单因素随机区组实验设计
第 讲单因素实验设计
高照明度 中等照明度
低照明度
组X
X
组Y
Y
组Z
Z
目录
原始数据表如下:
姓名
1 张明 ……
30 刘修 31 刘冬
…… 60 黄卫 61 李家
…… 90 张岩
组别(V1)
工作效率(V2)
高(照明度) 56
高
67
中等
53
中等
61
低
45
低
68
目录
不同照明条件对工作效率影响研究的统计分析:
不同照明条件下工作效率比较
如果水平数为2,则进行 independent samples T test; 如果水平数大于2,则进行完全随机的方差分析: analyze— compare means—One-Way ANOVA
(3目) 录两个处理水平的单因素完全随机设计举例
不同照明条件对工作效率的影响研究
研究2种照明条件下工人车零件的效率。被试60人,随机分 为2组,每组30人,每组被试分别接受1种处理,见下表:
高照明度
低照明度
组X
X
组Y
Y
目录
不同照明条件对工作效率的影响研究:
原始数据表
姓名
组别(V1)
工作效率(V2)
1 张明 ……
29 刘修
30 刘冬
31 黄卫
32 李家 ……
60 张岩
高(照明度) 56
高
67
高
53
低
61
低
45
低
68
目录
不同照明条件对工作效率影响研究的统计分析:
表1 不同照明条件下工作效率比较
目录
-- 基本方法:首先将被试在无关变量上进行匹配,并区分为 不同的组别(每一区组内的被试在无关变量上相似,不同区 组的被试在无关变量上不同),然后把各区组的被试随机分 配给自变量的各个水平,每个被试只接受一个水平的处理。
单因素随机区组试验设计-东北农业大学植物科学与技术试验教学中心
东北农业大学本科课程教学大纲课程名称:田间试验与统计方法英文名称:Field Experiment and Statistic-method 课程编号:01600008j适用专业:草业科学、植物生产类总学时数:40总学分:2。
5大纲主撰人:李文霞内容简介《试验设计与统计分析》是一门收集整理数据、分析数据, 并根据数据进行推断的科学。
本课程为高等农业院校农学类专业的专业基础课,主要讲授有关田间试验的基本知识和统计分析的基本方法和技能,为学习专业课程奠定基础,使学生具备承担科学试验,正确分析和评价科学试验结果及其可靠性的能力。
教学大纲一、课堂讲授部分(一)分章节列出标题、各章节要点及授课时数(务必将要点写清楚)第1章绪论一、基本内容1.1 农业科学试验的任务和要求1学时1。
1.1 农业科学试验和田间试验1.1。
2 农业科学试验的任务和来源1.1.3 农业科学试验的基本要求1。
2 试验误差及其控制2学时1.2。
1 试验误差1.2.2 试验误差的来源1。
2.3试验误差的控制1.3 生物统计学与农业科学试验1学时1.3。
1 部分生物统计学基本概念1。
3.2 生物统计学的形成与发展1。
3。
3 生物统计学在农业科学试验中的作用和注意问题二、教学目的与要求要求学生掌握农业科学试验的基本要求、试验误差的概念、来源和控制、部分生物统计学的概念,了解农业科学试验的任务和来源、生物统计学在农业科学试验中的作用和注意问题。
三、重点与难点重点:农业科学试验的基本要求、试验误差的概念、来源和控制、部分生物统计学的概念难点:试验误差的概念和生物统计学的基本概念的理解第2章试验的设计和实施一、基本内容2.1 试验方案1学时2.1。
1 试验方案的概念和类别2。
1.2 处理效应2.1。
3 试验方案的设计要点2。
2 试验设计原则1。
5学时2。
2.1 重复2.2。
2 随机排列2。
2.3 局部控制2。
3 小区技术0.5学时2。
3.1 小区2。
第5讲_单因素实验设计说明
目录
<3> 应用举例
研究题目:文章的生字密度对学生阅读理解的影响. 研究假设:阅读理解随着生字密度的增加而下降. 实验变量:自变量——生字密度,含有4个水平〔5:1、10:1、
15:1、20:1; 因变量——阅读测验的分数; 无关变量——被试的智力水平.
区组的个数根据控制无关变量的需要,每一区组内被试的 个数为多少??
目录
– 误差控制:区组法〔无关变量纳入法.通过统计处理,分离出 由无关变量引起的变异,使它不出现在处理效应和误差变异中, 从而提高方差分析的灵敏度.
