回到原出发点A 和B ,设小蚂蚁们出发t(s)时的速度为v(mm/s),v 与t 之间的关系如下图,(其中s 表示时间单位秒,mm 表示路程单位毫米) t (s ) 0<t≤2 2<t≤5 5<t≤16 v (mm/s )10168时,小蚂蚁甲与乙之间的距离是 .②当2<t≤5时,小蚂蚁甲与乙之间的距离是 .(用含有t 的代数式表示)6.在数轴上,点A 代表的数是-12,点B 代表的数是2,AB 表示点A 与点B 之间的距离. (1)①若点P 为数轴上点A 与点B 之间的一个点,且AP=6,则BP=_____; ②若点P 为数轴上一点,且BP=2,则AP=_____;(2)若C 点为数轴上一点,且点C 到点A 点的距离与点C 到点B 的距离的和是20,求C 点表示的数;(3)若点M 从点A 出发,点N 从点B 出发,且M 、N 同时向数轴负方向运动,M 点的运动速度是每秒6个单位长度,N 点的运动速度是每秒8个单位长度,当MN=2时求运动时间t 的值.7.数轴上有,,A B C 三点,给出如下定义;若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的:“关联点”(1)例图,数轴上点,,A B C 三点所表示的数分别为1,3,4,点B 到点A 的距离AB = ,点B 到点C 的距离是 ,因为AB 是BC 的两倍,所以称点B 是点,A C的“关联点”.(2)若点A 表示数2,-点B 表示数1,下列各数1,2,4,6-所对应的点分别是1234,,,C C C C ,其中是点,A B 的“关联点”的是 ;(3)点A 表示数10-,点B 表示数为15,P 数轴上一个动点;若点P 在点B 的左侧,且点P是点AB 、的“关联点”,求此时点Р表示的数;若点P 在点B 的右侧,点P A B 、、中,有一个点恰好是其它两个点的“关联点”.请直接写出此时点Р表示的数8.阅读理解:定义:A ,B ,C 为数轴上三点,若点C 到点A 的距离是它到点B 的时距离的n (n 为大于1的常数)倍,则称点C 是(A ,B )的n 倍点,且当C 是(A ,B )的n 倍点或(B ,A )的n 倍点时,我们也称C 是A 和B 两点的n 倍点.例如,在图1中,点C 是(A ,B )的2倍点,但点C 不是(B ,A )的2倍点.(1)特值尝试.①若2n =,图1中,点________是(D ,C )的2倍点.(填A 或B )②若3n =,如图2,M ,N 为数轴上两个点,点M 表示的数是2-,点N 表示的数是4,数________表示的点是(M ,N )的3倍点. (2)周密思考:图2中,一动点P 从N 出发,以每秒2个单位的速度沿数轴向左运动t 秒,若P 恰好是M 和N 两点的n 倍点,求所有符合条件的t 的值.(用含n 的式子表示) (3)拓展应用:数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”.若(2)中满足条件的M 和N 两点的所有n 倍点P 均处于点N 的“可视距离”内,请直接写出n 的取值范围.(不必写出解答过程)9.如图,半径为1个单位的圆片上有一点Q 与数轴上的原点重合(提示:圆的周长2C r π=).(1)把圆片沿数轴向左滚动1周,点Q 到达数轴上点A 的位置,点A 表示的数是________;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:2,1,5,4,3,2+--++-①第几次滚动后,Q 点距离原点最近?第几次滚动后,Q 点距离原点最远? ②当圆片结束运动时,Q 点运动的路程共有多少?此时点Q 所表示的数是多少?10.已知:AOD 160∠=︒,OB 、OM 、ON ,是AOD ∠ 内的射线.(1)如图 1,若 OM 平分 AOB ∠, ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠ 内旋转时,MON ∠= 度.(2)OC 也是AOD ∠内的射线,如图2,若BOC 20∠=︒ ,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOC ∠内旋转时,求MON ∠的大小.(3)在(2)的条件下,当射线OB 从边OA 开始绕O 点以每秒2︒的速度逆时针旋转t秒,如图3,若AOM DON 23∠∠=::,求t 的值. 11.如图1,在AOB ∠内部作射线OC ,OD ,OC 在OD 左侧,且2AOB COD ∠=∠.(1)图1中,若160,AOB OE ∠=︒平分,AOC OF ∠平分BOD ∠,则EOF ∠=______︒; (2)如图2,OE 平分AOD ∠,探究BOD ∠与COE ∠之间的数量关系,并证明; (3)设COD m ∠=︒,过点O 作射线OE ,使OC 为AOE ∠的平分线,再作COD ∠的角平分线OF ,若3EOC EOF ∠=∠,画出相应的图形并求AOE ∠的度数(用含m 的式子表示).12.已知()()32162025a x x b x -++++是关于x 的二次二项式,A ,B 是数轴上两点,且A ,B 对应的数分别为a ,b .