2020年全国大学高数考试数学一试题及解析
2020年全国普通高等学校招生统一考试数学试卷 全国新高考Ⅰ卷 (含答案)
2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}2.2i 12i -= +A.1 B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2020年全国普通高等学校招生统一考试数学试卷 全国新高考Ⅰ卷 (含答案)
2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}2.2i 12i -= +A.1 B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2020学年普通高等学校招生全国统一考试(新课标Ⅰ)数学理及答案解析
2020年普通高等学校招生全国统一考试(新课标Ⅰ)数学理一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设121-=++iz i i ,则|z|=( )A.0B.12C.1解析:利用复数的代数形式的混合运算化简后,然后求解复数的摸.()()()211222111--=+=+=-+=++-i i z i i i i i i i i ,则|z|=1. 答案:C2.已知集合A={x|x 2-x-2>0},则C R A=( ) A.{x|-1<x <2} B.{x|-1≤x ≤2}C.{x|x <-1}∪{x|x >2}D.{x|x ≤-1}∪{x|x ≥2}解析:通过求解不等式,得到集合A ,然后求解补集即可.集合A={x|x 2-x-2>0}, 可得A={x|x <-1或x >2}, 则:C R A={x|-1≤x ≤2}. 答案:B3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.设建设前经济收入为a,建设后经济收入为2a.A项,种植收入37×2a-60%a=14%a>0,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C项,建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故D项正确.因为是选择不正确的一项.答案:A4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=( )A.-12B.-10C.10D.12解析:利用等差数列的通项公式和前n项和公式列出方程,能求出a5的值.∵S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,∴3×(3a1+322⨯d)=a1+a1+d+4a1+432⨯d,把a 1=2,代入得d=-3 ∴a 5=2+4×(-3)=-10. 答案:B5.设函数f(x)=x 3+(a-1)x 2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x解析:利用函数的奇偶性求出a ,求出函数的导数,求出切线的向量然后求解切线方程.函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,可得a=1,所以函数f(x)=x 3+x ,可得f ′(x)=3x 2+1, 曲线y=f(x)在点(0,0)处的切线的斜率为:1, 则曲线y=f(x)在点(0,0)处的切线方程为:y=x. 答案:D6.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A.3144-AB ACB.1344-AB ACC.3144+AB ACD.1344+AB AC解析:运用向量的加减运算和向量中点的表示,计算可得所求向量.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,()1113122244=-=-=-⨯+=-EB AB AE AB AD AB AB AC AB AC .答案:A7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.217B.25C.3D.2解析:判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短222425+=答案:B8.设抛物线C :y2=4x的焦点为F,过点(-2,0)且斜率为23的直线与C交于M,N两点,则=FM FN( )A.5B.6C.7D.8解析:求出抛物线的焦点坐标,直线方程,求出M、N的坐标,然后求解向量的数量积即可.抛物线C:y2=4x的焦点为F(1,0),过点(-2,0)且斜率为23的直线为:3y=2x+4,联立直线与抛物线C:y2=4x,消去x可得:y2-6y+8=0,解得y1=2,y2=4,不妨M(1,2),N(4,4),∴FM=(0,2),FN=(3,4).则FM FN=(0,2)·(3,4)=0×3+2×4=8. 答案:D9.已知函数f(x)=ln0⎧≤⎨⎩,,>xe xx x,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是( )A.[-1,0)B.[0,+∞)C.[-1,+∞)D.[1,+∞)解析:由g(x)=0得f(x)=-x-a,作出函数f(x)和y=-x-a的图象如图:当直线y=-x-a的截距-a≤1,即a≥-1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[-1,+∞).答案:C10.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( )A.p1=p2B.p1=p3D.p 1=p 2+p 3解析:如图:设BC=2r 1,AB=2r 2,AC=2r 3,∴r 12=r 22+r 32,∴S Ⅰ=12×4r 2r 3=2r 2r 3,S Ⅲ=12×πr 12-2r 2r 3,S Ⅱ=12×πr 32+12×πr 22-S Ⅲ=12×πr 32+12×πr 22-12×πr 12+2r 2r 3=2r 2r 3,∴S Ⅰ=S Ⅱ, ∴P 1=P 2. 答案:A11.已知双曲线C :2213-=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N.若△OMN 为直角三角形,则|MN|=( )A.32B.3D.4解析:求出双曲线的渐近线方程,求出直线方程,求出MN 的坐标,然后求解|MN|.双曲线C :2213-=x y 的渐近线方程为:y=±3x ,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:(x-2),则:)2⎧=⎪⎨⎪=-⎩y x y x,解得322⎧=⎪⎪⎨⎪=-⎪⎩x y ,即M(32,2-),)23⎧=⎪⎨⎪=-⎩y x y x,解得3=⎧⎪⎨=⎪⎩x y N(3),则3==MN .12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.33 4B.233C.324D.3解析:利用正方体棱的关系,判断平面α所成的角都相等的位置,然后求解α截此正方体所得截面面积的最大值.正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图所示:正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长2,α截此正方体所得截面最大值为:2323362⎛=⎝⎭.答案:A二、填空题:本题共4小题,每小题5分,共20分.13.若x,y满足约束条件22010--≤⎧⎪-+≥⎨⎪≤⎩x yx yy,则z=3x+2y的最大值为 .解析:作出不等式组对应的平面区域如图:由z=3x+2y得3122=-+y x z,平移直线3122=-+y x z,由图象知当直线3122=-+y x z经过点A(2,0)时,直线的截距最大,此时z最大,最大值为z=3×2=6.答案:614.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6= .解析:先根据数列的递推公式可得{a n}是以-1为首项,以2为公比的等比数列,再根据求和公式计算即可.S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=-1,当n≥2时,S n-1=2a n-1+1,②,由①-②可得a n=2a n-2a n-1,∴a n=2a n-1,∴{a n}是以-1为首项,以2为公比的等比数列,∴()661126312-⨯-==--S.答案:-6315.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)解析:方法一:直接法,分类即可求出.1女2男,有122412=C C,2女1男,有21244=C C,根据分类计数原理可得,共有12+4=16种.方法二:间接法,先求出没有限制的种数,再排除全是男生的种数.336420416=-=C C 种.答案:1616.已知函数f(x)=2sinx+sin2x ,则f(x)的最小值是 . 解析:由题意可得T=2π是f(x)=2sinx+sin2x 的一个周期, 故只需考虑f(x)=2sinx+sin2x 在[0,2π)上的值域, 先来求该函数在[0,2π)上的极值点,求导数可得f ′(x)=2cosx+2cos2x=2cosx+2(2cos 2x-1)=2(2cosx-1)(cosx+1),令f ′(x)=0可解得cosx=12或cosx=-1,可得此时x=3π,π或53π;∴y=2sinx+sin2x 的最小值只能在点x=3π,π或53π和边界点x=0中取到,计算可得f(3π)=,f(π)=0,f(53π)=,f(0)=0,∴函数的最小值为.答案:2-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:每题12分,共60分.17.在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos ∠ADB.解析:(1)由正弦定理得25sin sin 45=∠︒ADB ,求出sin ∠ADB=5,由此能求出cos ∠ADB.答案:(1)如图所示:∵∠ADC=90°,∠A=45°,AB=2,BD=5,∴由正弦定理得:25sin sin45=∠︒ADB,即25sin sin45=∠︒ADB,∴2sin45si52n5︒∠==ADB,∵AB<BD,∴∠ADB<∠A,∴2223 cos15⎛⎫⎪⎪∠⎭-⎝==ADB.(2)若2BC.解析:(2)由∠ADC=90°,得cos∠BDC=sin∠ADB=25,再由2,利用余弦定理能求出BC.答案:(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=2 5,∵2,∴222cos2582222555 =+-⨯⨯⨯∠=+-⨯⨯⨯= BC BD DC BD DC BDC.18.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD.解析:(1)利用正方形的性质可得BF垂直于面PEF,然后利用平面与平面垂直的判断定理证明即可.答案:(1)证明:由题意,点E、F分别是AD、BC的中点,则AE=12AD,BF=12BC,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF 平面ABFD,所以:平面PEF⊥平面ABFD.(2)求DP与平面ABFD所成角的正弦值.解析:(2)利用等体积法可求出点P到面ABCD的距离,进而求出线面角. 答案:(2)在平面DEF中,过P作PH⊥EF于点H,联结DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P-DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V F-PDE=13PF·S△PDE,因为BF∥DA且BF⊥面PEF,所以DA ⊥面PEF , 所以DE ⊥EP.设正方形边长为2a ,则PD=2a ,DE=a 在△PDE 中,a ,所以S △PDE=a 2, 故V F-PDE=a 3,又因为S △DEF =12a ·2a=a 2,所以223-==F PDE V PH a a ,所以在△PHD中,sin 4∠==PH PDH PD ,即∠PDH 为DP 与平面ABFD所成角的正弦值为:.19.设椭圆C :2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程.解析:(1)先得到F 的坐标,再求出点A 的方程,根据两点式可得直线方程. 答案:, ∴F(1,0),∵l 与x 轴垂直, ∴x=1,由22112=⎧⎪⎨+=⎪⎩x x y,解得21=⎧⎪⎨=⎪⎩x y或21=⎧⎪⎨=-⎪⎩x y , ∴A(1,2)或(1,2-),∴直线AM的方程为2+=-y x2=y x .(2)设O 为坐标原点,证明:∠OMA=∠OMB.解析:(2)分三种情况讨论,根据直线斜率的问题,以及韦达定理,即可证明. 答案:(2)证明:当l 与x 轴重合时,∠OMA=∠OMB=0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA=∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y=k(x-1),k ≠0, A(x 1,y 1),B(x 2,y 2),则x 1x 2,直线MA ,MB 的斜率之和为k MA ,k MB 之和为121222+=+--MA MB y y k k x x ,由y 1=kx 1-k ,y 2=kx 2-k 得()()12121223422-++=--MA MB kx x kx x k k k x x ,将y=k(x-1)代入2212+=x y 可得(2k 2+1)x 2-4k 2x+2k 2-2=0, ∴2122421+=+k x x k ,21222221-=+k x x k , ∴2kx 1x 2-3k(x 1+x 2)+4k=2121+k (4k 2-4k-12k 2+8k 2+4k)=0从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA=∠OMB , 综上∠OMA=∠OMB.20.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p 0. 解析:(1)求出()()1822201=-f p C p p ,则()()()()()18171722220202118121110⎡'=---⎤⎣=-⎦-f p C p p p p C p p p ,利用导数性质能求出f(p)的最大值点p 0=0.1.答案:(1)记20件产品中恰有2件不合格品的概率为f(p),则()()1822201=-f p C p p,∴()()()()()18171722220202118121110⎡'=---⎤⎣=-⎦-f p C p p p p C p p p,令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f(p)的最大值点p0=0.1.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX. (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解析:(2)(i)由p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),再由X=20×2+25Y,即X=40+25Y,能求出EX.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,EX=490>400,从而应该对余下的产品进行检验.答案:(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴EX=E(40+25Y)=40+25EY=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵EX=490>400,∴应该对余下的产品进行检验.21.已知函数()1ln=-+f x x a xx.(1)讨论f(x)的单调性.解析:(1)求出函数的定义域和导数,利用函数单调性和导数之间的关系进行求解即可. 答案:(1)函数的定义域为(0,+∞),函数的导数()222111-+'=--+=-a x axf xx x x,设g(x)=x2-ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2-4,①当0<a≤2时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:综上当a ≤2时,f(x)在(0,+∞)上是减函数,当a >2时,在(0,24--a a ),和(24+-a a ,+∞)上是减函数, 则(24--a a ,24+-a a )上是增函数.(2)若f(x)存在两个极值点x 1,x 2,证明:()()12122---<f x f x a x x .解析:(2)将不等式进行等价转化,构造新函数,研究函数的单调性和最值即可得到结论.答案:(2)由(1)知a >2,0<x 1<1<x 2,x 1x 2=1,则()()()()()()12211221121211ln ln 2ln ln ⎛⎫-=-++-=-+- ⎪⎝⎭f x f x x x a x x x x a x x x x , 则()()()12121122ln ln 22---=-+--<f x f x a x x a x x x x ,则问题转为证明2211ln ln --x x x x <1即可,即证明lnx 1-lnx 2>x 1-x 2,即证2lnx 1>x 1-11x 在(0,1)上恒成立,设h(x)=2lnx-x+1x ,(0<x <1),其中h(1)=0,求导得()()222221212110--+'=--=-=-<x x x h x x x x x ,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx-x+1x >0,故2lnx>x-1 x,则()()12122---<f x f xax x成立.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ-3=0.(1)求C2的直角坐标方程.解析:(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.答案:(1)曲线C2的极坐标方程为ρ2+2ρcosθ-3=0.转换为直角坐标方程为:x2+y2+2x-3=0,转换为标准式为:(x+1)2+y2=4.(2)若C1与C2有且仅有三个公共点,求C1的方程.解析:(2)利用直线在坐标系中的位置,再利用点到直线的距离公式的应用求出结果.答案:(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2). 由于该直线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.2=,解得:k=43-或0,(0舍去)故C1的方程为:y=43-|x|+2.[选修4-5:不等式选讲](10分)23.已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集.解析:(1)去绝对值,化为分段函数,即可求出不等式的解集.答案:(1)当a=1时,f(x)=|x+1|-|x-1|=21211 21⎧⎪-≤≤⎨⎪--⎩,>,,<xx xx,由f(x)>1,∴2111⎧⎨-≤≤⎩>xx或211⎧⎨⎩>>x,解得x>1 2,故不等式f(x)>1的解集为(12,+∞).(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.解析:(2)当x∈(0,1)时不等式f(x)>x成立,转化为即|ax-1|<1,即0<ax<2,转化为a<2x,且a>0,即可求出a的范围.答案:(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|-|ax-1|-x>0,即x+1-|ax-1|-x>0,即|ax-1|<1,∴-1<ax-1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<2 a,∴a<2 x,∵2x>2,∴0<a≤2,故a的取值范围为(0,2].。
2020年全国新高考Ⅰ卷数学试卷(解析版)
