新九年级上册数学期末考试试卷

合集下载

新人教版九年级数学上学期期末考试试题 (含答案)(共6套)

新人教版九年级数学上学期期末考试试题 (含答案)(共6套)

九年级数学上学期期末试题★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效; ② 试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答.题卡..的相应位置填涂) 1.在平面直角坐标系中,点M (1,-2)与点N 关于原点对称,则点N 的坐标为 A .(-2, 1) B .(1,-2) C .(2,-1) D .(-1,2) 2.用配方法解一元二次方程0122=-+x x ,可将方程配方为A .()212=+x B .()012=+x C .()212=-x D .()012=-x3.下列事件中,属于随机事件的有① 任意画一个三角形,其内角和为360°; ② 投一枚骰子得到的点数是奇数; ③ 经过有交通信号灯的路口,遇到红灯; ④ 从日历本上任选一天为星期天.A .① ② ③B .② ③ ④C .① ③ ④D .① ② ④ 4.下列抛物线中,顶点坐标为(4,-3)的是A .()342-+=x y B .()342++=x y C .()342--=x y D .()342+-=x y5.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间都只比赛一场,则下列方程中符合题意的是A .()151=-n nB .()151=+n nC .()301=-n nD .()301=+n n6.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是A .袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C .在“石头、剪刀、布”的游戏中,小宇随机出的是“剪刀”D .掷一枚质地均匀的硬币,落地时结果是“正面向上”7.如果一个正多边形的中心角为60°,那么这个正多边形的边数是 A .4 B .5 C .6 D .78.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xy 1-=的图象上的两点,若x 1<0<x 2,则下列结论正确的是A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D , 且CO =CD ,则∠PCA =A .30°B .45°C .60°D .67.5°(第6题图)DCB OAP(第9题图)10.如图,在Rt △ABC 和Rt △ABD 中,∠ADB =∠ACB =90°,∠BAC =30°,AB =4,AD =22,连接DC ,将Rt △ABC 绕点B 顺时针旋转一周,则线段DC 长的取值范围是 A .2≤DC ≤4 B .22≤DC ≤4C .222-≤DC ≤22D .222-≤DC ≤222+二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应位置) 11.如图,在平面直角坐标系xOy 中,矩形OABC ,OA =2, OC =1, 写出一个函数()0≠=k xky ,使它的图象与矩形OABC 的边 有两个公共点,这个函数的表达式可以为 . 12.已知关于x 的方程032=++a x x 有一个根为-2,a = .13.圆锥的底面半径为7cm ,母线长为14 cm ,则该圆锥的侧面展开图的圆心角为 °. 14.设O 为△ABC 的内心,若∠A =48°,则∠BOC = °. 15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =4 cm ,则球的半径为 cm . 16. 抛物线c bx ax y ++=2(a >0)过点(-1,0)和点(0,-3),且顶点在第四象限,则a 的取值范围是 .C A B Oy x(第11题图)CDAB(第10题图)CEFD(第15题图)三、解答题(本大题共9小题,共86分.在答题卡...的相应位置作答) 17.(每小题4分,共8分)解方程:(1)022=+x x ; (2)01232=-+x x . 18.(8分)已知关于x 的方程 )0(03)3(2≠=+++k x k kx .(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,k 为正整数,求k 的值.19.(8分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x ,再从乙袋中随机取出1个小球,记录标有的数字为y ,这样确定了点M 的坐标(x ,y ).(1)写出点M 所有可能的坐标;(2)求点M 在直线3+-=x y 上的概率.20.(8分)如图,直线y =x +2与y 轴交于点A ,与反比例函数()0≠=k xky 的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =2BO ,求反比例函数的解析式.21.(8分)如图,12×12的正方形网格中的每个小正方形的边长都是1,正方形的顶点叫做格点.矩形ABCD 的四个顶点A ,B ,C ,D 都在格点上,将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点.