(1)求线段AB 的中点C 所对应的数;(2)如图,在数轴上方从点C 出发引出射线CD ,CE ,CF ,CG ,且CF 平分∠ACD ,CG 平分∠BCE ,试猜想∠DCE 与∠FCG 之间是否存在确定的数量关系,并说明理由;(3)在(2)的条件下,已知∠DCE =20°,∠ACE =30°,当∠DCE 绕着点C 以2°/秒的速度逆时针旋转t 秒(065t <<)时,∠ACF 和∠BCG 中的一个角的度数恰好是另一个角度数的两倍,求t 的值13.如图 1,射线OC 在∠AOB 的内部,图中共有 3 个角:∠AOB 、∠AOC 和∠BOC ,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是∠AOB 的奇妙线. (1)一个角的角平分线 这个角的奇妙线.(填是或不是)(2)如图 2,若∠MPN = 60︒ ,射线 PQ 绕点 P 从 PN 位置开始,以每秒10︒ 的速度逆时针旋转, 当∠QPN 首次等于180︒ 时停止旋转,设旋转的时间为t (s ) . ①当t 为何值时,射线 PM 是∠QPN 的奇妙线?②若射线 PM 同时绕点 P 以每秒6︒ 的速度逆时针旋转,并与 PQ 同时停止旋转.请求出当射线 PQ 是∠MPN 的奇妙线时t 的值.14.如图1,射线OC 在AOB ∠的内部,图中共有3个角:AOB ∠、AOC ∠、BOC ∠,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是AOB ∠的“定分线”. (1)一个角的平分线_________这个角的“定分线”;(填“是”或“不是”)(2)如图2,若MPN a ∠=,且射线PQ 是MPN ∠的“定分线”,则MPQ ∠=________(用含a 的代数式表示出所有可能的结果);(3)如图2,若MPN ∠=48°,且射线PQ 绕点P 从PN 位置开始,以每秒8°的速度逆时针旋转,当PQ 与PN 成90°时停止旋转,旋转的时间为t 秒;同时射线PM 绕点P 以每秒4°的速度逆时针旋转,并与PQ 同时停止.当PQ 是MPN ∠的“定分线”时,求t 的值.15.如图,点A ,B 在数轴上所对应的数分别为-5,7(单位长度为1cm ),P 是A ,B 间一点,C ,D 两点分别从点P ,B 出发,以1cm/s ,2cm /s 的速度沿直线AB 向左运动(点C 在线段AP 上,点D 在线段BP 上),运动的时间为s t .(1)AB =______cm .(2)若点C ,D 运动到任一时刻时,总有2PD AC =,请求出AP 的长. (3)在(2)的条件下,Q 是数轴上一点,且AQ BQ PQ -=,求PQ 的长.16.定义:在同一平两内,有公共端点的三条射线中,一条射线是另两条射线组成夹角的角平分线,我们称这三条射线为“共生三线”.如图为一量角器的平面示意图,O 为量角器的中心.作射线OA ,OB ,OC ,并将其所对应的量角器外圈刻度分别记为a ︒,b ︒,m ︒.(1)若射线OA ,OB ,OC 为“共生三线”,且OC 为AOB ∠的角平分线. ①如图1,0a =,80b =,则m =______;②当40a =,150b =时,请在图2中作出射线OA ,OB ,OC ,并直接写出m 的值; ③根据①②的经验,得m =______(用含a ,b 的代数式表示).(2)如图3,0a =,60b m ==.在0︒刻度线所在直线上方区域内,将OA ,OB ,OC 按逆时针方向绕点O 同时旋转,旋转速度分别为每秒12︒,6︒,8︒,若旋转t 秒后得到的射线OA ',OB ',OC '为“共生三线”,求t 的值.17.如图1,P 点从点A 开始以2cm /s 的速度沿A B C →→的方向移动,Q 点从点C 开始以1cm/s 的速度沿C A B →→的方向移动,在直角三角形ABC 中,90A ∠=︒,若16cm AB =,12cm AC =,20cm BC =,如果P ,Q 同时出发,用t (秒)表示移动时间.(1)如图1,若点P 在线段AB 上运动,点Q 在线段CA 上运动,当t 为何值时,QA AP =;(2)如图2,点Q 在CA 上运动,当t 为何值时,三角形QAB 的面积等于三角形ABC 面积的14; (3)如图3,当P 点到达C 点时,P ,Q 两点都停止运动,当t 为何值时,线段AQ 的长度等于线段BP 的长.18.如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角板(30M ∠=︒)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(注:本题旋转角度最多180︒.)(1)将图1中的三角板绕点O 以每秒3︒的速度沿顺时针方向旋转.如图2,经过t 秒后,AON ∠=______度(用含t 的式子表示),若OM 恰好平分BOC ∠,则t =______秒(直接写结果).(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6︒的速度沿顺时针方向旋转,如图3,经过t 秒后,AOC ∠=______度(用含t 的式子表示)若OC 平分MON ∠,求t 为多少秒?(3)若(2)问的条件不变,那么经过秒OC 平分BOM ∠?(直接写结果)19.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,当射线OQ 达到OA 后,两条射线同时停止运动.