目录
– 实验设计模型:Yij = μ+αj+πi +εi<j>
–
<i=1,2,......,n; j=1,2,......,p>
目录
① 随机实验组控制组前测后测设计----应用举例
• 研究目的:通过一系列教学程序和方法的训练,来培养学 生根据报纸标题预测所报道内容的能力. • 随机选取了46名8年级的学生,并随机将他们分为两组,随 机选择其中一个组为实验组,接受标题阅读教学,而另一个组 为控制组,仍接受常规阅读教学.
目录
Yijkl 表示被试i在处理水平j上的分数,μ表示总体平均 数,αj表示水平j 的处理效应;βk 表示无关变量B的效 应,γl 表示无关变量C的效应, ε pooled 表示误差变异.
总变异组成:实验处理A引起的变异;无关变量B、C引起的变 异;误差引起的变异.
目录
平方和分解:
SST = SSA + SSB + SSC + SSE SST是总平方和; SSA是因素A〔实验处理的效应平方和; SSB是无关变量B的效应平方和; SSC是无关变量C的效应 平方和; SSE是误差平方和.
随机区组实验设计
一 、随机区组设计的基本原理 二、单因素区组设计的步骤 三、单因素随机区组设计的基本模型 四、单因素区组设计的数据分析 五、研究实例
随机区组设计的来由: 农业试验
源于农业田间研究中按土地特点,把实验区域划分为不同的“区域”或“区 块”
三块地: (1) 河边, (2)房后, (3)山上 三种种子: A, B, C
三种饲料增重效果的比较。 (1) 分组:将断奶仔猪配成10个区组(block)
每个区组3只,同窝别、性别、日龄、体重接近 每个区组内3只仔猪随机分配到3个实验组
(2) 指标:10天后各组平均体重的增加量(kg) (3) 目的: 比较3组平均增重量
一 随机区组设计的基本原理
随机区组实验设计(randomized block
教育实习调查报告应当怎样写?下面是 小编整 理提供 的教育 实习调 查报告 范
文,欢迎阅读参考!希望大家采纳! 更多相 关信息 请关注 美文阅 读网的 栏目!
篇一 我被分到马鞍山市红星中学进行教 育实习 ,实习 内容包 括两个 方面, 一
是专业课的教育实习,二是班主任的 工作实 习。在 这期间 我积极 地努力 地工作 ,
区组根据实验要求划分,使区组内的被试差异尽量缩小,区组间差异根据设 计要求
区组因素可以是单一的因素,也可以是复合因素 如仅以“窝别”为区组因素,它就是单一非试验因素 若规定:来自同一窝且性别相同、体重接近、健康状况相同的若干只动物组成一
个区组,并按此要求构造出许多个区组,这时的区组因素就是复合非试验因素
区
1
组
变
2
量
3
…
O11 O21 O31 …
O12 O22 O32 …
第五章 真实验设计 34单多因素随机区组
第五章 真实验设计
第三节 单因素随机区组设计
背景知识
• 区组,源于英文词汇,block,英国统计学家 R.A.Fisher最初在农业田间实验中提出来的概念。 在农田实验中,不同的地块影响实验效果,他将 接受实验处理的地块作为区组,不同地块的土质、 肥力不同。在农业实验中采用随机区组实验设计, 就是想要通过将小块的土地分类为区组,以控制 按照随机方式选择出来的小块土地之间可能存在 的某些差异,从而消除不同地块对实验处理效应 的影响。
练习题
• (二)选择题 • 1. 所罗门四组设计可能采用的统计方法。 • A.单因素方差分析;B协方差分析;C.2×2方 差分析;D独立样本T检验。 • 2. 3×4的多因素完全随机设计可能采用的数 据处理方法。 • A.主效应分析;B多重比较;C简单效应分析; D交互效应分析。
练习题
• (三)简答题 • 1.交互效应
3. 图示和数据收集 自变量A(P=2)和B(Q=2),额外变量E(n=5)。
a1b1 a2b1 a1b2 a2b2 —————————————— S11 S21 S31 S41 S12 S22 S32 S42 S13 S23 S33 S43 S14 S24 S34 S44 S15 S25 S35 S45 —————————————— Y11 Y21 Y12 Y22
注:所有被试首先在额外变量上匹配分成了5个区组。 这里每个区组4个被试,还可以是8,12等4的倍数。
实验六随机区组试验设计方法
其它试验其它试验 .B3A2 B1 B5 B4
A3 A3 B2 B5 B3 B1
A1 A1 B2 B4 B1 B3 B4
B2 B5
A3 B1 B3 B5 B2 B4 B3
A1 B1 B5 B2 B4 B5
A2 B1 B3 B2 B4
B5
A1 B3 B2