(1)在正方形网格中确定D ′的位置,并画出△AD ′C ′;(2)若边AB 交边C ′D ′于点E ,求AE 的长.22.(10分)在矩形ABCD 中,AB =8,BC =6,将矩形按图示方式进行分割,其中正方形AEFG 与正方形JKCI 全等,矩形GHID 与矩形EBKL 全等. (1)当矩形LJHF 的面积为43时,求AG 的长; (2)当AG 为何值时,矩形LJHF 的面积最大.(第21题图)L HI K J F EDBC AG (第22题图)23.(10分)如图,点A ,C ,D ,B 在以O 点为圆心,OA 长为半径的圆弧上,AC=CD=DB ,AB 交OC 于点E .求证:AE =CD .24.(12分)如图,在等边△BCD 中,DF ⊥BC 于点F ,点A 为直线DF 上一动点,以B 为旋转中心,把BA 顺时针方向旋转60°至BE ,连接EC .(1)当点A 在线段DF 的延长线上时,① 求证:DA =CE ;② 判断∠DEC 和∠EDC 的数量关系,并说明理由; (2)当∠DEC =45°时,连接AC ,求∠BAC 的度数.25.(14分)如图,在平面直角坐标系xOy 中,二次函数c bx ax y ++=2(0≠a )的图象经过A (0,4),B (2,0),C (-2,0)三点. (1)求二次函数的解析式; (2)在x 轴上有一点D (-4,0),将二次函数 图象沿DA 方向平移,使图象再次经过点B . ① 求平移后图象顶点E 的坐标;② 求图象 A ,B 两点间的曲线部分在平移过程中所扫过的面积.南平市2017-2018学年第一学期九年级期末质量检测数学试题参考答案及评分说明命题教师:蒋剑虹 欧光宇 王颖 曹美兰 说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分.(2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分. (3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4)评分只给整数分.选择题和填空题不给中间分. 一、选择题(本大题共10小题,每小题4分,共40分)1.D ; 2.A ; 3.B ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B ; 9.D ; 10.D . 二、填空题(本大题共6小题,每小题4分,共24分)11.如:xy 1=(答案不唯一,0<k <2的任何一个数); 12.2; 13.180; 14.114; 15.2.5; 16.0<a <3.三、解答题(本大题共9小题,共86分) 17.(每小题4分,共8分)(第25题图)E DF B CA (第24题图) O ABC DE (第23题图)(1) 解: 0)2(=+x x ……………………………………………………………2分 ∴2,021-==x x .……………………………………………………4分(2)解:1,2,3-===c b a∴ 161-34-22=⨯⨯=∆)(∴64232162±-=⨯±-=x …………………………………………2分∴1,3121-==x x . …………………………………………………4分18.(8分)(1)证明:9634)3(22+-=⋅⋅-+=∆k k k k0)32≥-=k (,……………………………………………………2分∴方程一定有两个实数根. …………………………………………3分(2)解:3,3,=+==c k b k a ,22)3(34)3-=⋅⋅-+=∆∴k k k (,kk k k k k x 2)3(32)3()3(2-±--=-±+-=∴,kx x 3,121-=-=∴ ,………………………………………………6分∵方程的两个实数根都是整数,∴正整数31或=k .…………………………………………………8分19.(8分)解:(1)方法一:列表:从表格中可知,点1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 方法二:从树形图中可知,点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 (2)当x =0时,y=-0+3=3,当x =1时,y=-1+3=2,当x =2时,y=-2+3=1,……………………………………………………6分 由(1)可得点M 坐标总共有九种可能情况,点M 落在直线y =-x +3上(记为事 件A )有3种情况.∴P(A )3193==.…………………………………………8分20.(8分)解: 当x =0时,y =2,∴A (0,2),…………………………………2分∴A O=2,∵AO =2BO ,∴B O=1,………………………………………………4分 当x =1时,y =1+2=3,∴C (1,3), ……………………………………………6分 把C (1,3)代入xky =,解得:3=k xy 3:=∴反比例函数的解析式为…………………………………………………8分 21.(8分)解:(1)准确画出图形;…………………………………………………3分(2)方法一:∵将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点, ∴△ADC ≌△AD ′C ′,∴AC =AC ′,AD ′=AD =5,CD ′=CD =10,∠AD ′C ′=∠ADC =90°,∠AC ′D ′=∠ACD , ∵AB ∥CD ,∴∠BAC =∠ACD ,∵AB ⊥C C ′,AC =AC ′,∴∠BAC =∠C ′AB ,∴∠AC ′D ′=∠C ′AB ,∴C ′E =AE .