2020年全国新高考Ⅰ卷数学试卷一、选择题1. 设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2. 2−i1+2i=( )A.1B.−1C.iD.−i3. 6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种B.90种C.60种D.30种4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A 且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%6. 基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT,有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天7. 已知P是边长为2的正六边形ABCDEF内的一点,则AP→⋅AB→的取值范围是( )A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6)8. 若定义在R上的奇函数f(x)在(−∞,0)上单调递减,且f(2)=0,则满足xf(x−1)≥0的x的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3]二、多选题9. 已知曲线C:mx2+ny2=1.( )A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为√nC.若mn<0,则C是双曲线,其渐近线方程为y=±√−mnxD.若m=0,n>0,则C是两条直线10. 如图是函数y=sin(ωx+φ),则sin(ωx+φ)=( )A.sin(x+π3) B.sin(π3−2x) C.cos(2x+π6) D.cos(5π6−2x)11. 已知a>0,b>0,且a+b=1,则( )A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤212. 信息熵是信息论中的一个重要概念,设随机变量X所有可能的取值为1,2,⋯,n,且P(X=i)=p i> 0(i=1,2,⋯,n),∑p ini=1=1,定义X的信息熵H(X)=−∑p ini=1log2p i,则( )A.若n=1,则H(X)=0B.若n=2,则H(X)随着p i的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y ) 三、填空题13. 斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB|=________.14. 将数列{2n −1}与{3n −2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15. 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形, BC ⊥DG ,垂足为C ,tan ∠ODC=35, BH//DG ,EF =12cm ,DE =2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1,则图中阴影部分的面积为________cm 2.16. 已知直四棱柱ABCD −A 1B 1C 1D 1的棱长均为2,∠BAD =60∘,以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为________. 四、解答题17. 在①ac =√3,②c sin A =3,③c =√3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =√3sin B ,C =π6, ________?18. 已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m](m ∈N ∗)中的项的个数,求数列{b m }的前100项和S 100 .19. 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),20. 如图,四棱锥P −ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.21. 已知函数f (x )=ae x−1−ln x +ln a .(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足. 证明:存在定点Q,使得|DQ|为定值.参考答案与试题解析2020年全国新高考Ⅰ卷数学试卷一、选择题1.【答案】C【考点】并集及其运算【解析】根据集合并集的运算法则求解.【解答】解:集合A={x|1≤x≤3},B={x|2<x<4},则A∪B={x|1≤x<4}.故选C.2.【答案】D【考点】复数代数形式的混合运算【解析】根据复数的除法运算法则求解.【解答】解:2−i1+2i =(2−i)(1−2i) (1+2i)(1−2i)=2−4i−i−21+4=−5i5=−i.故选D.3.【答案】C【考点】排列、组合及简单计数问题【解析】先让甲场馆选1人,再让乙场馆选2,剩下的去丙场馆即可得解. 【解答】解:由题意可得,不同的安排方法共有C61⋅C52=60(种).故选C.4.【答案】B【考点】直线与平面所成的角空间点、线、面的位置【解析】根据纬度的定义和线面角的定义,结合直角三角形的性质,可得晷针与点A处的水平面所成角. 【解答】解:如图所示,AB为日晷晷针,∠AOC=40∘,由题意知,∠AOC+∠OAB=90∘,∠DAB+∠OAB=90∘,∴ ∠DAB=∠AOC=40∘,即晷针与点A处的水平面所成角为40∘.故选B.5.【答案】C【考点】概率的应用【解析】利用互斥事件的概率公式代入求解.【解答】解:设''该中学学生喜欢足球''为事件A,''该中学学生喜欢游泳''为事件B,则''该中学学生喜欢足球或游泳''为事件A∪B,''该中学学生既喜欢足球又喜欢游泳''为事件A∩B. 由题意知,P(A)=60%,P(B)=82%,P(A∪B)=96%,所以P(A∩B)=P(A)+P(B)−P(A∪B)=60%+82%−96%=46%.故选C.6.【答案】B【考点】函数模型的选择与应用指数式与对数式的互化【解析】先根据所给模型求得r,然后求得初始病例数I,最后求得感染病例数增加1倍所需的时间.【解答】解:3.28=1+r ⋅6得r =0.38,I(t)=e 0.38t , e 0.38(t+x)=2⋅e 0.38t 得x =ln 20.38≈1.8. 故选B . 7.【答案】 A【考点】平面向量数量积求线性目标函数的最值 【解析】先画出图形,并用坐标表示AP →⋅AB →,然后向量问题转化为求线性目标函数的最值,最终得AP →⋅AB →的取值范围.【解答】 解:如图:设A(−1,√3),P (x,y ),B (−2,0), AP →=(x +1,y −√3),AB →=(−1,−√3), 则AP →⋅AB →=−x −√3y +2.令z =−x −√3y +2,该问题可转化为求该目标函数在可行域中的最值问题,由图可知,z =−x −√3y +2经过点C 时,z 取得最大值;经过点F 时,z 取得最小值, 故最优解为C(−1,−√3)和F(1,√3), 代入得z max =6或z min =−2, 故AP →⋅AB →的取值范围是(−2,6). 故选A . 8.【答案】 D【考点】函数单调性的性质 函数奇偶性的性质【解析】先根据函数的奇偶性确定函数的大致图像,然后判断函数的单调性,最后利用分类讨论思想讨论不等式成立时x 的取值范围. 【解答】解:根据题意,函数图象大致如图:①当x =0时,xf(x −1)=0成立; ②当x >0时,要使xf(x −1)≥0, 即f(x −1)≥0,可得0≤x −1≤2或x −1≤−2, 解得1≤x ≤3;③当x <0时,要使xf(x −1)≥0, 即f(x −1)≤0,可得x −1≥2或−2≤x −1≤0, 解得−1≤x <0.综上,x 的取值范围为[−1,0]∪[1,3]. 故选D .二、多选题 9.【答案】 A,C,D 【考点】双曲线的渐近线 椭圆的标准方程 圆的标准方程 直线的一般式方程【解析】根据所给条件,逐一分析对应的方程形式,结合椭圆、圆、双曲线方程的定义进行判断即可. 【解答】解:A ,mx 2+ny 2=1,即x 21m+y 21n=1.∵ m >n >0, ∴ 1m <1n ,∴ 此时C 是椭圆,且其焦点在y 轴上, A 选项正确;B ,m =n >0时,x 2+y 2=1n , ∴ r =√n n, B 选项错误;C,mn<0时,可推断出C是双曲线,且其渐近线方程为y=±√−1n1mx=±√−mnx,C选项正确;D,m=0时,C:ny2=1,∴ y=±√1n代表两条直线,D选项正确.故选ACD.10.【答案】B,C【考点】诱导公式由y=Asin(ωx+φ)的部分图象确定其解析式正弦函数的图象【解析】先用图像上两零点间的距离求出函数的周期,从而求得ω,而后利用五点对应法求得φ,进而求得图像的解析式.【解答】解:由函数y=sin(ωx+φ)的部分图像,可知,T2=2π3−π6=π2,∴ T=π,∴ ω=2ππ=2,∴ y=sin(2x+φ).将点(π6,0)代入得,0=sin(π3+φ),∴π3+φ=(k+1)π(k∈Z).A,当x=π6时,sin(x+π3)=sinπ2=1,不符合题意,故A选项错误;B,当k=0时,φ=2π3,y=sin(2x+2π3 )=sin(2x−π3+π3+2π3)=sin(2x−π3+π)=−sin(2x−π3)=sin(π3−2x),故B选项正确;C,sin(2x+2π3)=sin(2x+π6+π2)=cos(2x+π6),故C选项正确;D,cos(5π6−2x)=cos(2x−5π6)=cos(2x−π2−π3)=sin(2x−π3)=−sin(2x+2π3),故D选项错误.故选BC.11.【答案】A,B,D【考点】不等式性质的应用基本不等式在最值问题中的应用【解析】选项A左边是代数式形式,右边是数字形式,且已知a+b=1,故可考虑通过基本不等式和重要不等式建立a2+b2与a+b的关系;选项B先利用指数函数的增减性将原不等式简化为二元一次不等式,然后利用不等式的性质及已知条件判断;选项C需要利用对数的运算和对数函数的增减性将不等式转化为关于a, b的关系式,然后利用基本不等式建立与已知条件a+b的关系;选项D基本不等式的变形应用.【解答】解:A,∵ a+b=1,则a2+b2+2ab=1,2ab≤a2+b2,当且仅当a=b时取等号,∴ 1=a2+b2+2ab≤2(a2+b2),可得a2+b2≥12,故A正确;B,∵ a−b=a−(1−a)=2a−1>−1,∴2a−b>2−1=12,故B正确;C,∵ ab≤(a+b2)2=14,当且仅当a=b时取等号,∴log2a+log2b=log2ab≤log214=−2,故C错误;D ,∵ a +b ≥2√ab ,当且仅当a =b 时取等号, ∴ (√a +√b)2=a +b +2√ab =1+2√ab ≤2, 即√a +√b ≤√2,则√a +√b ≤2,故D 正确. 故选ABD . 12. 【答案】 A,C【考点】 概率的应用概率与函数的综合 利用导数研究函数的单调性【解析】选项A 根据题目给出信息熵的定义可直接判断;选项B 根据题意先得到p 1,p 2的关系,然后构造关于p 1的函数,最后利用导数判断新函数的增减性; 选项C 根据题目给定信息化简H(x)后可判断;选项D 分别求出H(x),H(y),利用作差法结合对数的运算即可判断. 【解答】解:A ,若n =1,则p 1=1,H (X )=−1×log 21=0,故A 正确; B ,若n =2,则p 1+p 2=1,则H (X )=−[p 1log 2p 1+(1−p 1)log 2(1−p 1)]. 设f (p )=−[p log 2p +(1−p )log 2(1−p )],则f ′(p )=−[log 2p +p ⋅1p ln 2−log 2(1−p )+(1−p )−1(1−p )ln 2] =−log 2p1−p =log 21−p p,当0<p <12时,f ′(p )>0; 当12<p <1时,f ′(p )<0,∴ f (p )在(0,12)上单调递增,在(12,1)上单调递减, 当p 1=12时,H(X)取最大值,故B 错误;C ,若p i =1n (i =1,2,⋯,n ),则H (X )=−∑p i n i=1log 2p i =−n ⋅1n log 21n =log 2n ,所以H(x)随着n 的增大而增大,故C 正确;D ,若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m , 由P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m )知: P (Y =1)=p 1+p 2m ; P (Y =2)=p 2+p 2m−1 ;P (Y =3)=p 3+p 2m−2 ; ⋯⋯P (Y =m )=p m +p m+1 ;H (Y )=−[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m−1)log 2(p 2+p 2m−1)+⋯+(p m +p m+1)log 2(p m +p m+1)], H (X )=−[p 1log 2p 1+p 2log 2p 2+⋯+p 2m log 2p 2m ]=−[(p 1log 2p 1+p 2m log 2p 2m )+(p 2log 2p 2+p 2m−1log 2p 2m−1)+⋯ +(p m log 2p m +p m+1log 2p m+1)],∵ (p 1+p 2m )log 2(p 1+p 2m )−p 1log 2p 1−p 2m log 2p 2m >0, ⋯⋯(p m +p m+1)log 2(p m +p m+1)−p m log 2p m −p m+1log 2p m+1>0, 所以H (X )>H (Y ),故D 错误. 故选AC . 三、填空题 13.【答案】163【考点】 抛物线的性质 【解析】先根据题目给定信息求出直线方程,联立直线和抛物线方程,再利用韦达定理和抛物线的性质转化求出弦长|AB|. 【解答】解:设A(x 1,y 1),B(x 2,y 2), 抛物线的焦点为(1,0),则直线方程为y =√3(x −1),代入抛物线方程得3x 2−10x +3=0, ∴ x 1+x 2=103,根据抛物线方程的定义可知|AB|=x 1+1+x 2+1=163.故答案为:163.14.【答案】 3n 2−2n 【考点】等差数列的前n 项和 等差关系的确定【解析】先判断出{2n −1}与{3n −2}公共项所组成的新数列{a n }的公差、首项,再利用等差数列的前n 项和的公式得出结论. 【解答】解:数列{2n −1}各项为:1,3,5,7,9,⋯数列{3n −2}各项为:1,4,7,10,13,⋯观察可知,{a n }是首项为1,公差为6的等差数列, 所以数列{a n }的前n 项和为3n 2−2n . 故答案为:3n 2−2n . 15. 【答案】5π2+4 【考点】同角三角函数基本关系的运用 扇形面积公式【解析】先利用解三角形和直线的位置关系求出圆的半径,然后求出阴影部分的面积,运用了数形结合的方法. 【解答】解:由已知得A 到DG 的距离与A 到FG 的距离相等,均为5. 作AM ⊥GF 延长线于M ,AN ⊥DG 于N ,则∠NGA =45∘. ∵ BH//DG , ∴ ∠BHA =45∘. ∵ ∠OAH =90∘, ∴ ∠AOH =45∘.设O 到DG 的距离为3t ,由tan ∠ODC =35,可知O 到DE 的距离为5t , ∴ {OA ⋅cos 45∘+5t =7,OA ⋅sin 45∘+3t =5,解得{t =1,OA =2√2.半圆之外阴影部分面积为:S 1=2√2×2√2×12−45×π×(2√2)2360=4−π,阴影部分面积为:S =12[π⋅(2√2)2−π⋅12]+S 1=5π2+4.故答案为:5π2+4.16. 【答案】√2π2【考点】 弧长公式空间直角坐标系 圆的标准方程 两点间的距离公式【解析】根据题意画出直观图,建立合适的坐标系,求出交线上的点的轨迹方程,进而确定点的轨迹在平面BCC 1B 1上是以√2为半径的90∘的弧,最后根据弧长公式求解. 【解答】解:以C 1为原点,C 1B 1→,C 1C →所在直线分别为x 轴、z 轴建立如图1所示的空间直角坐标系O −xyz ,y 轴是平面A 1B 1C 1D 1内与C 1B 1互相垂直的直线, 即D 1(1,−√3,0),设交线上的点的坐标是(x,0,z ),根据题意可得(x −1)2+3+z 2=5, 化简得(x −1)2+z 2=2,所以球面与侧面BCC 1B 1的交线平面如图2所示,即交线长l =14⋅2√2π=√2π2. 故答案为:√2π2. 四、解答题 17.【答案】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3. ∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.【考点】两角和与差的正弦公式余弦定理正弦定理【解析】条件①先根据题意,结合正弦定理用一边去表示另外两条边,然后用余弦定理求出三角形的三边的长;条件②先用正弦定理结合已知求出a,b的长,然后用余弦定理求出c的长;条件③先利用正弦定理结合已知用b表示a,c,然后利用余弦定理求得∠C与给定值不同,从而判定三角形不存在.【解答】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3.∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.18.【答案】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.【考点】数列的求和等比数列的通项公式【解析】(1)先根据已知列式求出公比,求出首项,最后求得等比数列的通项公式;(2)由题意求得0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,⋯,可知b63=5,b64= b65=⋯=b100=6.则数列{b m}的前100项和S100可求.【解答】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.19.【答案】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得K2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关. 【考点】独立性检验概率的意义【解析】(1)根据题目已知信息利用频率估计概率;(2)根据题目给定信息画出2×2列联表;(3)根据列联表计算K的观测值K2,得出统计结论.【解答】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得 K 2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关. 20.【答案】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD . 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ,则sin θ=|cos <n →,PB →>| =√3×√1+a 2=1√3×√(1+a)21+a 2=√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a+a ≥2×√1a⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 【考点】用空间向量求直线与平面的夹角 基本不等式在最值问题中的应用直线与平面垂直的判定【解析】(1)先求l 的平行线BC 与面PCD 垂直,再利用线面垂直的判定即可得证;(2)选取合适的点建立空间直角坐标系,然后运用向量法结合基本不等式即可求得线面夹角的最大值. 【解答】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD .以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ, 则sin θ=|cos <n →,PB →>| =|1+a|√3×√1+a 2=1√3×√(1+a)21+a 2 =√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a +a ≥2×√1a ⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 21.【答案】解:(1)当a =e 时, f (x )=e x −ln x +1,f ′(x )=e x −1x,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1.(2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 【考点】利用导数研究不等式恒成立问题 利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程,可得三角形的面积;(2)不等式等价于e x−1+ln a +ln a +x −1≥ln x +x =e ln x +ln x ,令g(t)=e t +t ,根据函数单调性可得ln a >ln x −x +1,再构造函数ℎ(x)=ln x −x +1,利用导数求出函数的最值,即可求出a 的范围. 【解答】解:(1)当a =e 时, f (x )=e x −ln x +1, f ′(x )=e x −1x ,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1. (2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 22. 【答案】 (1)解:由题设得4a2+1b2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ① 由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13).令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值. 【考点】圆锥曲线中的定点与定值问题 椭圆的标准方程 【解析】(1)根据椭圆方程的离心率、a ,b ,c 的关系及椭圆上一点列出关系式,解得a 2,b 2即可得椭圆方程; (2)①当直线斜率存在时,设直线方程并与椭圆方程联立,写出韦达定理,结合AM →⋅AN →=0可得 m =1−2k 或m =−2k +13,由点A 不在直线MN 上可判断m ≠1−2k ,进而根据m =−2k+13可求解直线MN 的方程,从而判断直线MN 过定点P ;②若直线MN 与x 轴垂直,结合和椭圆方程,求得点M 的横坐标x 1 ,由此可知直线MN 过点P ;由上述分类讨论可知|AP|为定值,根据直角三角形中线的性质确定定点Q ,最后分两小类讨论D 与P 重合或者不重合最终确定|DQ|为定值. 【解答】(1)解:由题设得4a 2+1b 2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ①由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13). 令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值.。