A2 B4 B1 B2 B1 B3 B5 B4 B1
A3 B3 B5 B2 B4
实验六随机区组试验设计方法
一目的:掌握常用的单因素,两因裂区组设计方法 二 设计内容: 1 有一小麦品种比较试验,参试8个品种,代号为A B C D E F G H准备重复3次,请你根据下面地形设 计一随机区组试验,划出田间种植图。
35m
40m
肥
3 5
瘦
2 有一玉米品种和中耕次数两因素试验,品种为B因素为副 区,B1,B2,B3三个水平,中耕次数A因素为主因素分A1,A2,A3,A4四 个水平,随机区组设计重复2次,请你根据上面地型设计一两因素裂 区组试验,划出田间种植图
实验七 田间试验地参观 目的:对田间试验裂区设计有一直观认识 下图为小麦两因素裂区试验设计: 主区因素为播期(A)有3个水平分别是 A1:9月25号; A2:10月10号; A3:10月25号, 副区因素为播量(B)为5水平,分别为 B1 :10万; B2 :12万; B3:15万; B4 18万. B5: 20万基本苗. 重复3次,
单因素实验设计
四.单因素完全随机实验设计方差分析的前提条件
1.正态分布。 2.方差齐性。(分配给不同处理水平的被试在统计上是无差异的) 3.独立性。 4.连续性。
特别注意: ①如果自变量有两个水平,即实验中有两组被试,则F检验与两组Z或t检验等效。
也就是说,两个独立样本差异的显著性检验可以看成是单因素完全随机实验 设计的特例。
单因素实验设计
第一讲 单因素完全随机实验设计
一.单因素实验设计定义:实验中只有一个自变 量的实验设计。
分类: 1.单因素完全随机实验设计 2.单因素随机区组实验设计 3.单因素重复测量实验设计 4.单因素拉丁方实验设计
二.单因素完全随机实验设计的模式:
表:
三.单因素完全随机实验设计的基本特点:
1.实验中只有一个自变量,平,即实验有多组被试,则不能用Z或t检验去进行显 著性检验。
③如果F检验结果显著,则表明各组均数中至少有两组均数差异是显著的,但是 并不能知道哪几组均数差异显著,所以还需要进行多重比较。
思考题:单因素完全随机实验设计方差分析
有A、B、C三种不同的阅读策略训练方法,从5年级学生中随机挑选9名学生参 加训练,将其随机分为3组,每组3名学生,每组接受一种训练方法。一学期结 束后,对6名学生进行阅读能力测验,测验结果如表:
2.如自变量有P个水平,实验就有P组。
3.两种情况:
①随机选择N个同质的被试,并随机分配到P个不同水平的实验处理中, 每组被试人数可相同,也可不同。
②有P组不同质的被试接受同一种实验处理,每组被试人数可相同,也可 不同。
4.优点:每个被试只接受一次处理,没有疲劳与练习效应,实验设计和实施简单。 缺点:被试间的个体差异无法控制,实验的精度较低,如果实验中含有多个处 理水平时,需要的被试量也会比较大。
单因素随机区组实验设计复习进程
优点:考虑到个别差异的影响。这种 由于被试之间性质不同导致产生的差 异就称为区组效应。随机区组设计可 以将这种影响从组内变异中分离出来, 从而提高效率。
缺点:划分区组困难,如果不能保证 同一区组内尽量同质,则有出现更大 误差的可能。
被试的人数分配: 1.一个被试作为一个区组,这时不同的被试(区组) 均需接受全部K个实验处理。 2.每一区组内被试的人数是实验处理的整数倍。 3.区组内的基本单位不是个别被试,而是以一个团 体为单位,例如以不同学校为实验对象,同一学校 的几个班成为一个区组,每个班接受一种实验。
单因素随机区组实验设计
土质1 土质2 土质3 土质4 品种1 品种1 品种1 品种1 品种2 品种2 品种2 品种2 …… …… …… …… 品种n 品种n 品种n 品种n
由于被试之间性质不同导致产生Fra bibliotek差异就称为区组效应。
随机区组设计根据被试特点把被试划分为 几个区组,同一个区组中被试的状况大体 相同。
spss应用
研究题目:文章的生字密度对学生阅读理解的影响。 研究假设:阅读理解随着生字密度的增加而下降。 实验变量:自变量——生字密度,含有4个水平(5:1、10: 1、15:1、20:1); 因变量——阅读测验的分数;无关变 量——被试的智力水平 实验设计:单因素随机区组实验设计 被试及程序:首先给32个学生做智力测验,并按测验分数将 被试分成8个组,每组4人(智力水平相等),然后随机分配 每个区组内的4个被试阅读一种生字密度的文章。
被试回忆量结果
被试1 被试2 被试3 被试4 被试5 被试6 被试7
时长1 5 7 8 3 9 5 7
时长2 6 6 9 4 8 4 10
时长3 6 7 9 4 9 6 8
单因素实验设计.