设旋转时间为t 秒. (1)分别求出当t =5和t =18时,∠POQ 的度数; (2)当OP 与OQ 重合时,求t 的值; (3)当∠POQ =40°时,求t 的值.20.如图,在数轴上,点O 是原点,点A ,B 是数轴上的点,已知点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足25(6)03a b b ++-=.(1)在数轴上标出点A ,B 的位置. (2)在数轴上有一个点C ,满足92CA CB -=,则点C 对应的数为________. (3)动点P ,Q 分别从A ,B 同时出发,点P 以每秒6个单位长度的速度沿数轴向右匀速运动,点Q 以每秒3个单位长度的速度沿数轴向左匀速运动设运动时间为t 秒(0t >). ①当t 为何值时,原点O 恰好为线段PQ 的中点.②若M 为AP 的中点,点N 在线段BQ 上,且13BN BQ =,若3MN =时,请直接写出t 的值.【参考答案】***试卷处理标记,请不要删除一、七年级上册数学压轴题1.(1)①3,②是,理由见解析;(2)t =5秒或69秒时,OC 平分∠DOE ;理由见解析;(3)经秒时,OC 平分∠DOB .画图说明理由见解析. 【分析】(1)①根据题意可直接求解; ②根据题意易得∠C解析:(1)①3,②是,理由见解析;(2)t =5秒或69秒时,OC 平分∠DOE ;理由见解析;(3)经21011秒时,OC 平分∠DOB .画图说明理由见解析. 【分析】(1)①根据题意可直接求解;②根据题意易得∠COE =∠AOE ,问题得证;(2)根据题意先求出射线OC 绕点O 旋转一周的时间,设经过x 秒时,OC 平分∠DOE ,然后由题意分类列出方程求解即可;(3)由(2)可得OD 比OC 早与OB 重合,设经过x 秒时,OC 平分∠DOB ,根据题意可列出方程求解. 【详解】(1)①∵∠AOC =30°,∠AOB =180°, ∴∠BOC =∠AOB ﹣∠AOC =150°, ∵OD 平分∠BOC , ∴∠BOD =12BOC =75°, ∴t =907535︒-︒=; 故答案为3; ②是,理由如下:∵转动3秒,∴∠AOE =15°, ∴∠COE =∠AOC ﹣∠AOE =15°, ∴∠COE =∠AOE , 即OE 平分∠AOC .(2)三角板旋转一周所需的时间为=3605=72(秒),射线OC 绕O 点旋转一周所需的时间为3608=45(秒),设经过x秒时,OC平分∠DOE,由题意:①8x﹣5x=45﹣30,解得:x=5,②8x﹣5x=360﹣30+45,解得:x=125>45,不合题意,③∵射线OC绕O点旋转一周所需的时间为3608=45(秒),45秒后停止运动,∴OE旋转345°时,OC平分∠DOE,∴t=3455=69(秒),综上所述,t=5秒或69秒时,OC平分∠DOE.(3)如图3中,由题意可知,OD旋转到与OB重合时,需要90÷5=18(秒),OC旋转到与OB重合时,需要(180﹣30)÷8=3184(秒),所以OD比OC早与OB重合,设经过x秒时,OC平分∠DOB,由题意:8x﹣(180﹣30)=12(5x﹣90),解得:x=210 11,所以经21011秒时,OC平分∠DOB.【点睛】本题主要考查角的和差关系及角平分线的定义,关键是根据线的运动得到角的等量关系,然后根据题意列出式子计算即可.2.(1)-1;1;5;(2)4x+10或2x+12;(3)不变,理由见解析【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b解析:(1)-1;1;5;(2)4x+10或2x+12;(3)不变,理由见解析【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定x+1,x-3,5-x 的符号,然后根据绝对值的意义即可化简; (3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2. 【详解】解:(1)∵b 是最小的正整数,∴b=1. 根据题意得:c-5=0且a+b=0, ∴a=-1,b=1,c=5. 故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0, 则:|x+1|-|x-1|+2|x+5| =x+1-(1-x )+2(x+5) =x+1-1+x+2x+10 =4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0. ∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5) =x+1-x+1+2x+10 =2x+12;(3)不变.理由如下:t 秒时,点A 对应的数为-1-t ,点B 对应的数为2t+1,点C 对应的数为5t+5. ∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t )=3t+2, ∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB 值的不随着时间t 的变化而改变. 【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.3.