2020年普通高等学校招生全国统一考试数学试题 理(全国卷1,含解析)
绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。
2020年全国统一高考数学试卷(新课标Ⅰ)(解析版)
2020年普通高等学校招生全国统一考试数学+答案一、选择题:(本题共10小题,每小题6分,共60分)1.若z=1+i ,则|z 2–2z |=( )A. 0B. 1C.D. 2 【答案】D【解析】【分析】由题意首先求得22z z -的值,然后计算其模即可.【详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-. 故2222z z -=-=.故选:D.【点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A. –4B. –2C. 2D. 4 【答案】B【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. 故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力. 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 514-B. 512-C. 514+D. 512+【答案】C【解析】【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.【详解】如图,设,CD a PE b ==,则22224aPO PE OE b =-=-,由题意212PO ab =,即22142a b ab -=,化简得24()210b ba a -⋅-=,解得15b a +=(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A. 2B. 3C. 6D. 9【答案】C【解析】【分析】 利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p =+,解得6p .故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题. 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A. y a bx =+B. 2y a bx =+C. e x y a b =+D. ln y a b x =+【答案】D【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A. 21y x =--B. 21y x =-+C. 23y x =-D. 21y x =+ 【答案】B【解析】【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可.【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题7.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A.10π9B. 7π6C. 4π3D. 3π2 【答案】C【解析】【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭ 又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 8.25()()x x y xy ++的展开式中x 3y 3的系数为( ) A. 5B. 10C. 15D. 20 【答案】C【解析】【分析】求得5()x y +展开式的通项公式为515rr rr T C x y -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r r r C x y -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【详解】5()x y +展开式的通项公式为515r r r r T C x y -+=(r N ∈且5r ≤) 所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为: 56155r r r r r r r xT xC xy C x y --+==和22542155r r r r r r r T C x y x C y y y x x --++== 在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5 所以33x y 的系数为10515+=故选:C【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属于中档题.9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( )A. 3B. 23C. 13D.9 【答案】A【解析】【分析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去), 又(0,),sin απα∈∴==故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形, 由正弦定理可得2sin 6023AB r=︒=,123OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
2020年大学高等数学考试试题及解析
2020年全国大学高等数学考试试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)设222z y x r ++=,则div(gradr))2,2,1(-=_____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为 .(5)设二维随机变量(X,Y)的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P .(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有[ ] (A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有[ ](A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim 2220,0=+-→→y x xyy x f y x ,则[ ](A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点.(4)设1111400011110000,,1111000011110000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A 与B [ ] (A) 合同且相似.(B) 合同但不相似. (C) 不合同但相似.(D) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 的相关系数等于[ ](A)-1.(B) 0.(C)12. (D) 1.三、(本题满分6分)求dx ee xx⎰2arctan .四、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +⎧≠⎨=⎩将)(x f 展开成x 的幂级数,并求级数∑∞=--1241)1(n nn 的和.某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0).汽锤第一次击打将桩打进地下a m. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0<r<1). 问(1) 汽锤击打桩3次后,可将桩打进地下多深? (2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七、(本题满分7分)设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内的任一0x ≠,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立;(2)01lim ()2x x θ→=.八 、(本题满分12分)设函数f(x)连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论F(t)在区间),0(+∞内的单调性.(2) 证明当t>0时,).(2)(t G t F π>九、(本题满分6分)设s ααα,,,21 为线性方程组0Ax =的一个基础解系,11122t t βαα=+,21223,t t βαα=+,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21 也为0Ax =的一个基础解系.已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)的泊松分布,每位乘客在中途下车的概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布. 十二 、(本题满分8分) 设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1) 求总体X 的分布函数F(x);(2) 求统计量θˆ的分布函数)(ˆx F θ; (3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2020年全国大学高等数学考试试题与解析一、填空题(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 先求grad r.grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭. 再求 div grad r=()()()x y zx r y r z r∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=. 于是div grad r|(1,2,2)-=(1,2,2)22|3r -=.(3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=0222111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫ ⎝⎛--2132. 【分析】 n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足[n βββ,,,21 ]=[n ααα,,,21 ]P ,因此过渡矩阵P 为:P=[121],,,-n ααα [],,,21n βββ .【详解】根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P=[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ.=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡- (5)设二维随机变量(X,Y)的概率密度为 ,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P41 . 【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率}),({0z Y X g P ≤,一般可转化为二重积分}),({0z Y X g P ≤=⎰⎰≤0),(),(z y x g dxdy y x f 进行计算.【详解】 由题设,有 =≤+}1{Y X P ⎰⎰⎰⎰≤+-=121016),(y x xxxdy dx dxdy y x f=.41)126(2102=-⎰dx x xO211 x【评注】 本题属基本题型,但在计算二重积分时,应注意找出概率密度不为零与满足不等式1≤+y x 的公共部分D ,再在其上积分即可.(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是)49.40,51.39( .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 【分析】 已知方差12=σ,对正态总体的数学期望μ进行估计,可根据)1,0(~1N nX μ-,由αμα-=<-1}1{2u n X P 确定临界值2αu ,进而确定相应的置信区间. 【详解】 由题设,95.01=-α,可见.05.0=α 于是查标准正态分布表知.96.12=αu 本题n=16, 40=x , 因此,根据 95.0}96.11{=<-nX P μ,有 95.0}96.116140{=<-μP ,即 95.0}49.40,51.39{=P ,故μ的置信度为0.95的置信区间是)49.40,51.39( .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D)【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则 (A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点.[ A ]【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解】 由 1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且222)(),(y x xy y x f +≈- y x ,(充分小时),于是.)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点,应选(A).【评注】 本题综合考查了多元函数的极限、连续和多元函数的极值概念,题型比较新,有一定难度. 将极限表示式转化为极限值加无穷小量,是有关极限分析过程中常用的思想. (4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当AB 时,知A 与B 有相同的特征值,从而二次型T x Ax 与T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】 原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2xx x x e e e e C ---+++. 四 、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.【分析】 幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形.本题可先求导,再利用函数x-11的幂级数展开 +++++=-n x x x x2111即可,然后取x 为某特殊值,得所求级数的和.【详解】 因为).21,21(,4)1(2412)(202-∈--=+-='∑∞=x x x x f nn n n 又f(0)=4π, 所以 dt t dt t f f x f n n xxn n ]4)1([24)()0()(20⎰⎰∑∞=--='+=π=).21,21(,124)1(24120-∈+--+∞=∑x x n n n n n π因为级数∑∞=+-012)1(n nn 收敛,函数f(x)在21=x 处连续,所以].21,21(,124)1(24)(120-∈+--=+∞=∑x x n x f n n n n π令21=x ,得 ∑∑∞=+∞=+--=⋅+--=012012)1(4]21124)1([24)21(n nn n n n n f ππ,再由0)21(=f ,得.4)21(412)1(0ππ=-=+-∑∞=f n n n 五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n nn x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ②因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121n n n x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑ , [1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f nππ∞=-⇒=-=⨯-=--∑.六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0).汽锤第一次击打将桩打进地下a m. 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r(0<r<1). 问(1) 汽锤击打桩3次后,可将桩打进地下多深? (2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)【分析】 本题属变力做功问题,可用定积分进行计算,而击打次数不限,相当于求数列的极限.【详解】 (1) 设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n . 由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以22101221a kx k kxdx W x ===⎰,).(2)(22222122221a x k x x k kxdx W x x -=-==⎰由12rW W =可得 2222ra a x =- 即 .)1(222a r x += ].)1([2)(22232223332a r x k x x k kxdx W x x +-=-==⎰ 由1223W r rW W ==可得 22223)1(a r a r x =+-,从而 a r r x 231++=,即汽锤击打3次后,可将桩打进地下am r r 21++.(2) 由归纳法,设a r r r x n n 121-++++= ,则)(222111n n x x n x x k kxdx W n n-==++⎰+=].)1([22121a r r x k n n -++++- 由于1121W r W r rW W nn n n ====-+ ,故得 22121)1(a r a r r x n n n =+++--+ ,从而 .11111a rr a r r x n nn --=+++=++于是 a rx n n -=+∞→11lim 1, 即若击打次数不限,汽锤至多能将桩打进地下a r-11m. 【评注】 本题巧妙地将变力作功与数列极限两个知识点综合起来了,有一定难度.但用定积分求变力做功并不是什么新问题,何况本题的变力十分简单.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一.(2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f xθ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=,解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===.八 、(本题满分12分)设函数f(x)连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论F(t)在区间),0(+∞内的单调性.(2) 证明当t>0时,).(2)(t G t F π>【分析】 (1) 先分别在球面坐标下计算分子的三重积分和在极坐标下计算分母的重积分,再根据导函数)(t F '的符号确定单调性;(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可.【详解】 (1) 因为⎰⎰⎰⎰⎰⎰⎰==ttttrdrr f drr r f rdrr f d drr r f d d t F 020222002200022)()(2)(sin )()(πππθϕϕθ,202022])([)()()(2)(rdr r f drr t r r f t tf t F tt⎰⎰-=',所以在),0(+∞上0)(>'t F ,故F(t) 在),0(+∞内单调增加.(2) 因 ⎰⎰=ttdrr f rdrr f t G 0202)()()(π,要证明t>0时)(2)(t G t F π>,只需证明t>0时,0)(2)(>-t G t F π,即.0])([)()(0202222>-⎰⎰⎰tttrdr r f dr r f dr r r f令 ⎰⎰⎰-=tt trdr r f dr r f dr r r f t g 0202222])([)()()(,则 0)()()()(2022>-='⎰dr r t r f t f t g t,故g(t)在),0(+∞内单调增加.因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0). 又g(0)=0, 故当t>0时,g(t)>0,因此,当t>0时,).(2)(t G t F π>【评注】 本题将定积分、二重积分和三重积分等多个知识点结合起来了,但难点是证明(2)中的不等式,事实上,这里也可用柯西积分不等式证明:dx x g dx x f dx x g x f bababa⎰⎰⎰⋅≤)()(])()([222,在上式中取f(x)为r r f )(2,g(x)为)(2r f 即可.九、【解】 由于(1,2)i i s β=是12,,s ααα线性组合,又12,,s ααα是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=均为0Ax =的解.从12,,s ααα是0Ax =的基础解系,知()s n r A =-.下面来分析12,,s βββ线性无关的条件.