…………………………………………………5分 222R E C BE B C BE C t '=+''∆中,在,x AE AB BE x AE -10-,===则设, 222)-105x x =+(,……………………………………………………………………7分425:=x 解得.425的长为答:AE ……………………………8分方法二:以点D 为原点,CD 所在直线为x 轴, AD 所在直线为y 轴,如图2建立平面直角坐标系.∴A (0,5),D ′(-4,2),C ′(-10,10). (4)设直线D ′C ′的解析式为:b kx y +=(k ≠0),∴⎩⎨⎧+-=+-=b k b k 101042,解得:⎪⎩⎪⎨⎧-=-=31034b k , ∴直线D ′C ′的解析式为:31034--=x y , ………………………………6分当y =5时,310345--=x ,解得:425-=x , …………………………7分∴E (425-,5),∴AE =425.………………………………………………8分22.(10分)解:(1) 正方形AEFG 和正方形JKCI 全等,矩形GHID 和矩形EBKL 全等,设AG =x ,DG =6-x ,BE =8-x ,FL=x -(6-x )=2x -6,LJ =8-2x ,(第21题答题图1)方法1: LJ FL S LIHF ⋅=矩形 ,∴43)28)(62(=--x x ………………………………………………………………2分∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分方法2:AEFG DGHI ABCD LIHF S S S S 正方形矩形矩形矩形22--=)6)(8(2248432x x x ----=∴,…………………………………………………2分 ∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分(2)设矩形LJHF 的面积为S ,)28)(62(x x S --=…………………………………………………………………6分482842-+-=x x1)27(42+--=x …………………………………………………………………8分04<-=a , ∴S 有最大值,∴当AG =7 时,矩形LJHF 的面积最大.………………………………………10分2-902ACO ==∠∴︒,…………5分 ACE CAE AEC ACE ∠∠=∠∆︒--180中,在)290(180AOCAOC ∠--∠-=︒︒2-90AOC∠=︒,……………………………………………………………………6分 AEC ACE ∠=∠∴, ………………………………………………………………7分 AE AC =∴, ……………………………………………………………………8分 CD AC = ,CD AE =∴.………………………………………………………10分 方法二:连接OC ,OD ,∵AC=CD=DB ,∴DB CD AC 弧弧弧==,∴BOD COD AOC ∠=∠=∠,……………………………………………………2分 ∴AOC COD DOB COD COB ∠=∠=∠+∠=∠22,∵CAE COB ∠=∠2,∴CAE AOC ∠=∠,………………………………………4分 ∵∠CAO =∠CAE +∠EAO ,∠AEC =∠AOC +∠EAO ,∴∠CAO =∠AEC ,…………………………………………………………………6分 OC OA AOC =∆中,在, ∴∠ACO =∠CAO ,∴∠ACO =∠AEC ,AE AC =∴, ………………………………………………8分 CD AC = ,CD AE =∴…………………………………………………………10分 方法三:连接AD ,OC ,OD , ∵AC=DB ,∴弧AC =弧BD ,∴∠ADC =∠DAB ,…………………………………………………………………2分 ∴CD ∥AB ,∴∠AEC =∠DCO ,…………………………………………………………………4分 ∵AC=CD ,AO=DO , ∴CO ⊥AD ,(第23题答题图)∴∠ACO =∠DCO ,…………………………………………………………………6分 ∴∠ACO =∠AEC ,∴AC =AE ,……………………………………………………8分 ∵AC=CD ,∴AE =CD .……………………………………………………………10分 24.(12分)(1)①证明:∵把BA 顺时针方向旋转60°至BE ,∴=∠=ABE BE BA ,60°, ………………………………1分 在等边△BCD 中,BC DB =∴,︒=∠60DBCFBA FBA DBC DBA ∠+︒=∠+∠=∠∴60, FBA CBE ∠+︒=∠60 ,CBE DBA ∠=∠∴,…………………………………………2分 ∴△BAD ≌△BEC , ∴DA =CE ;…………………………………………………3分②判断:∠DEC +∠EDC =90°.