(1) ;(2)或; (3) 【分析】(1)由数轴上的点的移动规律,左减右加,从而可得答案;(2)由题意得:再分当时,当<<时,当时,三种情况讨论,从而可得答案; (3)设两只小虫的相遇时运动时解析:(1)4-, 3;(2)4x =或5x =-; (3)1. 【分析】(1)由数轴上的点的移动规律,左减右加,从而可得答案;(2)由题意得:439x x ++-=,再分当3x ≥时,当4-<x <3时,当4x ≤-时,三种情况讨论,从而可得答案;(3)设两只小虫的相遇时运动时间为ts ,结合题意可得:40.530.2t t -+=-, 解方程求解时间t ,再求C 点对应的数即可.【详解】解:(1)动点P 从原点出发向左移动4个单位长度到达点A ,则点A 对应的数为:044-=-,再向右移动7个单位长度到达点B ,则点B 对应的数为:473-+=,(2)存在,理由如下:设P 对应的数为:x ,则由题意得: 439,x x ++-=当3x ≥时,439,x x ++-=28,x ∴=4,x ∴=经检验:4x =符合题意,当4-<x <3时,方程左边4379,x x ++-=≠此时方程无解,当4x ≤-时,439,x x --+-=210,x ∴-=5.x ∴=-经检验:5x =-符合题意,综上:点P 到点A 和点B 的距离之和为9时,4x =或 5.x =-(3)设两只小虫的相遇时运动时间为ts ,结合题意可得:40.530.2t t -+=-,0.77t ∴=,10,t ∴=C ∴点对应的数为:40.510 1.-+⨯=【点睛】本题考查的是数轴上动点问题,数轴上两点之间的距离,绝对值方程的解法,一元一次方程的应用,掌握数轴上点运动后对应的数的表示规律,两点间的距离,分类讨论是解题的关键.4.(1)36;(2)6;(3)【分析】(1)根据多项式求出a ,b 的值,然后计算即可;(2)设运动时间为ts ,根据题意列出方程,解方程即可,然后即可求出点P 所对应的数;(3)首先根据题意得出2M解析:(1)36;(2)6;(3)83【分析】(1)根据多项式求出a ,b 的值,然后计算即可;(2)设运动时间为ts ,根据题意列出方程,解方程即可,然后即可求出点P 所对应的数; (3)首先根据题意得出2MP−MQ ,然后根据2MP -MQ 的值与运动的时间t 无关求解即可.【详解】(1)∵多项式261224x y xy -+的二次项系数为a ,常数项为b ,12,24a b ∴=-=,()2412241236AB ∴=--=+=;(2)设运动的时间为ts ,由BQ=2BP 得:4t=2(36−2t),解得:t=9,因此,点P 所表示的数为:2×9−12=6,答:点P 所对应的数是6.(3)由题意得:点P 所表示的数为(−12+2t),点M 所表示的数为xt ,点Q 所表示的数为(24+4t),∴2MP−MQ=2[xt−(−12+2t)]−(24+4t−xt)=3xt−8t=(3x−8)t ,∵结果与t 无关,∴3x−8=0,解得:x=83. 【点睛】本题主要考查数轴与一元一次方程的结合,数形结合是解题的关键.5.(1)-2,8;(2)秒或10秒;(3)①30mm ;②32t -14【分析】(1)根据多项式的次数的定义可得b 值,再由相反数的定义可得a 值; (2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤解析:(1)-2,8;(2)67秒或10秒;(3)①30mm ;②32t -14 【分析】(1)根据多项式的次数的定义可得b 值,再由相反数的定义可得a 值;(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t ,OB=8-4t ;②甲向左运动,乙向右运动,即t >2时,此时OA=2+3t ,OB=4t-8;(3)①令t=1,根据题意列出算式计算即可;②先得出小蚂蚁甲和乙爬行的路程及各自爬行的返程的路程,则可求得小蚂蚁甲与乙之间的距离.【详解】解:(1)∵多项式4x 6y 2-3x 2y-x-7,次数是b ,∴b=8;∵4a 与b 互为相反数,∴4a+8=0,∴a=-2.故答案为:-2,8;(2)分两种情况讨论:①甲乙两小蚂蚁均向左运动,即0≤t≤2时,此时OA=2+3t,OB=8-4t;∵OA=OB,∴2+3t=8-4t,解得:t=67;②甲向左运动,乙向右运动,即t>2时,此时OA=2+3t,OB=4t-8;∵OA=OB,∴2+3t=4t-8,解得:t=10;∴甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t为67秒或10秒;(3)①当t为1时,小蚂蚁甲与乙之间的距离是:8+10×1-(-2-10×1)=30mm;②∵小蚂蚁甲和乙同时出发以相同的速度爬行,∴小蚂蚁甲和乙爬行的路程是相同的,各自爬行的总路程都等于:10×2+16×3+8×11=156(mm),∵原路返回,刚好在16s时一起重新回到原出发点A和B,∴小蚂蚁甲和乙返程的路程都等于78mm,∴甲乙之间的距离为:8-(-2)+10×2×2+16×(t-2)×2=32t-14.故答案为:32t-14.【点睛】本题考查了一元一次方程在数轴上两点之间的距离问题中的应用,具有方程思想并会分类讨论是解题的关键.6.