设11220s s k k k βββ++=,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=.由于12,,s ααα线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*)因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-, 所以当112(1)0s s st t ++-≠时,方程组(*)只有零解120s k k k ====.从而12,,s βββ线性无关.十 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A由于 ])[(6323232222bc ac ab c b a c b a ba c a cbcba A ---++++=---==])()())[((3222a c cb b ac b a -+-+-++, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A 由于])([2)(22222b b a a b ac cb b a ++-=-==0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba ca c bcb aA ---++++-== =])()())[((3222a c cb b ac b a -+-+-++-, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组 ⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为])([2)(22222b b a a b ac cb b a ++-=-==-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.十一、【解】 (1){|}(1),0,0,1,2,m m n mn P Y m X n C p p m n n -===-≤≤=.(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二 、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ(1) 求总体X 的分布函数F(x);(2) 求统计量θˆ的分布函数)(ˆx F θ; (3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性. 【分析】 求分布函数F(x)是基本题型;求统计量θˆ的分布函数)(ˆx F θ,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验θθ=ˆE 是否成立. 【详解】 (1).,,0,1)()()(2θθθ≤>⎩⎨⎧-==⎰∞---x x e dt t f x F xx(2) }),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤= θθ =}),,,{m in(121x X X X P n >- =},,,{121x X x X x X P n >>>- =nx F )](1[1--=.,,0,1)(2θθθ≤>⎩⎨⎧---x x e x n(3) θˆ概率密度为 .,,0,2)()()(2ˆˆθθθθθ≤>⎩⎨⎧==--x x ne dxx dF x f x n因为 ⎰⎰+∞--+∞∞-==θθθθdx nxe dx x xf E x n )(2ˆ2)(ˆ=θθ≠+n21, 所以θˆ作为θ的估计量不具有无偏性. 【评注】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率密度以及数学期望的计算等多个知识点.将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.。
2020年普通高等学校招生全国统一考试数学试题 理(全国卷1,含解析)
绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。
2020年普通高等学校招生全国统一考试数学文科试题(全国I卷)全解析(部分解析)
2020年普通高等学校招生全国统一考试文科数学(必修+选修) 解析版本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)32-(B)-12 (C)12(D) 32 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 52 (B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,37897988()a a a a a a a ===g 10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a =====g(5)43(1)(1)x x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(1)1464133x x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =g(A)2 (B)4 (C) 6 (D) 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PFPF +-()()2222121212121212222221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =g 4【解析2】由焦点三角形面积公式得:120220121260113cot 1cot 3sin 6022222F PF S b PF PF PF PF θ∆=====12||||PF PF =g 4(9)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为(A )23 (B )33 (C )23(D )63【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D 所成角,111136cos 1/2O O O OD OD ∠===(10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,21x +,2sin 1xα=+||||cos 2PA PB PA PB α•=⋅u u u v u u u v u u u v u u u v=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y •=u u u v u u u v ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得32y ≤--322y ≥-+故min ()322PA PB •=-+u u u v u u u v.此时21x =-【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭u u u v u u u v PABO2222221sin12sincos22212sin2sin sin22θθθθθθ⎛⎫⎛⎫--⎪⎪⎛⎫⎝⎭⎝⎭=⋅-=⎪⎝⎭换元:2sin,012x xθ=<≤,()()112123223x xPA PB xx x--•==+-≥-u u u v u u u v(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A)233(B)433(C) 23 (D)83312.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有ABCD11222323V h h=⨯⨯⨯⨯=四面体,当直径通过AB与CD的中点时,22max22123h=-=,故max433V=.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2020年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案)
绝密★启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D二、填空题:本题共4小题,每小题5分,共20分。
2020年全国统一高考数学试卷(文科)(全国卷一)(含详细解析)
c 保密★启用前2020年全国统一高考数学试卷(文科)(全国卷一)您题号—总分得分注意事项:1.答题前垃写好自己的姓名、班级、考号等信息2.请将答案正确填写在答超卡上o:n o评卷人得分1.己知集合/!={x\xA.{—4,1}一、单选题3—4<0},8={-4,1,3,5},则』口=()B.(1,5}C.{3,5}D.{1,3}2.若z= l+2i+i3,则回=()A.0B.1C.41D.23.埃及胡夫金字塔是古代世界建筑志迹之一,它的形状可视为-个正四棱锥,以该四校锥的高为边长的正方形面积等于该四梭推一个侧面三角形的面积,鲫其侧面三角形底边上的高与底面正方形的边长的比值为()oO A旦R岂 C.旦 D.旦4242的概率为()5.某校一个课外学习小组为研充某作物种了•的发芽率.p 和温度工(单位:°C )的关系. 在20个不同的温度条件下进行种子发芽实验,由实验数据(.t r.Z )(/ = 1.2.-.2O )得到下 面的散点图;由此散点图•在10。
至40也之间・卜.面四个回归方程类型中最适宜作为发芽率*和温度X 的问归方程类型的是()A. ,= 〃 +版B. y = a + hx 2C. y-a + be l D・ y = a + b\nx6.已知圆xf 尸-6“0,过点(1, 2)的直线被该圆所截得的弦的忙度的最小值为A. 1C. 3B. 2D. 47 .设函数f (x ) = COS (5 +兰)在[-兀,71]的图像大致如卜图,则用)的最小止周期为()610n A. B.Inc. 8. A. 9.4丸设g4=2,则4"= <)1 B.1. 169执行下面的程序框图,则输出的〃=()D.C.A.3兀D.417 B.19 C.21 D.2310.设{虬}是等比数列,旦0+七+%=】•%+江/久=2.则%+"%=(A.12B.24C.30D.32y11.设%足是双仙线C:x2-^-=l的两个焦点.。
2020年高考理数全国卷1 试题+答案详解
2020年普通高等学校招生全国统一考试理科数学本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟. 注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效. 5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若1z i =+,则22z z -=A .0B .1C 2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 51-B 51-C 51+D 51+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ︒)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(),1,2,,20i i x y i =得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点()()1,1f 处的切线方程为 A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.设函数()cos 6f x x πω⎛⎫=+ ⎪⎝⎭在[],ππ-的图像大致如下图,则()f x 的最小正周期为A .109πB .76π C .43π D .32π 8.25()()y x x y x ++的展开式中33x y 的系数为A .5B .10C .15D .209.已知(0,)απ∈,且3cos28cos 5αα-=,则sin α= A .5B .23 C .13D .5 10.已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC △的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知22:2220M x y x y +---=,且直线:220l x y ++=,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当AB PM ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++= 12.若242log 42log a b a b +=+,则A .2a b >B .2a b <C .2a b >D .2a b < 二、填空题:本题共4小题,每小题5分,共20分.13.若,x y 满足约束条件2201010x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩,则7z x y =+的最大值是________.14.设,a b 为单位向量,且1+=a b ,则-=a b ________.15.已知F 为双曲线2222:1x y C a b-=(0,0a b >>)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 斜率为3,则C 的离心率为_______. 16.如图,在三棱锥P ABC -的平面展开图中1AC =, 3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ︒∠=,则cos FCB ∠=__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,6PO DO =. (1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.(12分)已知,A B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅=.P为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为cos sin kkx ty t ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4-5:不等式选讲](10分)已知函数()3121f x x x =++-. (1)画出()y f x =的图象;(2)求不等式()()1f x f x >+的解集.参考答案一、选择题 1【答案】D .【解析】∵()()2221212z z i i -=+-+=-,∴2222z z -=-=,故选D .2.【答案】.B【解析】{}240A x x =-≤{}22x x =-≤≤,{}20B x x a =+≤2a x x ⎧⎫=≤-⎨⎬⎩⎭,∵{}21A B x x =-≤≤,∴12a-=,∴ 2.a =-故选.B 3.【答案】.C【解析】如图,设金字塔对应的正四棱锥的高为h ,金字塔斜面上的高为'h ,金字塔底面边长为a ,则有22221'2'2h a h h h h ⎧=⋅⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩化简得22''4210h h a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,解得'14h a =.故选.C 4.【答案】.C【解析】设点(),A x y ,由点A y 轴的距离为9得9x =,根据抛物线定义,由A 到C 的焦点的距离为12得122p x +=,即6122p+=,解得 6.p =故选.C 5.【答案】.D【解析】由题中散点图可知,大致分布在一条递增的对数型函数图象附近,故选.D 6.【答案】.B【解析】∵()32'46f x x x =-,∴()'12k f ==-,又∵()1121f =-=-,∴由点斜式方程可得所求切线方程为()()121y x --=--,即21y x =--.故选.B7.【答案】.C【解析】根据函数图象得409f π⎛⎫-= ⎪⎝⎭,∴4cos 096ππω⎛⎫-+= ⎪⎝⎭,∴()4962k k Z πππωπ-+=+∈,解得()394kk Z ω+=-∈, 又∵22T T π<<,∴242πππωω<<,解得12ω<<, ∴32ω=,∴最小正周期243T ππω==.故选.C 8.【答案】.C【解析】∵()5x y +的通项为()5150,1,,5r r r r T C x y r -+==,h'h a。
2020高考数学全国卷1卷试题及答案详解
2020年普通高等学校招生全国统一考试理科数学一、 选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若1z i =+,则22z z -=A .0B .1C 2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 51-B 51-C 51+D 51+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ︒)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(),1,2,,20i i x y i =得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点()()1,1f 处的切线方程为 A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.设函数()cos 6f x x πω⎛⎫=+ ⎪⎝⎭在[],ππ-的图像大致如下图,则()f x 的最小正周期为A .109π B .76π C .43π D .32π 8.25()()y x x y x ++的展开式中33x y 的系数为A .5B .10C .15D .209.已知(0,)απ∈,且3cos28cos 5αα-=,则sin α= A .53B .23 C .13D .5910.已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC △的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知22:2220M x y x y +---=,且直线:220l x y ++=,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当AB PM ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a b a b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分.13.若,x y 满足约束条件2201010x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩,则7z x y =+的最大值是________.14.设,a b 为单位向量,且1+=a b ,则-=a b ________.15.已知F 为双曲线2222:1x y C a b-=(0,0a b >>)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 斜率为3,则C 的离心率为_______.16.如图,在三棱锥P ABC -的平面展开图中1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ︒∠=,则cos FCB ∠=__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =. (1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.(12分)已知,A B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅=.P为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为cos sin kkx ty t ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4-5:不等式选讲](10分)已知函数()3121f x x x =++-. (1)画出()y f x =的图象;(2)求不等式()()1f x f x >+的解集.参考答案一、选择题15DBCCD - 610BCCAA - 11.D 12.B二、填空题13.1 14.3 15.2 116.4-三、解答题17.解:(1)设{}n a 的公比为q ,由题设得1232a a a =+,即21112a a q a q =+∴220q q +-=,解得1q =(舍去)或2q =-. ∴{}n a 的公比为2-.(2)记n S 为{}n na 的前n 项和,由(1)及题设可知()12n n a -=-,∴ ()()11222n n S n -=+⨯-++⨯- ①()()()2222212nn S n -=-+⨯-++-⨯- ②由①②得()()()()21312222n nn S n -=+-+-++--⨯-()()1223nnn --=-⨯-∴()()312199nn n S +-=- 18.解:(1)设DO a =,由题设可得63,,63PO a AO a AB a ===,22PA PB PC a ===, ∴222PA PB AB +=,∴PA PB ⊥,又222PA PC AC +=,∴PA PC ⊥, ∴PA ⊥平面PBC(2)以O 为坐标原点,OE 方向为y 轴正方向,OE 为单位长, 建立如图所示的空间直角坐标系O xyz -. 由题设可得()()310,1,0,0,1,0,,,022E A C ⎛⎫--⎪⎝⎭, xyz0,0,2P ⎛⎫ ⎪⎝⎭,∴31,,0,0.1,222EC EP ⎛⎫⎛=--=- ⎪ ⎝⎭⎝⎭。