…………………………4分DC DB = ,BC DA ⊥,︒=∠=∠∴3021BDC BDA ,∵△BAD ≌△BEC ,∴∠BCE =∠BDA =30°,……………………………………………………………5分 在等边△BCD 中,∠BCD =60°,∴∠ACE =∠BCE +∠BCD =90°,∴∠DEC +∠EDC =90°.……………………6分 (2)分三种情况考虑:①当点A 在线段DF 的延长线上时(如图1),由(1)可得, 为直角三角形DCE ∆,︒=∠∴90DCE , ︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当, DEC EDC ∠=∠∴,CE CD =∴,由(1)得DA =CE ,∴CD =DA ,CD BD DBC =∆中,在等边,CD DA BD ==∴ ︒=∠∴60BDC ,BC DA ⊥ ,︒=∠=∠=∠∴3021BDC CDA BDA , ……………………………………………7分DA DB BDA =∆中,在,︒︒=∠=∠∴752-180BDA BAD ,DC DA DAC =∆中,在,︒︒=∠=∠∴752-180ADC DAC ,︒︒︒=+=∠+∠=∠∴1507575DAC BAD BAC . …………………………………8分②当点A 在线段DF 上时(如图2),BE BA B 至顺时针方向旋转为旋转中心,把以︒60 , 60=∠=∴ABE BE BA ,,60=∠=∆DBC BC BD BDC ,中,在等边,ABE DBC ∠=∠∴,ABC ABE ABC DBC ∠∠=∠∠--, EBC DBA ∠=∠即, DBA ∆∴≌CBE ∆,CE DA =∴, …………………………9分 90R =∠∆DFC DFC t 中,在, DF ∴<DC , ∵DA <DF ,DA =CE , ∴CE <DC ,由②可知为直角三角形DCE ∆,∴∠DEC ≠45°. ……………………………10分③当点A 在线段FD 的延长线上时(如图3),同第②种情况可得DBA ∆≌CBE ∆, ECB ADB CE DA ∠=∠=∴,,60=∠=∠∆BCD BDC BDC 中,在等边,BC DA ⊥ ,E DF B CA (第24题答题图1) ED A ED F B C A (第24题答题图2)3021=∠=∠=∠∴BDC CDF BDF ,150180=∠-=∠∴︒BDF ADB , 150=∠=∠∴ADB ECB ,90=∠-∠=∠∴BCD ECB DCE ,︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当, DEC EDC ∠=∠∴, CE CD =∴,∴AD =CD =BD ,……………………………………………11分 ∵ 150=∠=∠ADC ADB ,152-180=∠=∠∴︒ADB BAD , 152-180=∠=∠︒CDA CAD , 30=∠+∠=∠∴CAD BAD BAC ,.30150 或的度数为综上所述,BAC ∠ …………………12分25.(14分)(1)得)代入()()(把c bx ax y C B A ++=20,2-,0,2,4,0,⎪⎩⎪⎨⎧=+-=++=0240244c b a c b a c ,…………………………2分⎪⎩⎪⎨⎧==-=401:c b a 解得,42+-=∴x y .………………………………4分 (2)① 设直线DA 得解析式为y =kx +d (k ≠0), 把A (0,4),D (-4,0)代入得, ⎩⎨⎧=+-=044d k d ,⎩⎨⎧==41:d k 解得, ∴y =x +4,…………………………………………………………………………6分 设E (m ,m +4),平移后的抛物线的解析式为:4)(2++--=m m x y . 把B (2,0)代入得:04)-2-2=++m m ( 不符合题意,舍去),解得(0521==m m , ∴E (5,9). ……………………………………………………………………8分 ② 如图,连接AB ,过点B 作BL ∥AD 交平移后的抛物线于点G ,连接EG ,∴四边形ABGE 的面积就是图象A ,B 两点间的部分扫过的面积.…………10分 过点G 作GK ⊥x 轴于点K ,过点E 作EI ⊥y 轴于点I ,直线EI ,GK 交于点H . 方法一:由点A (0,4)平移至点E (5,9),可知点B 先向右平移5个单位,再向上平移5个单位至点G . ∵B (2,0),∴点G (7,5),…………………………………………………12分 ∴GK =5,OB =2,OK =7, ∴BK =OK -OB =7-2=5, ∵A (0,4),E (5,9), ∴AI =9-4=5,EI =5, ∴EH =7-5=2,HG =9-5=4,∴GBK EHG AEI AOB IOKH ABGH ∆∆∆∆=S -S -S -S -S S 矩形四边形 3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分(第25题答题图)方法二:b x y BL '+=的解析式为设直线, 02:0,2='+b B )代入得(把点,2-='b ,2-=∴x y ,⎩⎨⎧+--=-=9)5(22x y x y 联立,⎩⎨⎧==02:11y x 解得,⎩⎨⎧==5722y x , ∴点G (7,5), …………………………………………………………………12分 ∴GK =5,OB =2,OK =7, ∴BK =OK -OB =7-2=5, ∵A (0,4),E (5,9), ∴AI =9-4=5,EI =5, ∴EH =7-5=2,HG =9-5=4,∴GBK EHG AEI AOB IOKH ABGH ∆∆∆∆=S -S -S -S -S S 矩形四边形3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分山东省济宁市金乡县2018届九年级数学上学期期末教学质量检测试题说明:请将正确答案按照要求填写在答题卡上. 