(1)①8;②16;(2)-15或5;(3)6或8【分析】(1)①根据题目要求,P在数轴上点A与B之间,所以根据BP=AB-AP进行求解②需要考虑两种情况,即P在数轴上点A与B之间时和当P不在解析:(1)①8;②16;(2)-15或5;(3)6或8【分析】(1)①根据题目要求,P在数轴上点A与B之间,所以根据BP=AB-AP进行求解②需要考虑两种情况,即P在数轴上点A与B之间时和当P不在数轴上点A与B之间时.当P在数轴上点A与B之间时,AP=AB-BP.当P不在数轴上点A与B之间时,此时有两种情况,一种是超越A点,在A点左侧,此时BP>14,不符合题目要求.另一种情况是P在B点右侧,此时根据AP=AB+BP作答.(2)根据前面分析,C不可能在AB之间,所以,C要么在A左侧,要么在B右侧.根据这两种情况分别进行讨论计算.(3)分点M 在点N 的左侧和点M 在点N 的右侧,两种情况分别列出方程求解.【详解】解:(1)①∵AB 总距离是2-(-12)=14,P 在数轴上点A 与B 之间,∴BP=AB-AP=14-6=8,故答案为:8.②P 在数轴上点A 与B 之间时,AP=AB-BP=14-2=12;当P 不在数轴上点A 与B 之间时,因为AB=14,所以P 只能在B 右侧,此时BP=2,AP=AB+BP=14+2=16,故答案为:16.(2)假设C 为x ,当C 在A 左侧时,AC=-12-x ,BC=2-x ,AC+BC=20,则-12-x+2-x=20,解得x=-15,当C 在B 右侧时,AC=x-(-12),BC=x-2,AC+BC=20,则x-(-12)+x-2=20,解得x=5,∴点C 表示的数为-15或5;(3)当M 在点N 左侧时,2-8t-(-12-6t )=2,解得:t=6;当M 在点N 右侧时,-12-6t-(2-8t )=2,解得:t=8,∴MN=2时,t 的值为6或8.【点睛】本题考查了动点问题,一元一次方程的应用.在充分理解题目要求的基础上,可借助数轴用数形结合的方法求解.在解答过程中,注意动点问题的多解可能,并针对每一种可能进行讨论分析.7.(1)2,1;(2);;(3)当P 在点B 的左侧时,P 表示的数为-35或或;若点P 在点B 的右侧,P 表示的数为40或或.【分析】(1)利用数轴上两点之间的距离公式直接可求得;(2)根据题意求得CA解析:(1)2,1;(2)13,C C ;;(3)当P 在点B 的左侧时,P 表示的数为-35或5-3或203;若点P 在点B 的右侧,P 表示的数为40或65或552. 【分析】(1)利用数轴上两点之间的距离公式直接可求得;(2)根据题意求得CA 与BC 的关系,得到答案;(3)根据PA=2PB 或PB=2PA 列方程求解;分当P 为A 、B 关联点、A 为P 、B 关联点、B 为A 、P 关联点三种情况列方程解答.【详解】解:(1),,A B C 三点所表示的数分别为1,3,4,∴AB=3-1=2;BC=4-3=1,故答案是:2,1;(2)点A 表示的数为-2,点B 表示的数为1,1C 表示的数为-1∴1AC =1 ,1BC =2∴1C 是点A,B 的“关联点”点A 表示的数为-2,点B 表示的数为1,2C 表示的数为2∴2AC =4 ,2BC =1∴2C 不是点A,B 的“关联点”点A 表示的数为-2,点B 表示的数为1,3C 表示的数为4∴3AC =6 ,3BC =3∴3C 是点A,B 的“关联点”点A 表示的数为-2,点B 表示的数为1,4C 表示的数为6∴4AC =8 ,4BC =5∴4C 不是点A,B 的“关联点”故答案为:13,C C(3)①若点P 在点B 的左侧,且点P 是点A,B 的“关联点”,设点P 表示的数为x (I ) 当P 在点A 的左侧时,则有:2PA=PB ,即2(-10-x )=15-x解得 x =-35(II )当点P 在A,B 之间时,有2PA=PB 或PA=2PB既有2(x +10)=15-x 或x +10=2(15-x )解得x =5-3或203x = 因此点P 表示的数为-35或5-3或203②若点P 在点B 的右侧(I )若点P 是A,B 的“关联点”则有2PB=PA即2(x -15)=x +10解得x =40(II )若点B 是A,P 的“关联点”则有2AB=PB 或AB=2PB即2(15+10)=x -15或15+10=2(x-15)解得x =65或552x = (III )若点A 是B,P 的“关联点”则有2AB=AP即2(15+10)=x +10解得x =40因此点P 表示的数为40或65或552【点睛】本题考查了一元一次方程的应用,数轴及数轴上两点的距离、动点问题,认真理解关联点的概念,分情况讨论列式是解题关键. 8.(1)①B ;②或7;(2)或或;(3)【分析】(1)①直接根据新定义的概念即可得出答案;②根据新定义的概念列绝对值方程求解即可得出答案;(2)设点P 所表示的数为,再根据新定义的概念列方程求解析:(1)①B ;②52或7;(2)31n +或31n n +或31n n -;(3)54n ≥ 【分析】(1)①直接根据新定义的概念即可得出答案;②根据新定义的概念列绝对值方程求解即可得出答案;(2)设点P 所表示的数为42t -,再根据新定义的概念列方程求解即可;(3)分31t n =+,31n t n =+,31n t n =-三种情况分别表示出PN 的值,再根据PN 的范围列不等式组求解即可.