2020年全国大学高等数学考试试题及答案
.
因为 在 可导,且为极值,所以 ,则
.
(3)(本题满分10分)
【解析】显然 为方程一个实根.
当 时,令
.
令 ,
,
即 .
又因为 ,
即当 时, ; 当 时, .
当 时, ;当 时, .
所以当 时, 单调递减,当 时, 单调递增
又由 ,
,
所以当 时,由零点定理可知 在 , 内各有一个零点;
当 时,则 在 , 内均无零点.
(5)若二次曲面的方程 ,经过正交变换化为 ,则 .
(6)设二维随机变量 服从正态分布 ,则 =.
三、解答题:15~23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.
(1)(本题满分10分)
求极限 .
(2)(本题满分9分)
设函数 ,其中函数 具有二阶连续偏导数,函数 可导且在 处取得极值 ,求 .
综上所述,当 时,原方程有三个根.当 时,原方程有一个根.
(4)(本题满分10分)
设奇函数 上具有2阶导数,且 证明:
(III)存在
(IV)存在 ,使得
【解析】(1)令
则 使得
(2)令 则
又由于 为奇函数,故 为偶函数,可知 ,
则 使
即 ,即
(5)(本题满分10分)
设直线L过 两点,将L绕Z轴旋转一周得到曲面 所围成的立体为 ,
又 ,从而 。
(7)设 是随机变量,且 ,
则( )
(A)
(B)
(C)
(D)
【答案】(A)
【解析】由 知,
,
,故 .
由根据 及概率密度的对称性知, ,故选(A)
(8)设随机变量 给定 常数c满足 ,则 ( )
2020年全国大学高等数学考试试题及解析
2020年全国大学高等数学考试试题一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.)(1) 2013sin coslim(1cos )ln(1)x x x x x x →+=++ . (2) 设幂级数nn n a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为 .(3) 对数螺线e θρ=在点2(,)(,)2e ππρθ=处的切线的直角坐标方程为 .(4)函数ln(u x =在(1,0,1)A 点处沿A 点指向(3,2,2)B -点方向的方向导数为___________.(5) 设A 是43⨯矩阵,且A 的秩()2r A =,而102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则()r AB =___________.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 已知2()()x ay dx ydyx y +++为某函数的全微分,则a 等于 ( )(A) -1 (B) 0 (C) 1 (D) 2 (2) 设()f x 有二阶连续导数,且(0)0f '=,0()lim 1||x f x x →''==,则 ( ) (A) (0)f 是()f x 的极大值 (B) (0)f 是()f x 的极小值(C) (0,(0))f 是曲线()y f x =的拐点(D) (0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3) 设0(1,2,)n a n >=,且1n n a ∞=∑收敛,常数(0,)2πλ∈,则级数21(1)(tan )n n n n a n λ∞=-∑( )(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 收敛性与λ有关(4) 设111122232333,,,a b c a b c a b c ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则三条直线1110a x b y c ++=,2220a x b y c ++=,3330a x b y c ++=(其中220,1,2,3i i a b i +≠=)交于一点的充要条件是 ( )(A) 123,,ααα线性相关 (B) 123,,ααα线性无关(C) 秩123(,,)r ααα=秩12(,)r αα (D) 123,,ααα线性相关,12,αα线性无关(5) 设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是( )(A) 8 (B) 16 (C) 28 (D) 44三、(本题共3小题,每小题5分,满分15分.)(1) 计算22(),I x y dV Ω=+⎰⎰⎰其中Ω为平面曲线22,0y z x ⎧=⎨=⎩绕z 轴旋转一周形成的曲面与平面8z =所围成的区域.(2) 计算曲线积分()()()Cz y dx x z dy x y dz -+-+-⎰,其中C 是曲线221,2,x y x y z ⎧+=⎨-+=⎩从z轴正向往z 轴负向看,C 的方向是顺时针的.(3) 在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N ,在0t =时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为()x t (将()x t 视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0,k >求()x t .四、(本题共2小题,每小题6分,满分12分.) (1) 计算曲面积分(2)Sx z dydz zdxdy ++⎰⎰,其中S 为有向曲面22(01)z x y z =+≤≤,其法向量与z 轴正向的夹角为锐角.(2) 设变换2,u x y u x ay=-⎧⎨=+⎩可把方程2222260z z zx x y y ∂∂∂+-=∂∂∂∂化简为20z u v ∂=∂∂,求常数a ,其中(,)z z x y =有二阶连续的偏导数.五、(本题满分6分)设()f x 连续,1()(),x f xt dt ϕ=⎰且0()limx f x A x→=(A 为常数),求()x ϕ'并讨论()x ϕ'在0x =处的连续性.六、(本题满分7分)设对任意0x >,曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01()xf t dt x⎰,求()f x 的一般表达式.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.)(1) 设B 是秩为2的54⨯矩阵,123(1,1,2,3),(1,1,4,1),(5,1,8,9)T T Tααα==--=--是齐次线性方程组0Bx =的解向量,求0Bx =的解空间的一个标准正交基.(2) 已知111ξ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦是矩阵2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量.(Ⅰ) 试确定参数,a b 及特征向量ξ所对应的特征值; (Ⅱ) 问A 能否相似于对角阵?说明理由.八、(本题满分6分)设TA E ξξ=-,其中E 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置,证明:(1) 2A A =的充要条件是1Tξξ=;(2) 当1Tξξ=时,A 是不可逆矩阵.九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25.设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望.十、填空题(本题共2小题,每小题3分,满分6分.)(1) 设工厂A 和工厂B 的产品的次品率分别为1%和 2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是__________. (2) 设ξ、η是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量 ξη-的数学期望()E ξη-=__________.2020年全国大学高等数学考试试题及解析一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1)【答案】32【分析】这是00型极限.注意两个特殊极限00sin ln(1)lim 1,lim 1x x x x x x→→+==.【解析】将原式的分子、分母同除以x ,得2001sin 13sin cos 3cos3limlim .ln(1)(1cos )ln(1)2(1cos )x x x x x x x x x x x x x x→→++==++++ 评注:使用洛必达法则的条件中有一项是0()lim()x x f x g x →''应存在或为∞,而本题中, []200111(3sin cos )3cos 2cos sinlimlim 1cos (1cos )ln(1)sin ln(1)1x x x x x x x x x xx x x x x→→'+++=+'++-+++ 极限不存在,也不为∞,不满足使用洛必达法则的条件,故本题不能用洛必达法则.【相关知识点】1.有界量乘以无穷小量为无穷小量. (2)【答案】(2,4)-【解析】考察这两个幂级数的关系.令1t x =-,则()1212111n n n nnnn n n na ttna tta t ∞∞∞+-==='==∑∑∑.由于逐项求导后的幂级数与原幂级数有相同的收敛半径,1nn n a t∞=∑的收敛半径为3⇒()1nn n a t ∞='∑的收敛半径为 3.从而()2111n n n n n n t a t na t ∞∞+=='=∑∑的收敛半径为3,收敛区间即(-3,3),回到原幂级数11(1)n nn na x ∞+=-∑,它的收敛区间为313x -<-<,即(2,4)-.评注:幂级数的收敛区间指的是开区间,不考虑端点. 对于n n n a x ∞=∑,若1limn n na a ρ+→+∞=⇒它的收敛半径是1R ρ=.但是若只知它的收敛半径为R ,则⇒11limn n n a a R +→+∞=,因为1lim n n naa +→+∞可以不存在(对于缺项幂级数就是这种情形).(3)【答案】2x y e π+=【解析】求切线方程的主要问题是求其斜率x k y '=,而x y '可由e θρ=的参数方程cos cos ,sin sin x e y e θθρθθρθθ⎧==⎪⎨==⎪⎩求得: 2sin cos sin cos ,1cos sin cos sin x x y e e y y x e e θθθπθθθθθθθθθθθθ='++''====-'--, 所以切线的方程为2(0)y e x π-=--,即2x y e π+=.评注:本题难点在于考生不熟悉极坐标方程与直角坐标方程之间的关系.(4)【答案】12【分析】先求方向l 的方向余弦和,,u u ux y z∂∂∂∂∂∂,然后按方向导数的计算公式 cos cos cos u u u u l x y zαβγ∂∂∂∂=++∂∂∂∂求出方向导数. 【解析】因为l 与AB 同向,为求l 的方向余弦,将{}{}31,20,212,2,1AB =----=-单位化,即得 {}{}12,2,1cos,cos ,cos 3||AB l AB αβγ==-=. 将函数ln(u x =+分别对,,x y z 求偏导数得12Au x ∂==∂,0Au y∂==∂,12Au z∂==∂, 所以cos cos cos AA AA u u u ulx y z αβγ∂∂∂∂=++∂∂∂∂ 1221110()233232=⨯+⨯-+⨯=. (5)【答案】2【解析】因为10220100103B ==≠-,所以矩阵B 可逆,故()()2r AB r A ==.【相关知识点】()min((),())r AB r A r B ≤.若A 可逆,则1()()()[()]()r AB r B r EB r A AB r AB -≤==≤.从而()()r AB r B =,即可逆矩阵与矩阵相乘不改变矩阵的秩.二、选择题(本题共5个小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)【答案】(D)【解析】由于存在函数(,)u x y ,使得 22()()()x ay dx ydydu x y x y +=+++, 由可微与可偏导的关系,知2()u x ay x x y ∂+=∂+,2()u yy x y ∂=∂+, 分别对,y x 求偏导数,得2243()()2()(2)()()u a x y x ay x y a x ayx y x y x y ∂+-+⋅+--==∂∂++, 232()u yy x x y ∂-=∂∂+. 由于2u y x ∂∂∂与2u x y∂∂∂连续,所以22u uy x x y ∂∂=∂∂∂∂,即 33(2)2()()a x ay y x y x y ---=++2a ⇒=,故应选(D).(2)【答案】(B)【解析】因为()f x 有二阶连续导数,且0()lim10,||x f x x →''=>所以由函数极限的局部保号性可知,在0x =的空心领域内有()0||f x x ''>,即()0f x ''>,所以()f x '为单调递增. 又由(0)0f '=,()f x '在0x =由负变正,由极值的第一充分条件,0x =是()f x 的极小值点,即(0)f 是()f x 的极小值.应选(B).【相关知识点】极限的局部保号性:设0lim ().x x f x A →=若0A >(或0A <)⇒0,δ∃>当00x x δ<-<时,()0f x >(或()0f x <).(3)【答案】(A)【解析】若正项级数1nn a∞=∑收敛,则21nn a∞=∑也收敛,且当n →+∞时,有tanlim (tan )limn n n n n nλλλλλ→+∞→+∞=⋅=. 用比较判别法的极限形式,有22tanlim0nn nn a na λλ→+∞=>.因为21n n a ∞=∑收敛,所以2lim tann x n a nλ→+∞也收敛,所以原级数绝对收敛,应选(A).【相关知识点】正项级数比较判别法的极限形式:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1) 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2) 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3) 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.(4)【答案】(D)【解析】方法1:三条直线交于一点的充要条件是方程组111111222222333333000a x b y c a x b y c a x b y c a x b y c a x b y c a x b y c++=+=-⎧⎧⎪⎪++=⇒+=-⎨⎨⎪⎪++=+=-⎩⎩ 有唯一解.将上述方程组写成矩阵形式:32A X b ⨯=,其中112233a b A a b a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是其系数矩阵,123c b c c -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦.则AX b =有唯一解⇔[]()2r A r A b ==(方程组系数矩阵的秩与增广矩阵的秩相等且等于未知量的个数),即A 的列向量组12,αα线性相关.所以应选(D). 方法2:用排除法.(A)123,,ααα线性相关,当123ααα==时,方程组的系数矩阵与增广矩阵的秩相等且小于未知量的个数,则①式有无穷多解,根据解的个数与直线的位置关系.所以三条直线重合,相交有无穷多点,(A)不成立.(B)123,,ααα线性无关,3α不能由12,αα线性表出,方程组的系数矩阵与增广矩阵的秩不相等,方程组无解,根据解得个数与直线的位置关系,所以一个交点也没有,(B)不成立.(C)秩123(,,)r ααα=秩12(,)r αα,当123(,,)r ααα=12(,)1r αα=时,三条直线重合,不只交于一点,与题设条件矛盾,故(C)不成立.由排除法知选(D).评注:应重视线性代数中的几何背景.空间直线方程及平面方程其在空间的位置关系应与线性代数中的线性相关性、秩及方程组的解及其充要条件有机的结合起来. (5)【答案】(D)【解析】因X 与Y 独立,故3X 和2Y 也相互独立.由方差的性质,有(32)(3)(2)9()4()44D X Y D X D Y D X D Y -=+-=+=.【相关知识点】方差的性质:X 与Y 相互独立时,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.三、(本题共3小题,每小题5分,满分15分.)(1)【分析】三重积分的计算有三种方法:直角坐标中的计算,柱面坐标中的计算,球面坐标中的计算,其中柱面坐标中又可分先z 后(,)r θ,或先(,)r θ后z 两种方法.本题的区域Ω为绕z 轴旋转的旋转体,用柱面坐标先(,)r θ后z 方便.【解析】方法1:采用柱面坐标,先(,)r θ后z ,为此,作平面z z =.{}22(,,)|2,,z D x y z x y z z z =+≤=82220()zD I x y dv dz r rdrd θΩ=+=⋅⎰⎰⎰⎰⎰⎰(将直角坐标化为柱面坐标)82301024.3dz d dr ππθ==⎰⎰ 方法2:将Ω投影到xOy 平面,得圆域{}22(,)|16,D x y x y =+≤用柱面坐标先z 后(,)r θ,有22248422330021024()2(8).23r r I x y dv d dr r dz r dr ππθπΩ=+==-=⎰⎰⎰⎰⎰⎰评注:做二次积分或三次积分时,如果里层积分的结果不含外层积分变量,那么里、外层积分可以分别积分然后相乘即可.如本例方法2中20d πθ⎰可以单独先做.(2)【解析】方法1:写出C 的参数方程,然后用曲线积分化为定积分的公式. 由平面上圆的参数方程易写出C 的参数方程为:()cos ,()sin ,()2cos sin x x t t y y t t z z t t t ======-+,其中2z x y =-+.由C 的方向知,C 在Oxy 平面上的投影曲线相应地也是顺时针的,于是t 从π2到0. 在把参数方程代入被积表达式之前,先用C 的方程将被积表达式化简,有222022220()()()(2)()(2)(2())()[cos (2cos sin )]cos (2())()0[2cos sin cos 2cos ]02cos 2.C CI z y dx x z dy x y dzx dx x z dy z dzx t dx t t t t tdt z t dz t t t t t dt tdt ππππππ=-+-+-=-+-+-=-+--++-=+--+=-=-⎰⎰⎰⎰⎰⎰⎰方法2:用斯托克斯公式来计算.记S 为平面2x y z -+=上C 所围有限部分,由L 的定向,按右手法则S 取下侧.原积分2SS dydzdzdx dxdy dxdy x y z z yx zx y∂∂∂==∂∂∂---⎰⎰⎰⎰. S 在xy 平面上的投影区域xy D 为221x y +≤.将第二类曲面积分化为二重积分得原积分22xyD dxdy π=-=-⎰⎰.这里因S 取下侧,故公式取负号.(3)【解析】已掌握新技术人数()x t 的变化率,即dxdt,由题意可立即建立初值问题 0(),(0).dxkx N x dtx x ⎧=-⎪⎨⎪=⎩ 把方程分离变量得,()dx kdt x N x =-111()dx kdt N x N x+=-.积分可得 11ln xkt c N N x=+-,1kNt kNtcNe x ce =+.xyz 1O xyOyOz 1以0(0)x x =代入确定00x c N x =-,故所求函数为000.kNt kNtNx e x N x x e=-+四、(本题共2小题,每小题6分,满分12分.)(1)【分析一】见下图所示,S 在xOy 平面与yOz 平面上的投影均易求出,分别为22:1xy D x y +≤;2:11,1yz D y y z -≤≤≤≤,或01,z z y z ≤≤≤≤ 图1求Szdxdy ⎰⎰,自然投影到xOy 平面上.求(2)Sx z dydz +⎰⎰时,若投影到xOy 平面上,被积函数较简单且可利用对称性.【分析二】令(,,)2,(,,)0,(,,)P x y z x z Q x y z R x y z z =+==,则SI Pdydz Rdxdy =+⎰⎰.这里,213P Q R x y z∂∂∂++=+=∂∂∂,若用高斯公式求曲面积分I ,则较简单.因S 不是封闭曲面,故要添加辅助曲面.【解析】方法一:均投影到平面xOy 上,则22(2)[(2)()()]xySD zI x z dydz zdxdy x z x y dxdy x∂=++=+-++∂⎰⎰⎰⎰, 其中22z x y =+,22:1xy D x y +≤.把2zx x∂=∂代入,得 2222242()()xyxyxyD D D I x dxdy x x y dxdy x y dxdy =--+++⎰⎰⎰⎰⎰⎰,由对称性得222()0xyD x xy dxdy +=⎰⎰,22242()xyxyD D x dxdy x y dxdy =+⎰⎰⎰⎰,所以 22()xyD I x y dxdy =-+⎰⎰. 利用极坐标变换有121340001242I d r dr r ππθπ⎡⎤=-=-=-⎢⎥⎣⎦⎰⎰.方法二:分别投影到yOz 平面与xOy 平面.投影到yOz 平面时S要分为前半部分1:S x =2:S x =(见图1),则12(2)(2)S S SI x z dydz x z dydz zdxdy =++++⎰⎰⎰⎰⎰⎰.由题设,对1S 法向量与x 轴成钝角,而对2S 法向量与x 轴成锐角.