一、选择题(每小题3分,共30分)1.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )2.在Rt △ABC 中,∠C=90,sinA=,BC=6,则AB=( ) A.4 B.6 C.8 D.103.已知关于x 的一元二次方程 有两个不相等的实数根,则实数k 的取值范围是( ) A.k1 B.k1 C.k-1 D.k-14.已知点A(2,y1)、B(4,y2)都在反比例函数 的图象上,则y1、y2的大小关系为( )A. y1<y2B. y1>y2C. y1=y2D. 无法确定5.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( ) A.10B.20C.10D.206.如图,小明要测量河内小鸟B到河边公路l的距离,在A点测得∠BAD=30,在C点测得∠BCD=60,又测得AC=50米,则小岛B到公路l的距离为()米A.25B.25C.D.25+257.小明想测一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.(6+米B.12米C. (4+米D.10米8.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C 为弧ABO上的一点(不与O、A两点重合),则cosC的值是()A. B. C. D.9.二次函数的图象如图,并且关于x的一元二次方程有两个不相等的实数根,下列结论:;;;,其中,正确的个数有()A.B.C.D.10.在四边形ABCD中,∠B=90,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()二、填空(每小题3分,共15分)11.sin60的值等于 .12.将抛物线向左平移3个单位,再向下平移4个单位,那么得到的抛物丝的表达式为 .13.如图,在平面直角坐标系xOy中,ABC由ABC绕点P旋转得到的,则点P的坐标为 .14.如图,RtABC中,∠ACB=90,AC=2,以点C为圆心,CB的长为半径画弧,与边AB交于点D,将BD绕点D旋转180后点B与点A恰好重合,则图中阴影部分的面积为 .15.如图,在反比例函数的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图象上运动,若tan∠CAB=2,则k的值为 .三、解答题(共55分,请将解答过程写在答题卡上)16.(6分)解一元二次方程:17.(6分)如图所示,在四张背面完全相同的纸牌的正面分别画有四个不同的几何图形.将这四张纸牌背面朝上洗匀后摸出一张,不放回,再摸出一张.(1)用树状图(或列表法)表示两次膜牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求膜出的两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.18.(7分)如图,一次函数和反比例函数的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.19.(8分)如图,小东在教学楼的窗口C处,测得正前方旗杆顶部A点的仰角为37,旗杆底部B的俯角为45,旗杆AB=14米.(1)求教学楼到旗杆的距离;(2)求AC的长度;(参考数据:sin37≈0.60,cos37≈0.80,tan37≈0.75)20.(8分)如图,已知RtABC,∠C=90,D为BC的中点,以AC为直径的⊙O交AB于点E. (1)求证:ED是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.21.(9分)某超市在“元宵节”来临前夕,购进一种品牌元宵,每盒进价是20元,超市规定每盒售价不得少于25元.根据以往销售经验发现:当售价定为每盒25元时,每天可卖出250盒,每盒售价每提高1元,每天要少卖出10盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,第天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种元宵的每盒售价不得高于38元.如果超市想要每天获得不低于2000元的利润,那么超市每天至少销售元宵多少盒?22.(11分)如图:抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求D点的坐标;(3)P是抛物线上第一象限内的动点,过P作PM⊥x轴垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出P点的坐标;若不存在,说明理由.九年级数学上学期期末考试试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,全卷共8页,满分120分,考试时间120分钟。