【详解】(1)①由数轴可知,点A 表示的数为1-,点B 表示的数为2,点C 表示的数为1,点D 表示的数为0,1AD ∴=,2AC =,12AD AC ∴=, 数点A 不是【D ,C 】的2倍点,2BD ∴=,1BC =,2BD BC ∴=,∴点B 是【D ,C 】的2倍点,故答案为:B .②若点C 是点【M ,N 】的3倍点,3CM CN ∴=,设点C 表示的数为x ,|2|CM x ∴=+,|4|CN x =-,|2|3|4|x x ∴+=-,即23(4)x x +=-或23(4)x x +=--,解得7x =或52x =,∴数52或7表示的点是【M ,N 】的3倍点. (2)设点P 所表示的数为42t -,点P 是M ,N 两点的n 倍点,∴当点P 是【M ,N 】的n 倍点时,PM nPN =,|422|2t n t ∴-+=⨯,622t nt ∴-=或262t nt -=, 解得31t n =+或31t n=-, 1n >,31t n∴=+, 当点P 是【N ,M 】的n 倍点时,,PN nPM =,2|422|t n t =⨯-+,2(62)t n t ∴=⨯-或2(26)t n t =-,解得31n t n =+或31n t n =-, ∴符合条件的t 的值为31n +或31n n +或31n n -. (3)2PN t =, 当31t n =+时,61PN n =+, 当31n t n =+时,61n PN n =+, 当31n t n =-时,61n PN n =-, 点P 均在点N 的可视点距离之内,30PN ∴≤6301630163011n n n n n n ⎧≤⎪+⎪⎪≤⎪∴+⎨⎪≤⎪-⎪⎪>⎩,解得54n ≥, n ∴的取值范围是54n ≥. 【点睛】本题考查了n 倍点的概念,解题的关键是掌握n 倍点的两种不同情况.9.(1)-2π;(2)①第4次滚动后Q 点离原点最近,第3次滚动后,Q 点离原点最远;;②34π;2π.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)①利用滚动的方向以及滚动的周数即解析:(1)-2π;(2)①第4次滚动后Q点离原点最近,第3次滚动后,Q点离原点最远;;②34π;2π.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)①利用滚动的方向以及滚动的周数即可得出Q点移动距离变化;②利用绝对值得性质以及有理数的加减运算得出移动距离和Q表示的数即可.【详解】解:(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是-2π;故答案为:-2π;(2)①第4次滚动后Q点离原点最近,第3次滚动后,Q点离原点最远;②|﹢2|+|-1|+|-5|+|+4|+|+3|+|-2|=17,Q点运动的路程共有:17×2π×1=34π;(+2)+(-1)+(-5)+(+4 )+(+3 )+(-2)=1,1×2π=2π,此时点Q所表示的数是2π.【点睛】此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.10.(1)80;(2)70°;(3)26【分析】(1)根据角平分线的定义进行角的计算即可;(2)依据OM平分∠AOC,ON平分∠BOD,即可得到∠MOC=∠AOC,∠BON=∠BOD,再根据∠MO解析:(1)80;(2)70°;(3)26【分析】(1)根据角平分线的定义进行角的计算即可;(2)依据OM平分∠AOC,ON平分∠BOD,即可得到∠MOC=12∠AOC,∠BON=12∠BOD,再根据∠MON=∠MOC+∠BON-∠BOC进行计算即可;(3)依据∠AOM=12(10°+2t+20°),∠DON=12(160°-10°-2t),∠AOM:∠DON=2:3,即可得到3(30°+2t)=2(150°-2t),进而得出t的值.【详解】解:(1)∵∠AOD=160°,OM平分∠AOB,ON平分∠BOD,∴∠MOB=12∠AOB,∠BON=12∠BOD,∴∠MON=∠MOB+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD)=12∠AOD=80°,故答案为:80;(2)∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=12∠AOC ,∠BON=12∠BOD ,∴∠MON=∠MOC+∠BON-∠BOC =12∠AOC+12∠BOD-∠BOC =12(∠AOC+∠BOD )-∠BOC =12×180-20=70°;(3)∵∠AOM=12(2t+20°),∠DON=12(160°-2t ),又∠AOM :∠DON=2:3,∴3(20°+2t )=2(160°-2t )解得,t=26.答:t 为26秒.【点睛】本题考查的是角平分线的定义和角的计算,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,解决本题的关键是理解动点运动情况. 11.