将I 化成二重积分得2222)()()4().yzyzxyyzxyD D D D D I z dydz z dydz x y dxdyx y dxdy =-+-++=-++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2213111221131242200sin 2()344(1)cos 3343,34224yzz y D z y y t dy z y dyy dy tdt πππ=--====-=-=⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰或21101.24yzD dz dz ππ===⎰⎰⎰⎰(这里的圆面积的一半.)22()2xyD x y dxdy π+=⎰⎰(同方法一).因此, 4.422I πππ=-⋅+=-方法三:添加辅助面221:1(1)S z x y =+≤,法方向朝下,则11(2)1S S Dx z dydz zdxdy dxdy dxdy π++==-=-⎰⎰⎰⎰⎰⎰,其中D 是1S 在平面xy 的投影区域:221x y +≤.S 与1S 即22z x y =+与1z =围成区域Ω,S 与1S 的法向量指向Ω内部,所以在Ω上满足高斯公式的条件,所以1(2)3S S x z dydz zdxdy dV Ω++=-⎰⎰⎰⎰⎰11()3332D z dz dxdy zdz ππ=-=-=-⎰⎰⎰⎰, 其中,()D z 是圆域:22x y z +≤,面积为z π. 因此,133(2)()222S I x z dydz zdxdy ππππ=--++=---=-⎰⎰. (2)【解析】由多元复合函数求导法则,得z z u z v z zx u x v x u v∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂, 2z z u z v z z a y u y v y u v∂∂∂∂∂∂∂=+=-+∂∂∂∂∂∂∂, 所以 22222222()()z z z z u z v z v z ux x u x v u x u v x v x v u x∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ 222222z z zu u v v∂∂∂=++∂∂∂∂, 2222222()()z z z z u z v z v z u x y y u y v u y u v y v y v u y∂∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ 222222(2)z z za a u u v v∂∂∂=-+-+∂∂∂∂,222222222222222()()2()()44.z z z a y y u y vz u z v z v z ua u y u v y v y v u yz z z a a u u v v∂∂∂∂∂=-+∂∂∂∂∂∂∂∂∂∂∂∂∂=-⋅+⋅+⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂=-+∂∂∂∂代入2222260z z zx x y y ∂∂∂+-=∂∂∂∂,并整理得 2222222226(105)(6)0z z z z z a a a x x y y u v v∂∂∂∂∂+-=+++-=∂∂∂∂∂∂∂. 于是,令260a a +-=得3a =或2a =-.2a =-时,1050a +=,故舍去,3a =时,1050a +≠,因此仅当3a =时化简为20zu v∂=∂∂. 【相关知识点】多元复合函数求导法则:若(,)u u x y =和(,)v v x y =在点(,)x y 处偏导数存在,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 处的偏导数存在,且,z f u f v z f u f v x u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂.五、(本题满分6分)【分析】通过变换将()x ϕ化为积分上限函数的形式,此时0x ≠,但根据0()limx f x A x→=,知 (0)0f =,从而1(0)(0)0f dt ϕ==⎰,由此,利用积分上限函数的求导法则、导数在一点处的定义以及函数连续的定义来判定()x ϕ'在0x =处的连续性. 【解析】由题设0()limx f x A x→=知,(0)0,(0),f f A '==且有(0)0ϕ=.又 10()()()(0),xf u du x f xt dtu xtx xϕ==≠⎰⎰于是 02()()()(0),xxf x f u dux x xϕ-'=≠⎰由导数定义,有0200()()(0)()(0)limlimlim22xx x x f u du x f x Axx x ϕϕϕ→→→-'====⎰. 而 022000()()()()lim ()limlim lim x xx x x x xf x f u duf u du f x x xx xϕ→→→→-'==-⎰⎰ (0)22A AA ϕ'=-==, 从而知()x ϕ'在0x =处连续.评注:对1()()x f xt dt ϕ=⎰作积分变量变换xt u =时,必附加条件0x ≠.因此,由01()()xx f u du xϕ=⎰得到的()x ϕ'也附加有条件0x ≠.从而(0)ϕ'应单独去求.六、(本题满分7分)【解析】曲线()y f x =上点(,())x f x 处的切线方程为()()()Y f x f x X x '-=-.令0X =得y 轴上的截距()()Y f x f x x '=-.由题意,01()()()xf t dt f x f x x x' =-⎰. 为消去积分,两边乘以x ,得 20()()()xf t dt xf x f x x ' =-⎰, (*)将恒等式两边对x 求导,得2()()()2()()f x f x xf x xf x x f x ''''=+--,即 ()()0xf x f x '''+=.在(*)式中令0x =得00=自然成立.故不必再加附加条件.就是说()f x 是微分方程0xy y '''+=的通解.下面求解微分方程0xy y '''+=.方法一:()100xy y xy xy C ''''''+=⇒=⇒=, 因为0x >,所以1C y x'=, 两边积分得 12()ln y f x C x C ==+.方法二:令()y P x '=,则y P '''=,解0xP P '+=得1C y P x'==. 再积分得12()ln y f x C x C ==+.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.)【分析】要求0Bx =的解空间的一个标准基,首先必须确定此解空间的维数以及相应个数的线性无关的解.【解析】(1)因秩()2r B =,故解空间的维数()422n r B -=-=,又因12,αα线性无关,12,αα是方程组0Bx =的解,由解空间的基的定义,12,αα是解空间的基.用施密特正交化方法先将其正交化,令:[][][][]1121221111,1,2,3,(,)521,1,4,11,1,2,32,1,5,3.(,)153TT T T βααββαβββ===-=---=--将其单位化,有]]1212121,1,2,3,2,1,5,3T T ββηηββ====--, 即为所求的一个标准正交基.评注:此题是一个基本计算题,只要求得一个齐次方程组的基础解系再标准正交化即可. 由于解空间的基不唯一,施密特正交化处理后标准正交基也不唯一.已知条件中12,,αα3α是线性相关的(注意12323ααα-=),不要误认为解空间是3维的.(2)(I)设ξ是矩阵A 的属于特征值0λ的特征向量,即0,A ξλξ=021*******,1211a b λ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦即 0002125312a b λλλ--=⎧⎪+-=⎨⎪-++=-⎩0130,a ,b λ⇒=-=-=. (II)将(1)解得的30a ,b =-=代入矩阵A ,得212533102A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦. 其特征方程为3212533(1)0,12E A λλλλλ---=-+-=+=+知矩阵A 的特征值为1231λλλ===-.由于 312()5232101r E A r --⎡⎤⎢⎥--=--=⎢⎥⎢⎥⎣⎦, 从而1λ=-只有一个线性无关的特征向量,故A 不能相似对角化. 评注:A 相似于对角阵⇔A 的每个i r 重特征值有i r 个线性无关的特征向量.八、(本题满分6分)【解析】(1)因为TA E ξξ=-,Tξξ为数,Tξξ为n 阶矩阵,所以2()()2()(2)T T T T T T T A E E E E ξξξξξξξξξξξξξξ=--=-+=--,因此, 2(2)(1)0TTTTTA A E E ξξξξξξξξξξ=⇔--=-⇔-= 因为ξ是非零列向量,所以0Tξξ≠,故210,TA A ξξ=⇔-=即1Tξξ=. (2)反证法.当1Tξξ=时,由(1)知2A A =,若A 可逆,则121A A A A A E --===. 与已知T A E E ξξ=-≠矛盾,故A 是不可逆矩阵.九、(本题满分7分) 【分析】首先需要清楚二项分布的产生背景.它的背景是:做n 次独立重复试验,每次试验的结果只有两个(要么成功,要么失败),每次试验成功的概率都为p ,随机变量X 表示n 次试验成功的次数,则~(,)X B n p .这道题中经过三个交通岗,在各个交通岗遇到红灯的事件是独立的,概率都为25,相当于做了3次独立重复试验,试验的结果只有两个(要么遇到红灯(成功),要么不遇到(失败)),每次成功的概率都为25,X 表示遇到红灯的次数,相当于做了3次试验成功的次数,故2~(3,)5X B .【解析】由题意知:2~(3,)5X B ,由二项分布的分布律的定义,有{}33(1),0,1,2,3.k kk p X k C p p k -==-=再由离散型随机变量分布函数的定义,有()kk xF x p≤=∑,(1)当0x <时,()0kk xF x p≤==∑;(2)当01x ≤<,{}300300322327()0()(1)555125k k xF x p p P X C -≤⎛⎫=====-==⎪⎝⎭∑; (3)当12x ≤<,{}{}1131013272281()01()(1)12555125k k xF x p p p P X P X C -≤==+==+==+-=∑; (4)当23x ≤<, {}{}{}012()012kk xF x pp p p P X P X P X ≤==++==+=+=∑223238122117()(1)12555125C -=+-=; (5)当3x ≥时{}{}{}{}0123()01231k k xF x p p p p p P X P X P X P X ≤==+++==+=+=+==∑.因此X 的分布函数为:0,0,27,01,12581(),12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩ 2~(3,)5X B 的数学期望为26355EX np ==⋅=.【相关知识点】1.二项分布分布律的定义:{}(1),0,1,,k kn k n P X k C p p k n -==-=.2.离散型随机变量分布函数的定义:{}()i ix xF x P X x p ≤=≤=∑.3.二项分布~(,)X B n p 的期望为EX np =.十、填空题(本题共2小题,每小题3分,满分6分.) (1)【答案】37【解析】设事件C =“抽取的产品是次品”,事件D =“抽取的产品是工厂A 生产的”,则事件D 表示“抽取的产品是工厂B 生产的”,依题意有()0.60,()0.40,(|)0.01,(|)0.02P D P D P C D P C D ====.应用贝叶斯公式可以求得条件概率(|)P D C :()(|)0.60.013(|)0.60.010.40.027()(|)()(|)P D P C D P D C P D P C D P D P C D ⨯===⨯+⨯+.【相关知识点】贝叶斯公式:设试验E 的样本空间为S .A 为E 的事件,12,,,n B B B 为S的一个划分,且()0,()0(1,2,,)i P A P B i n >>=,则1()(|)(|),1,2,,.()(|)i i i njjj P B P A B P B A i n P B P A B ===∑ (*)(*)式称为贝叶斯公式.(2)【解析】由于ξ与η相互独立且均服从正态分布2)N ,因此它们的线性函数U ξη=-服从正态分布,且()0,EU E E E ξηξη=-=-=()11122DU D D D ξηξη=-=+=+=, 所以有 (0,1)UN .代入正态分布的概率密度公式,有22()u f u du +∞--∞=⎰. 应用随机变量函数的期望公式有22(||)(||)||u E E U u du ξη+∞--∞-= =⎰222u du +∞-=⎰由凑微分法,有222(||)2()2u uE d ξη+∞--=--⎰22u +∞-==.【相关知识点】对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.。
2020年全国大学高等数学考试及答案解析
2020年全国大学高等数学考试试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数1,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰(C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰x(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆(6)设矩阵200210100021,020,020*********A B C ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则( ) ()()(),,(),,A A C B C B A C B C C A C B C D A C B C 与相似与相似与相似与不相似与不相似与相似与不相似与不相似(7) 若A,B 为任意两个随机事件,则 ( )(A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B (C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (1) 已知函数21()1f x x=+,则(3)(0)f =__________ (2) 微分方程'''230y y y ++=的通解为y =_________(3) 若曲线积分221L xdx aydy x y -+-⎰在区域{}22(,)|1D x y x y =+<内与路径无关,则 a =__________(4)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰(5)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (1)(本题满分10分)设函数(,)f u v 具有2阶连续偏导数,(,cos )xy f e x =,求0x dy dx=,22x d y dx=(2)(本题满分10分)求21lim ln 1nn k kk nn →∞=⎛⎫+ ⎪⎝⎭∑(3)(本题满分10分)已知函数()y x 由方程333320x y x y +-+-=确定,求()y x 的极值(4)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()()(II )设函数()()()12n u x ,u x ,,u x 可导,n f x u x u x u x =12()()()(),写出()f x 的求导公式.(5)(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x z x y y x y z =++-+++⎰.(6) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.(7)(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换X QY =下的标准型221122y y λλ+,求a 的值及一个正交矩阵Q(8)(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为1(0)(2)2P X P X ====,Y 的概率密度为201()0,y y f y <<⎧=⎨⎩,其他()I 求()P Y EY ≤()∏求Z X Y =+的概率密度。
2020年全国大学高数考试试题解析
2020年全国大学高等数学考试试题一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线的斜渐近线方程为 _____________.(2)微分方程满足的解为____________. (3)设函数,单位向量,则=.________.(4)欧拉方程的通解为__________ . (5)设矩阵,矩阵满足,其中为的伴随矩阵,是单位矩阵,则=__________ .(6)设随机变量服从参数为的指数分布,则= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把时的无穷小量,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) (B) (C)(D)(8)设函数连续,且则存在,使得 (A)在(0,内单调增加(B)在内单调减少(C)对任意的有 ( D)对任意的有122+=x x y x x y y x ln 2=+'91)1(-=y 181261),,(222z y x z y x u +++=}1,1,1{31=n )3,2,1(n u∂∂)0(024222>=++x y dx dy x dxy d x 210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A B **2=+ABA BA E *A A E B X λ}{DX X P >+→0x dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβαγβα,,βγα,,γαβ,,αγβ,,()f x ,0)0(>'f 0>δ()f x )δ()f x )0,(δ-),0(δ∈x ()(0)f x f >)0,(δ-∈x ()(0)f x f >(9)设为正项级数,下列结论中正确的是(A)若=0,则级数收敛(B)若存在非零常数,使得,则级数发散(C)若级数收敛,则(D)若级数发散, 则存在非零常数,使得(10)设为连续函数,,则等于(A)(B) (C)(D) 0(11)设是矩阵的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A) (B)(C)(D)(12)设为阶可逆矩阵,交换的第1行与第2行得矩阵分别为的伴随矩阵,则(A)交换的第1列与第2列得(B)交换的第1行与第2行得 (C)交换的第1列与第2列得 ((D)交换的第1行与第2行得 (13)设二维随机变量的概率分布为∑∞=1n nan n na ∞→lim ∑∞=1n naλλ=∞→n n na lim ∑∞=1n na∑∞=1n na0lim 2=∞→n n a n ∑∞=1n naλλ=∞→n n na lim ()f x ⎰⎰=ttydx x f dy t F 1)()()2(F '2(2)f (2)f (2)f -21,λλA 12,αα1α12()+A αα01≠λ02≠λ01=λ02=λA (2)n n ≥A **.,B A B ,A B *A *B *A *B *A *-B *A *-B (,)X Y已知随机事件与相互独立,则(A) (B) (C)(D)(14)设为来自总体的简单随机样本,为样本均值,为样本方差,则(A)(B)(C)(D)三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分) 设,表示不超过的最大整数. 计算二重积分(16)(本题满分12分) 求幂级数的收敛区间与和函数.(17)(本题满分11分)如图,曲线的方程为,点是它的一个拐点,直线与分别是曲线在点与处的切线,其交点为.设函数具有三阶连续导数,计算定积分(18)(本题满分11分)设有方程,其中为正整数.证明此方程存在惟一正实根,并证明当时,级数收敛.}0{=X }1{=+Y X 0.2,0.3a b ==0.4,0.1a b ==0.3,0.2a b ==0.1,0.4a b ==)2(,,,21≥n X X X n (0,1)N X 2S )1,0(~N X n 22~()nS n χ)1(~)1(--n t SXn 2122(1)~(1,1)nii n X F n X=--∑}0,0,2),{(22≥≥≤+=y x y x y x D ]1[22y x ++221y x ++⎰⎰++Ddxdy y x xy .]1[22∑∞=--+-121))12(11()1(n n n x n n ()f x C ()y f x =(3,2)1l 2l C (0,0)(3,2)(2,4)()f x ⎰'''+32.)()(dx x f x x10nx nx +-=n n x 1α>1n n x α∞=∑(19)(本题满分12分)设是由确定的函数,求的极值点和极值.(20)(本题满分9分)设有齐次线性方程组试问取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)已知3阶矩阵的第一行是不全为零,矩阵(为常数),且,求线性方程组的通解.(22)(本题满分9分)设二维随机变量的概率密度为求:(1)的边缘概率密度. (2)的概率密度(23)(本题满分9分)设总体的分布函数为 其中未知参数为来自总体的简单随机样本,求:(1)的矩估计量. (2)的最大似然估计量(,)z z x y =2226102180x xy y yz z -+--+=(,)z z x y =121212(1)0,2(2)20,(2),()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩a A c b a c b a ,,),,,(12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B k =AB O 0x =A (,)X Y (,)f x y =1001,02x y x<<<<其它(,)X Y )(),(y f x f Y X Y X Z -=2).(z f Z X ,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββn X X X ,,,,121 >βX ββ2020年全国大学高等数学考试试题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31xC x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u ∂∂ =33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)欧拉方程)0(024222>=++x y dx dyx dx y d x 的通解为 221xc x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可。