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷及答案(各版本)

2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。

12. 若一个数的立方根是它自己的相反数,则这个数是______。

13. 若一个数的绝对值等于它的立方,则这个数是______。

14. 若一个数的绝对值等于它的平方,则这个数是______。

15. 若一个数的平方等于它本身,则这个数是______。

16. 若一个数的立方等于它本身,则这个数是______。

17. 若一个数的平方根是它自己的倒数,则这个数是______。

18. 若一个数的立方根是它自己的相反数,则这个数是______。

19. 若一个数的绝对值等于它的立方,则这个数是______。

20. 若一个数的绝对值等于它的平方,则这个数是______。

2024年全新初三数学上册期末试卷及答案(人教版)

2024年全新初三数学上册期末试卷及答案(人教版)

2024年全新初三数学上册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 0C. 1D. 22. 下列选项中,哪个不是等腰三角形的性质?A. 底边相等B. 两腰相等C. 底角相等D. 对边相等3. 若一个正方形的边长为5cm,则其对角线的长度为()A. 5cmB. 10cmC. 5√2 cmD. 10√2 cm4. 下列哪个选项是二次函数的一般形式?A. y = ax² + bx + cB. y = ax + bC. y = a/b + cD. y = a² + b² + c²5. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为()A. 3B. 2C. 1D. 4二、填空题6. 若a²4a+4=0,则a的值为________。

7. 下列选项中,哪个不是等腰三角形的性质?________。

8. 若一个正方形的边长为5cm,则其对角线的长度为________。

9. 下列哪个选项是二次函数的一般形式?________。

10. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为________。

答案:一、选择题1. A2. D3. C4. A5. A二、填空题6. 27. D8. 5√2 cm9. A10. 32024年全新初三数学上册期末试卷及答案(人教版)三、解答题11. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。

解答:我们知道等差数列的通项公式为an = a1 + (n 1)d,其中an是第n项,a1是首项,d是公差。

根据题目,首项a1 = 2,公差d = 5 2 = 3。

所以,该数列的通项公式为an = 2 + (n 1)×3。

12. 一个正方形的边长为5cm,求其对角线的长度。

解答:正方形的对角线长度可以通过勾股定理来求解。

设正方形的边长为a,对角线长度为d,则有:d² = a² + a²将a = 5cm代入上式,得:d² = 5² + 5²d² = 50d = √50d = 5√2 cm所以,该正方形的对角线长度为5√2 cm。