(1)120;(2),见解析;(3)见解析,或【分析】(1)根据角平分线的性质得到,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论; (3)根据角解析:(1)120;(2)2BOD AOE ∠=∠,见解析;(3)见解析,34m ︒或32m ︒ 【分析】(1)根据角平分线的性质得到11,22AOE COE AOC DOF BOF BOD ∠=∠=∠∠=∠=∠,再结合已知条件即可得出答案;(2)根据角平分线的性质与已知条件进行角之间的加减即可证明出结论;(3)根据角平分线的性质结合已知条件进行角度之间的加减运算,分类讨论得出结论即可.【详解】解:(1)∵160AOB ∠=︒,2AOB COD ∠=∠,∴80COD ∠=︒,∴80AOC BOD ∠+∠=︒ ,∵OE 平分,AOC OF ∠平分BOD ∠, ∴11,22AOE COE AOC DOF BOF BOD ∠=∠=∠∠=∠=∠,∴1()402COE DOF AOC BOD ∠+∠=∠+∠=︒, ∴120EOF COE FOD COD ∠=∠+∠+∠=︒, 故答案为:120;(2)2BOD AOE ∠=∠.证明:∵OE 平分AOD ∠,∴2AOD EOD ∠=∠,∵COD CO EOD E ,∴EOD COD COE ∠=∠-∠.∴(22)2AOD COD COE COD COE ∠=∠-∠=∠-∠. ∵2AOB COD ∠=∠,∴2AOD AOB COE ∠=∠-∠.∵BOD AOB AOD ∠=∠-∠,∴22()BOD AOB AOB COE COE ∠=∠-∠-∠=∠, ∴BOD 2COE ∠=∠;(3)如图1,当OE 在OF 的左侧时, ∵OF 平分COD ∠,∴12COF COD ∠=∠,COD m ∠=︒, ∴12COF m ∠=︒, ∵COF COE EOF ∠=∠+∠,3COE EOF ∠=∠, ∴142COF EOF m ∠=∠=︒, ∴18EOF m ∠=︒, ∴338COE EOF m ∠=∠=︒. ∵OC 为AOE ∠的平分线,∴2AOE COE ∠=∠.∴34AOE m ∠=︒;如图2,当OE 在OF 的右侧时,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州中考压轴题集锦2021年浙江省杭州市中考数学试卷10.已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是()A.y1=x2+2x和y2=﹣x﹣1B.y1=x2+2x和y2=﹣x+1C.y1=﹣和y2=﹣x﹣1D.y1=﹣和y2=﹣x+116.(4分)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE 折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF=度.22.(12分)在直角坐标系中,设函数y=ax2+bx+1(a,b是常数,a≠0).(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;(2)写出一组a,b的值,使函数y=ax2+bx+1的图象与x轴有两个不同的交点,并说明理由.(3)已知a=b=1,当x=p,q(p,q是实数,p≠q)时,该函数对应的函数值分别为P,Q.若p+q =2,求证:P+Q>6.23.(12分)如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连接BG.(1)求证:△ABG∽△AFC.(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).(3)已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD =∠CBE,求证:BG2=GE•GD.2019年浙江省杭州市中考数学试卷9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y =(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣116.(4分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.22.(12分)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.2018年浙江省杭州市中考数学试卷9.(3分)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁10.(3分)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S216.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F 处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.22.(12分)设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.23.(12分)如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连结AG,作DE⊥AG于点E,BF⊥AG于点F,设=k.(1)求证:AE=BF.(2)连结BE,DF,设∠EDF=α,∠EBF=β.求证:tanα=k tanβ.