2020年全国大学高数考试试题及解析
2020年全国大学高等数学考试试题一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线上与直线垂直的切线方程为__________ . (2)已知,且,则=__________ . (3)设为正向圆周在第一象限中的部分,则曲线积分的值为__________.(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则_________.(5)设均为3维列向量,记矩阵,,如果,那么 .(6)从数1,2,3,4中任取一个数,记为, 再从中任取一个数,记为, 则=____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数,则在内( )(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点 (D)至少有三个不可导点(2)设是连续函数的一个原函数,表示的充分必要条件是则必有( )(A)是偶函数是奇函数 (B)是奇函数是偶函数ln y x =1=+y x (e )e x x f x -'=(1)0f =()f x L 222=+y x ⎰-Lydx xdy 2Ω22y x z +=222y x R z --=∑Ω⎰⎰∑=++zdxdy ydzdx xdydz 123,,ααα123(,,)=A ααα123123123(,24,39)=++++++B ααααααααα1=A =B X X ,,2,1 Y }2{=Y P n nn xx f 31lim )(+=∞→()f x ),(+∞-∞()F x ()f x ""N M ⇔"M ",N ()F x ()f x ⇔()F x ()f x ⇔(C)是周期函数是周期函数 (D)是单调函数是单调函数(3)设函数, 其中函数具有二阶导数, 具有一阶导数,则必有( )(A)(B)(C)(D)(4)设有三元方程,根据隐函数存在定理,存在点的一个邻域,在此邻域内该方程( )(A)只能确定一个具有连续偏导数的隐函数(B)可确定两个具有连续偏导数的隐函数和 (C)可确定两个具有连续偏导数的隐函数和 (D)可确定两个具有连续偏导数的隐函数和(5)设是3阶方阵,将的第1列与第2列交换得,再把的第2列加到第3列得,则满足的可逆矩阵为( )(A) (B)(C)(D)()F x ()f x ⇔()F x ()f x ⇔⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕϕψ2222y ux u ∂∂-=∂∂2222yu x u ∂∂=∂∂222y uy x u ∂∂=∂∂∂222xuy x u ∂∂=∂∂∂ln e 1xz xy z y -+=(0,1,1)(,)z z x y =(,)x x y z =(,)z z x y =(,)y y x z =(,)z z x y =(,)x x y z =(,)y y x z =A A B B C =AQ C Q ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110(6)设为满足的任意两个非零矩阵,则必有( )(A)的列向量组线性相关的行向量组线性相关 (B)的列向量组线性相关的列向量组线性相关 (C)的行向量组线性相关的行向量组线性相关 (D)的行向量组线性相关的列向量组线性相关(7)设随机变量服从正态分布对给定的,数满足,若,则等于() (A)(B)(C) (D)(8)设随机变量独立同分布,且其方差为 令,则( )(A)(B) (C)(D)三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)1、(本题满分12分)设,证明.,A B =AB O A ,B A ,B A ,B A ,B X (0,1),N )10(<<αααu αα=>}{u X P α=<}{x X P x 2αu 21α-u21α-u α-1u )1(,,,21>n X X X n .02>σ∑==ni i X n Y 1121Cov(,)X Y nσ=21Cov(,)X Y σ=212)(σnn Y X D +=+211)(σnn Y X D +=-2e e a b <<<2224ln ln ()e b a b a ->-某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)3、(本题满分12分)计算曲面积分其中是曲面的上侧.4、(本题满分12分)已知函数在上连续,在内可导,且. 证明: A 存在 使得.B 存在两个不同的点,使得5、(本题满分12分)设函数具有连续导数,在围绕原点的任意分段光滑简单闭曲线上,曲线积分的值恒为同一常数.(1)证明:对右半平面内的任意分段光滑简单闭曲线有.(2)求函数的表达式.).100.66⨯=k ,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=∑)0(122≥--=z y x z ()f x [0,1](0,1)(0)0,(1)1f f ==),1,0(∈ξξξ-=1)(f )1,0(,∈ζη.1)()(=''ζηf f )(y ϕL 24()22Ly dx xydyx yφ++⎰0x >,C 24()202Cy dx xydyx y φ+=+⎰)(y ϕ已知二次型的秩为2. (1)求的值;(2)求正交变换,把化成标准形. (3)求方程=0的解.7、(本题满分9分)设矩阵的特征方程有一个二重根,求的值,并讨论是否可相似对角化.8、(本题满分9分)设为随机事件,且,令求:(1)二维随机变量的概率分布. (2)和的相关系数9、(本题满分9分)设为来自总体的简单随机样本,为样本均值,记求:(1)的方差. (2)与的协方差21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=a x y =Q ),,(321x x x f ),,(321x x x f 12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A a A ,AB 111(),(|),(|)432P A P B A P A B ===;,,0,1不发生发生A A X ⎩⎨⎧=.,,0,1不发生发生B B Y ⎩⎨⎧=(,)X Y X Y .XY ρ)2(,,,21>n X X X n (0,1)N X .,,2,1,n i X X Y i i =-=i Y n i DY i ,,2,1, =1Y n Y 1Cov(,).n Y Y2020年全国大学高等数学考试试题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y . 【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年全国大学高数考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.)(1) 22limx x →= .(2) 设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2z x y∂=∂∂ .(3) 设L 为椭圆221,43x y +=其周长记为a ,则22(234)L xy x y ds ++=⎰ . (4) 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是 (5) 设两两相互独立的三事件A , B 和C 满足条件:1,()()(),2ABC P A P B P C φ===<9(),16P A B C ⋃⋃=则()P A =二、选择题(本题共5小题,每小题3分,满分15分。
每小题给出得四个选项中,只有一个是符合题目要求的,把所选项前的字母填在提后的括号内。
) (1)设()f x 是连续函数,()F x 是()f x 的原函数,则 ( )(A) 当()f x 是奇函数时,()F x 必是偶函数。
(B) 当()f x 是偶函数时,()F x 必是奇函数。
(C) 当()f x 是周期函数时,()F x 必是周期函数。
(D) 当()f x 是单调增函数时,()F x 必是单调增函数。
(2)设20()(),0x f x x g x x >=≤⎩其中()g x 是有界函数,则()f x 在0x =处 ( ) (A)极限不存在 (B)极限存在,但不连续 (C)连续,但不可导 (D)可导(3) 设011,02(),()cos ,,1222,12n n x x a f x S x a n x x x x π∞=⎧≤≤⎪⎪==+-∞<<+∞⎨⎪- <<⎪⎩∑其中12()cos ,(0,1,2,),n a f x n xdx n π==⋅⋅⋅⎰则52S ⎛⎫- ⎪⎝⎭等于 ( )(A)12 (B)12- (C)34 (D)34- (4) 设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线 111232323x a y b z c a a b b c c ---==--- ( )(A) 相交于一点 (B) 重合 (C) 平行但不重合 (D) 异面(5) 设A B 、是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有( )(A) (|)(|)P A B P A B = (B) (|)(|)P A B P A B ≠ (C) ()()()P AB P A P B = (D) ()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z L --==-在平面:210x y z ∏-+-=上的投影直线0L 的方程,并求0L 绕y 轴旋转一周所成曲面的方程.四、(本题满分5分)求()()sin ()cos ,xx LI ey b x y dx e y ax dy =-++-⎰其中a ,b 为正常数, L 为从点A ()2a,0沿曲线O (0,0)的弧.五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y (从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m ,体积为B ,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为(0)k k >.试建立y 与v 所满足的微分方程,并求出函数关系式()y =y v .六、(本题满分6分)试证:当0x >时,()()221ln 1.x x x -≥-七、(本题满分6分)求2sin sin sin lim .1112n n n n n n n πππ→∞⎛⎫ ⎪++⋅⋅⋅+ ⎪+ ⎪++⎝⎭八、(本题满分7分)设S 为椭球面222122x y z ++=的上半部分,点P (,,)x y z ∈S ,π为S 在点P 处的切平面,(,,)x y z ρ为点O (0,0,0)到平面π的距离,求.(,,)SzdS x y z ρ⎰⎰九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1) 试证存在0(0,1)x ∈,使得在区间[]00,x 上以0()f x 为高的矩形面积,等于在区间[]0,1x 上以()y f x =为曲边的梯形面积. (2) 又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的.十、(本题满分8分)设矩阵153,10ac A b c a -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦其行列式1,A =-又A 的伴随矩阵*A 有一个特征值0λ,属于0λ的一个特征向量为(1,1,1),T α=--求,,a b c 和0λ的值.十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数k ,使线性方程组0k A x =有解向量α,且10k A α-≠,证明:向量组1,,,k A A ααα-是线性无关的.十二、(本题满分8分)设随机变量X 与Y 相互独立,下表列出了二维随机变量()X,Y 联合分布律及关于X 和关于Y 的边缘分布律中的部分数值,试将其余数值填入表中的空白处.十三、(本题满分6分)设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程. 附表:t 分布表{()()}p P t n t n p ≤=2021年全国大学高数考试数学一试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x→=24x →-=)221lim4x x →=2220112112lim 24x xx x →-- =-.方法2:采用洛必达法则.原式)()022limxx →''洛0x →=0x →=0x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x →-++=14=-. (2)【答案】()()()yf xy x y y x y ϕϕ'''''++++【分析】因为1()(),,z f xy y x y f xϕϕ=++具有二阶连续导数,利用混合偏导数在连续的条件下与求导次序无关,先求z x ∂∂或z y∂∂均可,但不同的选择可能影响计算的繁简. 方法1:先求z x∂∂. 211()()()()()z y f xy y x y f xy f xy y x y x x x x x ϕϕ∂∂⎡⎤''=++=-+++⎢⎥∂∂⎣⎦, 2221()()()11()()()()()11()()()()()()()().z y f xy f xy y x y x y y x x yf xy x f xy f xy x x y y x y x x xf xy f xy yf xy x y y x y x xyf xy x y y x y ϕϕϕϕϕϕϕ∂∂⎛⎫''=-+++ ⎪∂∂∂⎝⎭'''''''=-++++++'''''''=-++++++'''''=++++ 方法2:先求z y∂∂. 11()()()()()()()(),z f xy y x y f xy x x y y x y y y x xf xy x y y x y ϕϕϕϕϕ∂∂⎡⎤''=++=++++⎢⎥∂∂⎣⎦''=++++ []22()()()()()().z z f xy x y y x y x y y x xyf xy x y y x y ϕϕϕϕ∂∂∂''==++++∂∂∂∂∂'''''=++++ 方法3:对两项分别采取不同的顺序更简单些:()[][][]21()()1()()()()()()().z f xy y x y x y x y x y x f xy x y x y x x y f xy y x y x yyf xy x y y x y ϕϕϕϕϕ⎡⎤∂∂∂∂∂⎛⎫⎡⎤=++ ⎪⎢⎥⎢⎥∂∂∂∂∂∂⎝⎭⎣⎦⎣⎦∂∂⎡⎤''=++⎢⎥∂∂⎣⎦∂∂''=++∂∂'''''=++++ 评注:本题中,,f ϕ中的中间变量均为一元,因此本题实质上是一元复合函数的求导,只要注意到对x 求导时,y 视为常数;对y 求导时,x 视为常数就可以了. (3)【答案】12a【解析】L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上,22222213412(34)1212.43L L x y x y x y ds ds a +=⇒+=⇒+==⎰⎰因此, 原式222(34)12LLxyds x y ds a =++=⎰⎰.【相关知识点】对称性:平面第一型曲线积分(),lf x y ds ⎰,设(),f x y 在l 上连续,如果l关于y 轴对称,1l 为l 上0x ≥的部分,则有结论:()()()()12,,,,0,l lf x y ds f x y x f x y ds f x y x ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. 类似地,如果l 关于x 轴对称,2l 为l 上0y ≥的部分,则有结论:()()()()22,,,,0,l lf x y ds f x y y f x y ds f x y y ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. (4)【详解】因为E A λ-11...111...1 (1)1...1λλλ---⎛⎫⎪--- ⎪=⎪⎪---⎝⎭(对应元素相减)两边取行列式,11...111...1 (1)1...1E A λλλλ-------=---1...121...1............11...1n n n n λλλλλ---⋯------把第,,列加到第列11...1111 (1)()............11 (1)n λλλ-------提取第列的公因子2111...10 031()............00...1n n λλλ------行行行行行行-1()n n λλ=-令-1()0n E A n λλλ-=-=,得12(10((1)n n λλ==-重),重),故矩阵A 的n 个特征值是n 和0((-1)n 重)(5)【答案】14 【详解】根据加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+因为()()()P A P B P C ==,设()()()P A P B P C p ===由于,,A B C 两两相互独立,所以有2()()()P AB P A P B p p p ==⨯=, 2()()()P AC P A P C p p p ==⨯=, 2()()()P BC P B P C p p p ==⨯=,又由于ABC =∅,因此有()()0,P ABC P =∅= 所以 ()()()()()()()()P AB C P A P B P C P AC P AB P BC P ABC =++---+2220p p p p p p =++---+233p p =-又9()16P AB C =,从而29()3316P A B C p p =-=,则有2933016p p --= 23016p p ⇒-+=,解得 3144p ==或p因1()()()2P A P B P C p ===<,故 14p =,即1()4P A =二、选择题 (1)【答案】( A )【详解】应用函数定义判定函数的奇偶性、周期性和单调性.()f x 的原函数()F x 可以表示为0()(),xF x f t dt C =+⎰于是()0()()().u txxF x f t dt C f u d u C =---=+=--+⎰⎰当()f x 为奇函数时,()()f u f u -=-,从而有()()()()xxF x f u du C f t dt C F x -=+=+=⎰⎰即 F (x )为偶函数. 故(A)为正确选项.(B)、(C)、(D)可分别举反例如下:2()f x x =是偶函数,但其原函数31()13F x x =+不是奇函数,可排除(B);2()cos f x x =是周期函数,但其原函数11()sin 224F x x x =+不是周期函数,可排除(C);()f x x =在区间(,)-∞+∞内是单调增函数,但其原函数21()2F x x =在区间(,)-∞+∞内非单调增函数,可排除(D).(2)【答案】( D )【详解】由于可导必连续,连续则极限必存在,可以从函数可导性入手.因为20001()(0)(0)lim lim lim 0,0x x x xf x f f x ++++→→→-'====- 2000()(0)()(0)lim lim lim ()0,0x x x f x f x g x f xg x x x----→→→-'====-从而,(0)f '存在,且(0)0f '=,故正确选项为(D).(3)【答案】( C )【详解】由题设知,应先将()f x 从[0,1)作偶延拓,使之成为区间[−1,1]上的偶函数,然后再作周期(周期2)延拓,进一步展开为傅里叶级数,5111()(2)()()2222S S S S -=--=-=而12x =是()f x 的间断点,按狄利克雷定理有, 111(0)(0)113222().2224f f S -+++===(4)【答案】(A) 【解析】设3331121212:x a y b z c L a a b b c c ---==---,1112232323:x a y b z c L a a b b c c ---==---,题设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则由行列式的性质,可知 11112121222223232333333312230a b c a a b b c c a b c a a b b c c a b c a b c ------≠行减行,行减行, 故向量组121212(,,)a a b b c c ---与232323(,,)a a b b c c ---线性无关,否则由线性相关的定义知,一定存在12,k k ,使得11212122232323(,,)(,,)0k a a b b c c k a a b b c c ---+---=,这样上面行列式经过初等行变换值应为零,产生矛盾.121212(,,)a a b b c c ---与232323(,,)a a b b c c ---分别为12,L L 的方向向量,由方向向量线性相关,两直线平行,可知12,L L 不平行.