实验中有一个自变量(P≥2个水平),两个额 外变量(即区组变量,P≥2个水平);
事先假定处理水平与区组变量水平之间无交互 作用;
两个区组变量分别在拉丁方格的行和列分配, 然后将处理水平随机分配给P2个方格单元,每 个处理水平在每行、列中仅出现一次;每个单 元中分派一名或多名被试,实验被试总数为 N=np2(n ≥1)。
《心理实验设计》
21
设计模型
Yij =μ+αj+βk+γl+∈pooled
Yij:被试i在处理水平j上的观测值 μ:总体平均数(真值) αj :水平j的处理效应(A) βk:水平k 的额外变量的效应(B) γl:水平l的额外变量的效应(C) ∈pooled:误差变异—方格单元内误差与残差
《心理实验设计》
18
拉丁方格的标准快和随机化
以下是常见的标准化方块;其组合随行列数P 变化;P>5时,结果难以处理,故5×5以上 的拉丁方格比较少见。
AB BA
ABC BCA CAB
ABCD B C DA C DB A DA B C
《心理实验设计》
19
标准块的随机化:
先随机化行 再独立地随机化列
缺点
组内变异包括了随机 误差以外的其他误差 变异,如个体差异, 增大了组内变异,使F 值不易达到显著程度, 降低了实验的敏感性。
《心理实验设计》
8
练习
某厂技术员开发了一种新的加工工艺,为 决定是否推广此工艺,需确定其是否比老 加工工艺有更好的效费比和加工质量。 请你根据以上所学设计方式,为该厂设计 一个实验方案,帮助做出合理决策,并对 方案进行评价。
单因素实验设计
单因素设计分类
单因素实验设计【精选】
单因素实验设计单因素实验设计是指在实验中只有一个研究因素,即研究者只分析一个因素对效应指标的作用,但单因素实验设计并不是意味着该实验中只有一个因素与效应指标有关联。
单因素实验设计的主要目标之一就是如何控制混杂因素对研究结果的影响。
常用的控制混杂因素的方法有完全随机设计、随机区组设计和拉丁方设计等。
一、完全随机设计1.概念与特点又称单因素设计或成组设计,是医学科研中最常用的一种研究设计方法,它是将同质的受试对象随机地分配到各处理组进行实验观察,或从不同总体中随机抽样进行对比研究。
该设计适用面广,不受组数的限制,且各组的样本含量可以相等,也可以不相等,但在总体样本量不变的情况下,各组样本量相同时的设计效率最高。
例如:为了研究煤矿粉尘作业环境对尘肺的影响,将18只大鼠随机分到甲、乙、丙3组,每组6只,分别在地面办公楼、煤炭仓库和矿井下染尘,12周后测量大鼠全肺湿重(g),通过评价不同环境下大鼠全肺平均湿重推断煤矿粉尘对作用尘肺的影响,具体的随机分组可以如下实施:第一步:将18只大鼠编号:1,2,3, (18)第二步:可任意设置种子数,但应作为实验档案记录保存(本例设置spss11.0软件的种子数为200);第三步:用计算机软件一次产生18个随机数,每个随意数对应一只老鼠(本例用spss11.0软件采用均匀分布最大值为18时产成的18个随机数);第四步:最小的6个随机数对应编号的大鼠为甲组,排序后的第7个至第12个随机数随因编号为乙组,最大的6个随机数对应编号的大鼠为丙组(结果见表1)。
表1 分配结果编号1234567893.758.7516.2911.12 5.49 3.9813.6416.71 1.69随机数组别甲乙丙乙乙甲丙丙甲编号101112131415161718113.6216.36 2.12 4.7411.54 3.980.1317.3516.38随机数组别丙丙甲乙乙甲甲丙丙2.随机数的产生方法(1)随机数字表:如附表13(马斌荣,医学统计学,第4版),这是一个由0~9十个数字组成60行25列的数字表。