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。

2. 一个正方形的边长是8厘米,它的面积是______平方厘米。

3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。

4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。

5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。

6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。

7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。

8. 一个正方形的边长是7厘米,它的周长是______厘米。

9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。

10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。

九年级数学上册期末考试题及答案【免费】

九年级数学上册期末考试题及答案【免费】

九年级数学上册期末考试题及答案【免费】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. ﹣3的绝对值是()A. ﹣3B. 3C. -D.2.已知x+ =6, 则x2+ =()A. 38B. 36C. 34D. 323. 抛物线y=3(x﹣2)2+5的顶点坐标是()A. (﹣2, 5)B. (﹣2, ﹣5)C. (2, 5)D. (2, ﹣5)4.当1<a<2时, 代数式|a-2|+|1-a|的值是()A. -1B. 1C. 3D. -35. 下列各组数中, 能作为一个三角形三边边长的是()A. 1, 1, 2B. 1, 2, 4C. 2, 3, 4D. 2, 3, 56.一个等腰三角形的两条边长分别是方程的两根, 则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或97.如图, 某小区计划在一块长为32m, 宽为20m的矩形空地上修建三条同样宽的道路, 剩余的空地上种植草坪, 使草坪的面积为570m2.若设道路的宽为xm, 则下面所列方程正确的是()A. (32﹣2x)(20﹣x)=570B. 32x+2×20x=32×20﹣570C. (32﹣x)(20﹣x)=32×20﹣570D. 32x+2×20x﹣2x2=5708.如图, 是函数上两点, 为一动点, 作轴, 轴, 下列说法正确的是( )①;②;③若, 则平分;④若, 则A. ①③B. ②③C. ②④D. ③④9.根据圆规作图的痕迹, 可用直尺成功找到三角形外心的是()A. B.C. D.10.如图, 在矩形纸片ABCD中, AB=3, 点E在边BC上, 将△ABE沿直线AE折叠, 点B恰好落在对角线AC上的点F处, 若∠EAC=∠ECA, 则AC的长是()A. B. 6 C. 4 D. 5二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: __________.2. 分解因式: __________.3. 已知二次函数y=x2, 当x>0时, y随x的增大而_____(填“增大”或“减小”).4.如图, 中, 为的中点, 是上一点, 连接并延长交于, , 且, , 那么的长度为__________.5. 如图, M、N是正方形ABCD的边CD上的两个动点, 满足, 连接AC交BN于点E, 连接DE交AM于点F, 连接CF, 若正方形的边长为6, 则线段CF的最小值是__________.6. PM2.5是指大气中直径小于或等于0.0000025m的颗粒物, 将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中满足.3. 如图, 在平面直角坐标系中, 抛物线y=ax2+2x+c与x轴交于A(﹣1, 0)B (3, 0)两点, 与y轴交于点C, 点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M, 使△BDM的周长最小, 求出点M的坐标;(3)试探究:在拋物线上是否存在点P, 使以点A, P, C为顶点, AC为直角边的三角形是直角三角形?若存在, 请求出符合条件的点P的坐标;若不存在, 请说明理由.4. 如图, AD是△ABC的外接圆⊙O的直径, 点P在BC延长线上, 且满足∠PAC=∠B.(1)求证: PA是⊙O的切线;(2)弦CE⊥AD交AB于点F, 若AF•AB=12 , 求AC的长.5. 某初中学校举行毛笔书法大赛, 对各年级同学的获奖情况进行了统计, 并绘制了如下两幅不完整的统计图, 请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有来自七年级, 有来自八年级, 其他同学均来自九年级, 现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛, 请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.6. 东东玩具商店用500元购进一批悠悠球, 很受中小学生欢迎, 悠悠球很快售完, 接着又用900元购进第二批这种悠悠球, 所购数量是第一批数量的1.5倍, 但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同, 且全部售完后总利润不低于25%, 那么每套悠悠球的售价至少是多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、C3、C4、B5、C6、A7、A8、B9、C10、B二、填空题(本大题共6小题, 每小题3分, 共18分)12. ;3、增大.4、3 2;5、36.2.5×10-6三、解答题(本大题共6小题, 共72分)1、32 x=2、3.3.(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M 的坐标为(0, 3);(3)符合条件的点P的坐标为(, )或(, ﹣),4.(1)略;(2)AC=2 .5.(1)答案见解析;(2).6、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是35元.。