又由333121212x a y b z c a a b b c c ---==---得333121212111x a y b z c a a b b c c ----=-=----,即()()()312312312121212x a a a y b b b z c c c a a b b c c ---------==---. 同样由111232323x a y b z c a a b b c c ---==---,得111232323111x a y b z c a a b b c c ---+=+=+---,即 ()()()123323323232323x a a a y b b b z c c c a a b b c c -+--+--+-==---, 可见12,L L 均过点()213213213,,a a a b b b c c c ------,故两直线相交于一点,选(A). (5)【答案】C【分析】由题设条件(|)(|)P B A P B A =,知A 发生与A 不发生条件下B 发生的条件概率相等,即A 发生不发生不影响B 的发生概率,故,A B 相互独立.而本题选项(A)和(B)是考虑(|)P A B 与(|)P A B 是否相等,选项(C)和(D)才是事件A 与B 是否独立. 【解析】由条件概率公式及条件(|)(|),P B A P B A =知{}{}{}{}{}{}{}1P AB P AB P B P AB P A P A P A-==-, 于是有 {}{}{}{}{}1P AB P A P A P B P AB -=⋅-⎡⎤⎡⎤⎣⎦⎣⎦, 可见 {}{}{}P AB P A P B =. 应选(C).【相关知识点】条件概率公式:{}{}{}|P AB P B A P A =.三、(本题满分5分)【解析】方法1:求直线L 在平面∏上的投影0L :方法1:先求L 与∏的交点1N .以1,:,1x t L y t z t =+⎧⎪=⎨⎪=-⎩代入平面∏的方程,得(1)2(1)101t t t t +-+--=⇒=.从而交点为1(2,1,0)N ;再过直线L 上点0(1,0,1)M 作平面∏的垂线11:112x y z L --'==-,即1,,12.x t y t z t =+⎧⎪=-⎨⎪=+⎩并求L '与平面∏的交点2N :1(1)()2(12)103t t t t +--++-=⇒=-,交点为2211(,,)333N .1N 与2N 的连接线即为所求021:421x y zL --==-. 方法2:求L 在平面∏上的投影线的最简方法是过L 作垂直于平面∏的平面0∏,所求投影线就是平面∏与0∏的交线.平面0∏过直线L 上的点(1,0,1)与不共线的向量(1,1,1)l =- (直线L 的方向向量)及(1,1,2)n =-(平面∏的法向量)平行,于是0∏的方程是111110112x y z ---=-,即3210x y z --+=. 投影线为 0210,:3210.x y z L x y z -+-=⎧⎨--+=⎩下面求0L 绕y 轴旋转一周所成的旋转曲面S 的方程.为此,将0L 写成参数y 的方程:2,1(1).2x y z y =⎧⎪⎨=--⎪⎩ 按参数式表示的旋转面方程得S 的参数方程为22221(2)((1))cos ,2,1(2)((1))sin .2x y y y y z y y θθ⎧=+-⎪⎪⎪=⎨⎪⎪=+-⎪⎩消去θ得S 的方程为()222212(1)2x z y y ⎡⎤+=+--⎢⎥⎣⎦,即2224174210.x y z y -++-=四【详解】方法1:凑成闭合曲线,应用格林公式.添加从点(0,0)O 沿0y =到点()2a,0A 的有向直 线段1L , 如图,则()()1sin ()cos xx L L I ey b x y dx e y ax dy +=-++-⎰()()1sin ()cos x x L e y b x y dx e y ax dy --++-⎰利用格林公式,前一积分21()()2D DQ P I dxdy b a dxdy a b a x y π⎛⎫∂∂=-=-=- ⎪∂∂⎝⎭⎰⎰⎰⎰ 其中D 为1L +L 所围成的半圆域,后一积分选择x 为参数,得1L :(),02,0x xx a y =⎧≤≤⎨=⎩ 可直接积分 2220()2aI bx dx a b =-=-⎰,故 23122.22I I I a b a ππ⎛⎫=-=+- ⎪⎝⎭方法2:将曲线积分分成两部分,其中一部分与路径无关,余下的积分利用曲线的参数方程计算.()()sin ()cos x x LI e y b x y dx e y ax dy =-++-⎰sin cos ()x x LLe ydx e ydy b x y dx axdy =+-++⎰⎰前一积分与路径无关,所以(0,0)(2,0)sin cos sin 0x x x a Le ydx e ydy e y+==⎰对后一积分,取L 的参数方程cos sin x a a t y a t =+⎧⎨=⎩,则sin cos dx a tdtdy a tdt=-⎧⎨=⎩,t 从0到π,得 ()Lb x y dx axdy ++⎰22223320(sin sin cos sin cos cos )a b t a b t t a b t a t a t dt π=---++⎰22311222a b a b a ππ=--+从而 22323110(2)22222I a b a b a a b a ππππ⎛⎫=---+=+- ⎪⎝⎭五、(本题满分6分)【解析】先建立坐标系,取沉放点为原点O ,铅直向下作为Oy 轴正向,探测器在下沉过程中受重力、浮力和阻力的作用,其中重力大小:mg ,浮力的大小:F B ρ=-浮;阻力:kv -,则由牛顿第二定律得202,0,0.t t d ym mg B g kv y vdtρ===--== (*)由22,dy d y dv dv dy dv dy v v v dv dt dt dt dy dt dy===⋅==,代入(*)得y 与v 之间的微分方程10,0y dy mv mg B kv v dv ρ-=⎛⎫=--= ⎪⎝⎭.分离变量得 mvdy dv mg B kv ρ=--,两边积分得 mvdy dv mg B kv ρ=--⎰⎰,2222()()()Bm m g Bm m g mv k k k k y dv mg B kv m Bm m g mg B kv k k k dv mg B kv m g Bm m k dvk mg B kv m m mg B dv dvk k mg B kv ρρρρρρρρρρ+--+=------+=--⎛⎫- ⎪=-+ ⎪-- ⎪ ⎪⎝⎭-=-+--⎰⎰⎰⎰⎰1()()()()m mg B m k v d mg B kv k k mg B kv ρρρ-⋅-=-+----⎰ (第一类换元法) 2()ln()m m mg B v mg B kv C k kρρ-=----+.再根据初始条件0|0,y v ==即22()()ln()0ln()m mg B m mg B mg B C C mg B k kρρρρ----+=⇒=-. 故所求y 与v 函数关系为()2ln .m mg B m mg B kv y v k k mg B ρρρ-⎛⎫--=-- ⎪-⎝⎭六【详解】构造函数,利用函数的单调性,证法1:令 ()()22()1ln 1.f x x x x =---易知(1)0f =又 1()2ln 2,(1)0f x x x x f x''=-+-= 21()2ln 1,(1)20f x x f x''''=++=> 232(1)()x f x x -'''=可见,当01x <<时,()0()f x f x '''<⎧⎨''⎩;当1x <<+∞时,()0()f x f x '''>⎧⎨''⎩因此,(1)2f ''=为()f x ''的最小值,即当0x <<+∞时,()(1)20f x f ''''≥=>,所以()f x '为单调增函数. 又因为(1)0f '=,所以有01x <<时()0f x '< ;1x <<+∞时()0f x '>,所以利用函数单调性可知,1f ()为()f x 的最小值,即()(1)0f x f ≥= 所以有0x >时,()()221ln 1.x x x -≥-证法2:先对要证的不等式作适当变形,当1x =时,原不等式显然成立;当01x <<时,原不等式等价于1ln ;1x x x -≤+ 当1x <<+∞时,原不等式等价于1ln ;1x x x -≥+令 1()ln 1x f x x x -=-+则 ()()()222121()0011x f x x x x x x +'=-=>>++又因为(1)0,f =利用函数单调性可知当01x <<时,()0,f x <即1ln ;1x x x -<+当1x <<+∞时,()0,f x >即1ln ;1x x x ->+ 综上所述,当0x >时,()()221ln 1.x x x -≥-七、(本题满分6分)【分析】这是n 项和式的极限,和式极限通常的方法就两种:一、把和式放缩,利用夹逼准则求极限;二、把和式转换成定积分的定义形式,利用定积分求极限.这道题,把两种方法结合到一起来求极限.当各项分母均相同是n 时,n 项和式2sin sinsin n n n n n x nnnπππ=+++是函数sin x π在[0,1]区间上的一个积分和.于是可由定积分1sin xdx π⎰求得极限lim nn x →∞.【解析】由于sinsin sin ,1,2,,11i i i n n n i n n n n i πππ≤≤=⋅⋅⋅++, 于是, 111sin sin sin11n n n i i i i i i n n n n n n iπππ===≤≤++∑∑∑. 由于 1011sin12limlim sin sin nnn n i i i i n xdx n n n ππππ→∞→∞=====∑∑⎰,10111sin112lim lim sin lim sin sin 11nn nn n n i i i i n i i n xdx n n n n n n πππππ→∞→∞→∞===⎡⎤=⋅===⎢⎥++⎣⎦∑∑∑⎰根据夹逼定理知,1sin2lim1nn i i n n iππ→∞==+∑. 【相关知识点】夹逼准则:若存在N ,当n N >时,n n n y x z ≤≤,且有lim lim n n n n y z a →+∞→+∞==,则lim n n x a →+∞=.八【分析】先写出切平面方程,然后求(,,)x y z ρ,最后将曲面积分化成二重积分. 【详解】点(,,)P x y z S ∈,S 在点P 处的法向量为{},,2n x y z =,设(,,)X Y Z 为π上任意一点,则π的方程为()()2()0x X x y Y y z Z z -+-+-=,化简得122x yX Y zZ ++= 由点到平面的公式,(0,0,0)O 到π的距离12222(,,)44x y x y z z ρ-⎛⎫===++ ⎪⎝⎭从而(,,)S Sz dS x y z ρ=⎰⎰⎰⎰ 用投影法计算此第一类曲面积分,将S 投影到xOy 平面,其投影域为{}22(,)|2D x y x y =+≤由曲面方程知,),z x y D =∈于是zz xy ∂∂==∂∂因此dS σσ==故有(,,)S Sz dS x y z ρ=⎰⎰⎰⎰ ()222200114)44D x y d d r rdr πσθ=---⎰⎰⎰极坐标3.2π=九、(本题满分6分)【解析】(1)要证0(0,1)x ∃∈,使0100()()x x f x f x dx =⎰;令1()()()x x xf x f t dt ϕ=-⎰,要证0(0,1)x ∃∈,使0()0x ϕ=.可以对()x ϕ的原函数0()()x x t dt ϕΦ=⎰使用罗尔定理:(0)0Φ=,11111111000(1)()()(())()()()0,xx x x x dx xf x dx f t dt dxxf x dx x f t dt xf x dx ϕ==Φ==-⎡⎤=-+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰分部又由()f x 在[0,1]连续()x ϕ⇒在[0,1]连续,()x Φ在[0,1]连续,在(0,1)可导.根据罗尔定理,0(0,1)x ∃∈,使00()()0x x ϕ'Φ==.(2) 由()()()()()2()0x xf x f x f x xf x f x ϕ'''=++=+>,知()x ϕ在(0,1)内单调增,故(1)中的0x 是唯一的.评注:若直接对()x ϕ使用零点定理,会遇到麻烦:1(0)()0,(1)(1)0f t dt f ϕϕ=-≤=≥⎰.当()0f x ≡时,对任何的0(0,1)x ∈结论都成立;当()f x ≡0时,(0)0,ϕ<但(1)0ϕ≥,若(1)0ϕ=,则难以说明在(0,1)内存在0x .当直接对()x ϕ用零点定理遇到麻烦时,不妨对()x ϕ的原函数使用罗尔定理. 【相关知识点】1.罗尔定理:如果函数()f x 满足 (1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.十【详解】根据题设,*A 有一个特征值0λ,属于0λ的一个特征向量为(1,1,1),Tα=-- 根据特征值和特征向量的概念,有 *0,A αλα=把1A =-代入*AA A E =中,得*,AA A E E ==-则*AA E ααα=-=-. 把*0A αλα=代入,于是*00,AA A A αλαλα== 即0A αλα-=也即011153111011a c b c a λ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,011531(1)1a c b c a λ-++-⎡⎤⎡⎤⎢⎥⎢⎥⇒--+=--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦常数0λ乘以矩阵153(1)a c b c a -++⎡⎤⎢⎥--+⎢⎥⎢⎥---⎣⎦,需用0λ乘以矩阵的每一个元素 00001(1)153(53)1(1)[(1)]1a c a c b b c a c a λλλλ-++-++-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--+=--+=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎣⎦矩阵相等,则矩阵的对应元素都相同,可得000(1)1(1)(53)1(2)(1)1a c b c a λλλ-++= ⎧⎪--+= ⎨⎪-+-=- (3)⎩因10A =-≠, A 的特征值0λ≠,*A 的特征值*0Aλλ=≠,故00λ≠由(1),(3)两式得00(1)(1)a c c a λλ-++=--+-,两边同除0λ,得 1(1)a c c a -++=--+-整理得a c =,代入(1)中,得01λ=. 再把01λ=代入(2)中得3b =- 又由1A =-,3b =-以及a c =,有153310a a A aa-=---131533110a a -+--行行121523100a a a-+列列 3113(1)23a a +--按第行展开(其中31(1)+-的指数3,1分别是1的行数和列数)3(1)2a a =--31a =-=-故 2,a c == 因此02,3,2, 1.a b c λ==-==十一、(本题满分4分)【解析】用线性无关的定义证明.设有常数011,,,,k λλλ-⋅⋅⋅使得10110.()k k A A λαλαλα--++⋅⋅⋅+=*两边左乘1k A-,则有()110110k k k A A A λαλαλα---++⋅⋅⋅+=,即 12(1)0110k k k k A A Aλαλαλα---++⋅⋅⋅+=. 上式中因0kA α=,可知()2110k k AA αα-+===,代入上式可得100.k A λα-=由题设10k A α-≠,所以00.λ=将00λ=代入()*,有1110k k A A λαλα--+⋅⋅⋅+=.两边左乘2k A-,则有 ()21110k k k A A A λαλα---+⋅⋅⋅+=,即123110k k k A A λαλα---+⋅⋅⋅+=.同样,由0k A α=,()2110k k AA αα-+==,可得110.k A λα-=由题设10k A α-≠,所以10.λ=类似地可证明210,k λλ-=⋅⋅⋅==因此向量组1,,,k A A ααα-⋅⋅⋅是线性无关的. 【相关知识点】向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k 使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.十二【详解】离散型随机变量边缘分布律的定义:{}{},,1,2,i i i j ij jjp P X x P X x Y y p i ⋅=======∑∑ {}{},,1,2,j j i j ij iip P Y y P X x Y y p j =======∑∑(通俗点说就是在求关于X 的边缘分布时,就把对应x 的所有y 都加起来,同理求关于Y 的边缘分布时,就把对应y 的所有x 都加起来)故 {}{}1111,ii iiP Y y p P X x Y y p⋅======∑∑ 即{}{}{}11121,,P Y y P X x Y y P X x Y y ====+==而由表知{}116P Y y ==,{}211,8P X x Y y ===,所以 {}{}{}11121111,,6824P X x Y y P Y y P X x Y y ====-===-=又根据X Y 和相互独立,则有:{}{}{},i j i j P X x Y y P X x P Y y ===== 即ij i j p p p ⋅⋅=因{}111,24P X x Y y ===,{}116P Y y ==,而{}{}{}1111,P X x Y y P X x P Y y ===== 所以{}{}{}11111,124146P X x Y y P X x P Y y =======再由边缘分布的定义有{}{}{}{}1111213,,,P X x P X x Y y P X x Y y P X x Y y ====+==+==所以 {}{}{}{}1311112,,,P X x Y y P X x P X x Y y P X x Y y ====-==-==1111424812=--= 又由独立性知{}{}{}1313,P X x Y y P X x P Y y =====所以 {}{}{}13311,112134P X x Y y P Y y P X x =======由边缘分布定义有{}{}{}31323,,P Y y P X x Y y P X x Y y ====+== 所以 {}{}{}23313111,,3124P X x Y y P Y y P X x Y y ====-===-= 再由1i ip ⋅=∑,所以{}{}21131144P X x P X x ==-==-= 而 {}{}{}{}2212223,,,P X x P X x Y y P X x Y y P X x Y y ====+==+== 故 {}{}{}{}2222123,,,P X x Y y P X x P X x Y y P X x Y y ====-==-==31134848=--= 又1jjp =∑,所以{}{}{}21311111632P Y y P Y y P Y y ==-=-==--= 所以有:十三、(本题满分6分)【分析】把X Y -看成一个随机变量,根据独立正态随机变量的线性组合必然为正态分布的性质,可以知道N(0,1)X Y-,这样可以简化整题的计算.【解析】令Z X Y =-,由于,X Y 相互独立,且都服从正态分布,因此Z 也服从正态分布,且()()()0E Z E X E Y =-=,11()()()122D Z D X D Y =+=+=. 于是,(0,1)Z X Y N =-~.()()()()()()()22222()1.D X Y D ZE ZE Z D Z E Z E ZE Z-==-=+-=-而2222z z E Z z dz ze dz +∞+∞---∞==⎰2222202z z z ed e+∞+∞--⎡⎤⎛⎫==-=⎥⎪⎝⎭⎥⎦故21.D X Y π-=-【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.2.方差的定义:22()DX EX EX =-.3.随机变量函数期望的定义:若()Y g X =,则()()EY g x f x dx +∞-∞=⎰.十四、(本题满分4分)【解析】设该次考试的考生成绩为X ,则2~(,)X N μσ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,则在显著性水平0.05α=下建立检验假设:001:70,:70,H H μμμ==≠由于2σ未知,故用t 检验.选取检验统计量,X T ==在070μμ==时,2~(70,),~(35).X N T t σ选择拒绝域为{}R T λ=≥,其中λ满足:{}0.05P T λ≥=,即{}0.9750.975,(35) 2.0301.P T t λλ≤===由0 36,66.5,70,15,n x s μ====可算得统计量T 的值:1.42.0301t ==<.所以接受假设0:70H μ=,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分.。