(仅供参考)随机区组设计
常用实验设计方法(一)一、完全随机设计(c o m p l e t e l y r a n d o m d e s i g n)属于单因素实验设计,可为两或多个水平。
将受试对象按随机化方法分配到各处理组,各处理组例数可以相等或不等。
优点:简单易行缺点:①只能分析一个因素的效应;②需要足够的样本含量,使各组基线(混杂)均衡可比。
设计要点◆完全随机设计的两组比较◆完全随机设计的多组比较1.两组比较为实验“736”对肉瘤的抑制作用,将16只长出肉瘤的小鼠随机分为两组,实验组注射“736”,对照组注射同量的生理盐水,10天后解剖称瘤重,试问:①该实验为何种设计类型?②请写出相应的设计方案?③对资料进行统计分析?组别瘤重(克)给药组1.62.22.02.02.51.03.71.5对照组2.14.92.74.32.51.74.53.4随机分配方案:①动物编号1-16②分配随机数:随机排列表第6行取0-15,弃去16-19。
③规定:随机数奇数分配至“736”组,偶数为对照组1表示给药组“736”,0表示对照组(生理盐水)备注:常用的随机分配方案:①按随机数的奇偶分配至两组;②按随机数的余数分配至各组;③将随机数排序,等分成各区段,对应将研究对象分配至各组。
统计分析①数据录入(d a t a1.x l s/s h e e t1)g r o u p瘤重11.612.2121212.51113.711.502.104.902.704.302.501.704.503.4②统计分析结果解释:两组瘤重平均水平差异有统计学意义,给药组的瘤重低于对照组。
2.完全随机设计多组比较研究某药在机体内的杀虫效果,选取20只小鼠,用幼虫感染,8d后随机取15只分为三组分别给予该药的不同药量以杀灭蠕虫,另5只为对照,用药2d后,将所有的小鼠杀死计数体内成虫数。
获得资料如下:对照低剂量中剂量高剂量381279378172346338275235340334412230470198265282318303286250试问:①该实验为何种设计类型?②请写出相应的设计方案?③对资料进行统计分析?随机分配方案:①动物编号1-20②分配随机数:随机排列表第10行。
单因素随机区组实验设计
应用举例及延伸
与该设计相关的名称:随机化区组实验设计;下属的设计类型:随机 化匹配组设计,随机化配对组设计。单因素随机区组设计应用举例: 研究题目:文章的生字密度对学生阅读理解的影响。 研究假设:阅读理解随着生字密度的增加而下降。 实验变量:自变量——生字密度,含有4个水平(5:1、10:1、15: 1、20:1); 因变量——阅读测验的分数;无关变量——被试的智 力水平 实验设计:单因素随机区组实验设计 被试及程序:首先给32个学生做智力测验,并按测验分数将被试分成 8个组,每组4人(智力水平相等),然后随机分配每个区组内的4个 被试阅读一种生字密度的文章。
结束
数据处理方法(Biblioteka PSS统计软件)包含的统计变量:实验的自变量A,区组变量X, 实验的因变量Y。 实施的统计过程:analyze—General Linear Model—Univariate… 预期的统计结果:自变量A的主效应是否显著; 无关变量即区组变量效应是否显著;若自变量主 效应显著,则进行平均数多重检验。