(3)设线段AG与对角线BD交于点H,△AHD和四边形CDHG的面积分别为S1和S2,求的最大值.2017年浙江省杭州市中考数学试卷9.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0D.若m<1,则(m﹣1)a+b<010.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan△ACB=y,则()A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=2116.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3(用元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.含t的代数式表示.)22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.23.(12分)如图,已知△ABC内接于△O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE△BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与△O交于点G,设△GAB=ɑ,△ACB=β,△EAG+△EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求△O半径的长.2016年浙江省杭州市中考数学试卷9.(3分)(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0B.m2﹣2mn+n2=0C.m2+2mn﹣n2=0D.m2﹣2mn﹣n2=010.(3分)(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:△若a@b=0,则a=0或b=0△a@(b+c)=a@b+a@c△不存在实数a,b,满足a@b=a2+5b2△设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.△△△B.△△△C.△△△D.△△△16.(4分)(2016•杭州)已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是.22.(12分)(2016•杭州)已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.△求证:2a+b=0;△当1<x<时,比较y1,y2的大小.23.(12分)(2016•杭州)在线段AB的同侧作射线AM和BN,若△MAB与△NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且△ACB=60°时,有以下两个结论:△△APB=120°;△AF+BE=AB.那么,当AM△BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出△APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.2015年浙江省杭州市中考数学试卷9.(3分)如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A.B.C.D.10.(3分)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1﹣x2)=d B.a(x2﹣x1)=dC.a(x1﹣x2)2=d D.a(x1+x2)2=d15.(4分)在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=.16.(4分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=.23.(12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?2014年浙江省杭州市中考数学试卷10.(3分)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=B.2BC=5CFC.∠AEB+22°=∠DEF D.4cos∠AGB=15.(4分)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为.16.(4分)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于(长度单位).22.(12分)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D 运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PFBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.23.(12分)复习课中,教师给出关于x的函数y=2kx2﹣(4k+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.。