单因素随机区组实验设计
第二章 实验设计
单因素随机区组实验设计的基本特点
适用条件:研究中有一个自变量,自变量有两个或多于两个水平;研 究中还有一个无关变量,也有两个或多个水平,并且自变量的水平与 无关变量的水平之间无交互作用。 基本方法:首先将被试在无关变量上进行匹配,然后把各匹配组的被 试随机分配给自变量的各个水平,每个被试只接受一个水平的处理。 误差控制:区组法(无关变量纳入法)。通过统计处理,分离出由无 关变量引起的变异,使它不出现在处理效应和误差变异中,从而提高 方差分析的灵敏度。 实验设计模型 总变异组成:实验处理引起的变异;区组引起的变异;误差引起的变 异。
单因素随机区组实验设计
单因素随机区组实验设计一、单因素随机区组实验设计的基本特点心理和教育科学研究中,被试的个体差异是误差变异的重要来源。
它常常会混淆实验处理的效应,因此是无关变异。
随机区组设计使用区组方法减小误差变异,即用区组方法分离出由无关变量引起的变异,使它不出现在处理效应和误差变异中。
单因素随机区组设计适用于这样的情境:研究中有一个自变量,自变量有两个或多个水平(P ≥2),研究中还有一个无关变量,也有两个或多个水平(n ≥2),并且自变量的水平与无关变量的水平之间没有交互作用。
当无关变量是被试变量时,一般首先将被试在这个无关变量上进行匹配,然后将他们随机分配给不同的实验处理。
这样,区组内的被试在此无关变量上更加同质,他们接受不同的处理水平时,可看作不受无关变量的影响,主要受处理的影响而区组之间的变异反映了无关变量的影响,我们可以利用方差分析技术区分出这一部分变异,以减少误差变异,获得对处理效应的更精确的估价。
另外,环境因素也是潜在可考虑的区组变量,例如,每天的时间、每年的季节、地点、仪器等方面的因素也可以进行区组,以减少误差变异,时间是一个特别有效的区组变量,因为它常常还会带来一些附加的变量,如身体的生理周期、疲劳等等。
单因素随机区组实验设计适合检验的假说有两个: (1)处理水平的总体平均数相等,即:0.1.2.:P H μμμ==⋅⋅⋅⋅⋅⋅⋅=或处理效应等于0,即:0:0j H a =(2)区组的总体平均数相等,即:0.1.2.:n H μμμ==⋅⋅⋅⋅⋅⋅⋅=或区组效应等于0,即:20:0i H π=图中可以看出实验中有一个自变量,自变量有4个水平。
实验中还有一个无关变量,将16个被试在无关变量上进行匹配,分为4个区组,每个区组内4个同质被试,随机分配每个被试接受一个处理水平。
二、单因素随机区组实验设计与计算举例(一)研究的问题与实验设计我们仍然利用第一节中文章的生字密度对阅读理解影响的研究做例子。
实验六随机区组试验设计方法
一目的:掌握常用的单因素,两因裂区组设计方法 二 设计内容: 1 有一小麦品种比较试验,参试8个品种,代号为A B C D E F G H准备重复3次,请你根据下面地形设 计一随机区组试验,划出田间种植图。35m4 Nhomakorabeam肥
3 5
瘦
2 有一玉米品种和中耕次数两因素试验,品种为B因素为副 区,B1,B2,B3三个水平,中耕次数A因素为主因素分A1,A2,A3,A4四 个水平,随机区组设计重复2次,请你根据上面地型设计一两因素裂 区组试验,划出田间种植图
其它试验
其它试验 .
B3
A2 B1 B5 B4
A3 A3 B2 B5 B3 B1
A1 A1 B2 B4 B1 B3 B4
B2 B5
A3 B1 B3 B5 B2 B4 B3
A1 B1 B5 B2 B4 B5
A2 B1 B3 B2 B4
B5
A1 B3 B2
A2 B4 B1 B2 B1 B3 B5 B4 B1
A3 B3 B5 B2 B4
实验七 田间试验地参观 目的:对田间试验裂区设计有一直观认识 下图为小麦两因素裂区试验设计: 主区因素为播期(A)有3个水平分别是 A1:9月25号; A2:10月10号; A3:10月25号, 副区因素为播量(B)为5水平,分别为 B1 :10万; B2 :12万; B3:15万; B4 18万. B5: 20万基本苗. 重复3次,
第六章 方差分析3——单因素随机区组设计
• 缺点:区组的划分难度较大,同质性不好把握。
SPSS的数据格式
“分析”——“一般线性模型”——“单变量”
SPSS结果
结果分析
• 方差分析的结果表明,不同的教学方法会 对作文成绩产生显著影响。
实验结果
实验处理
教学方法
区组
1
2
15
10
区组1:优良
9
6
12
11
3
4
20
12
18
15
25
17
10
15
区组2:中等
18
19
12
12
25
20
30
15
18
18
2
6
10
6
区组3:一般
6
3
7
8
5
7
13
11
分析
• 这是一个单因素随机区组设计。 – 因变量:作文平均数提高的成绩。 – 自变量:教学方法,它有4个水平。 – 区组变量:不同的被试组,它有3个水平。 – 控制变量:自变量的呈现顺序。
• 区组效应显著表明区组设计是合理的。 • 进一步的多重比较发现,教学方法Ⅲ条件
下的作文成绩显著高于其它3种条件下的成 绩;教学方法Ⅳ条件下作文成绩显著高于 Ⅰ和Ⅱ条件下的成绩;教学方法Ⅰ和Ⅱ之 间的作文成绩不存在显著性差异。
ቤተ መጻሕፍቲ ባይዱ方差分析——
单因素随机区组设计
举例
• 某教师为了研究四种不同的写作训练方法中, 哪种方法更有效,选择了36名高一学生。按 照前一学期历次作文成绩的平均分数将36名 学生划分为优良、中等、一般三个写作水平, 每个水平均有12名学生,而12名学生被随机 分到各实验处理。经一学期的写作训练后进 行写作能力测试,计算出每一学生的得分比 前一学期历次作文平均分提高的分数。结果 如下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单因素随机区组实验设计
实验设计是科学研究的重要环节之一,能够帮助研究者准确地观察和
分析变量之间的关系。
在一些情况下,研究者面临多种因素的影响,但为
了简化实验操作和数据分析的复杂度,可以选择设计单因素实验,即只考
虑一个主要因素的影响。
本文将介绍单因素随机区组实验设计,包括其原理、设计步骤和注意事项。
实验设计原理
随机区组设计是一种常用的实验设计方法,旨在消除实验误差和混杂
因素对实验结果的影响。
在单因素随机区组实验设计中,研究者将实验样
本分为若干组,每组中的观察值受不同的实验处理水平影响,而每个处理
水平又在各组中随机出现。
通过将不同的处理水平分配到不同的组别,可
以既控制实验误差,又避免混杂因素的干扰。
设计步骤
1.确定实验因素:首先,需要选择一个主要因素进行研究。
这个因素
可以是任何一个感兴趣的要素,如不同的药物剂量、不同的肥料组合等。
2.确定实验处理水平:确定实验中的处理水平,即不同的实验条件或
操控变量的取值。
处理水平的选择应该根据实验目的和所研究问题的要求。
3.分配实验样本:将样本分配到各个处理水平的组别中。
为了消除混
杂因素的影响,应该将样本随机分配到各组。
通常,每个处理水平应该有
足够的重复次数,以确保实验结果的可靠性。
4.进行实验观测:根据实验设计方案,在各组别中进行实验观测并记录相关数据。
这些数据可以是定量数据,如数值、长度等,也可以是定性数据,如观察员的主观评价等。
5.数据分析和结果解读:通过对实验数据的分析,可以获得统计指标和推断性结果,以评估不同处理水平之间的差异或关系。
这些结果可以用于回答实验问题或支持研究假设。
注意事项
在进行单因素随机区组实验设计时,需要注意以下几个问题:
1.样本量的确定:样本量足够大才能得到可靠的实验结果。
通常,样本量的确定应该根据实验设计要求和数据分析方法来确定。
2.随机化的重要性:通过随机分组和随机观察的方式,可以消除混杂因素对实验结果的干扰。
随机化应在整个实验过程中得到充分的应用。
3.起始化的必要性:为了进一步消除混杂因素的影响,应该在实验开始之前进行预处理或初始调整。
4.对比度的控制:在实验设计中,应该选择能够达到一定对比度的处理水平,以便在不同处理水平之间进行比较和分析。
5.数据分析方法的选择:根据实验设计和数据特点,选择合适的统计分析方法进行数据处理和结果解读。
总结
单因素随机区组实验设计是一种常用的实验设计方法,适用于探讨单个主要因素的影响。
通过随机分组和观察,可以消除混杂因素的干扰,并获得可靠的实验结果。
在实验设计和数据分析过程中,需要注意样本量、
随机化、起始化、对比度和数据分析方法等方面的问题。
正确地设计和实施单因素随机区组实验,可以帮助研究者深入研究因素之间的关系,促进科学研究的发展和创新。