部编版九年级数学上册期末考试卷及答案【完整版】

部编版九年级数学上册期末考试卷及答案【完整版】

部编版九年级数学上册期末考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.比较2, , 的大小, 正确的是()A. B.C. D.2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见, 随机对全校100名学生家长进行调查, 这一问题中样本是()A. 100B. 被抽取的100名学生家长C. 被抽取的100名学生家长的意见D. 全校学生家长的意见3.已知α、β是方程x2﹣2x﹣4=0的两个实数根, 则α3+8β+6的值为()A. ﹣1B. 2C. 22D. 304.若x取整数, 则使分式的值为整数的x值有()A. 3个B. 4个C. 6个D. 8个5. 某排球队名场上队员的身高(单位: )是: , , , , , .现用一名身高为的队员换下场上身高为的队员, 与换人前相比, 场上队员的身高()A. 平均数变小, 方差变小B. 平均数变小, 方差变大C. 平均数变大, 方差变小D. 平均数变大, 方差变大6.对于①, ②, 从左到右的变形, 表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解, ②是乘法运算D. ①是乘法运算, ②是因式分解7.如图, 直线y=kx+b(k≠0)经过点A(﹣2, 4), 则不等式kx+b>4的解集为()A. x>﹣2B. x<﹣2C. x>4D. x<48.如图, 已知∠ABC=∠DCB, 下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD9.如图, 将△ABC绕点C顺时针旋转90°得到△EDC.若点A, D, E在同一条直线上, ∠ACB=20°, 则∠ADC的度数是A. 55°B. 60°C. 65°D. 70°10.已知, 一次函数与反比例函数在同一直角坐标系中的图象可能()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: ____________.2. 因式分解: (x+2)x﹣x﹣2=_______.3. 已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根, 则k 的值为__________.41. 如图, 圆锥侧面展开得到扇形, 此扇形半径 CA=6, 圆心角∠ACB=120°, 则此圆锥高 OC 的长度是__________.5.如图, 矩形中, , , 以为直径的半圆与相切于点, 连接, 则阴影部分的面积为__________.(结果保留6. 如图, 在矩形ABCD中, 对角线AC.BD相交于点O, 点E、F分别是AO、AD 的中点, 若AB=6cm, BC=8cm, 则AEF的周长=__________cm.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 已知关于x的一元二次方程.(1)求证: 方程有两个不相等的实数根;(2)如果方程的两实根为, , 且, 求m的值.3. 如图, 以D为顶点的抛物线y=﹣x2+bx+c交x轴于A.B两点, 交y轴于点C, 直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P, 使PO+PA的值最小, 求点P的坐标;(3)在x轴上是否存在一点Q, 使得以A、C、Q为顶点的三角形与△BCD相似?若存在, 请求出点Q的坐标;若不存在, 请说明理由.4. 周末, 小华和小亮想用所学的数学知识测量家门前小河的宽. 测量时, 他们选择了河对岸边的一棵大树, 将其底部作为点A, 在他们所在的岸边选择了点B, 使得AB与河岸垂直, 并在B点竖起标杆BC, 再在AB的延长线上选择点D竖起标杆DE, 使得点E与点C.A共线.已知:CB⊥AD, ED⊥AD, 测得BC=1m, DE=1.5m, BD=8.5m.测量示意图如图所示.请根据相关测量信息, 求河宽AB.5. 我国中小学生迎来了新版“教育部统编义务教育语文教科书”, 本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对《三国演义》、《红楼梦》、《西游记》、《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查, 随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍, 请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.61. 某企业设计了一款工艺品, 每件的成本是50元, 为了合理定价, 投放市场进行试销. 据市场调查, 销售单价是100元时, 每天的销售量是50件, 而销售单价每降低1元, 每天就可多售出5件, 但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时, 每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元, 那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、D4、B5、A6、C7、A8、D9、C10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1、2+2.(x+2)(x﹣1)3、﹣34、5、π.6、9三、解答题(本大题共6小题, 共72分)x=1、42.(1)证明见解析(2)1或23、(1)y=﹣x2+2x+3;(2)P ( , );(3)当Q的坐标为(0, 0)或(9, 0)时, 以A.C.Q为顶点的三角形与△BCD相似.4.河宽为17米5、(1)50;(2)见解析;(3).6、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时, y最大值=4500;(3)70≤x≤90.。

最新人教版九年级上册数学期末测试卷及答案

最新人教版九年级上册数学期末测试卷及答案

最新人教版九年级上册数学期末测试卷及答案九年级上册数学期末试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A。

B。

C。

D。

2.将函数y=2x^2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A。

y=2(x-1)^2-3B。

y=2(x-1)^2+3C。

y=2(x+1)^2-3D。

y=2(x+1)^2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )A。

55°B。

70°C。

125°D。

145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( ) A。

4B。

5C。

6D。

35.一个半径为2cm的圆内接正六边形的面积等于()A。

24cm^2B。

63cm^2C。

123cm^2D。

83cm^26.如图,XXX是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A。

35°B。

45°C。

55°D。

75°7.函数y=-2x^2-8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<-2,则()A。

y1<y2B。

y1>y2C。

y1=y2D。

y1、y2的大小不确定8.将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A。

B。

C。

D。

9.一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是()A。

B。

C。

D。

10.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)A。

九年级数学上册期末试卷及答案【完整版】

九年级数学上册期末试卷及答案【完整版】

九年级数学上册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. 2 C. D.2.若点A(1+m, 1﹣n)与点B(﹣3, 2)关于y轴对称, 则m+n的值是()A. ﹣5B. ﹣3C. 3D. 13.若点, , 都在反比例函数的图象上, 则, , 的大小关系是()A. B. C. D.4.为考察甲、乙、丙、丁四种小麦的长势, 在同一时期分别从中随机抽取部分麦苗, 获得苗高(单位: cm)的平均数与方差为: = =13, = =15: s甲2=s丁2=3.6, s乙2=s丙2=6.3.则麦苗又高又整齐的是()A. 甲B. 乙C. 丙D. 丁5.一个整数815550…0用科学记数法表示为8.1555×1010, 则原数中“0”的个数为()A. 4B. 6C. 7D. 106. 对于二次函数,下列说法正确的是()A. 当x>0, y随x的增大而增大B. 当x=2时, y有最大值-3C.图像的顶点坐标为(-2, -7)D. 图像与x轴有两个交点7.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 18.如图, AB是⊙O的直径, BC与⊙O相切于点B, AC交⊙O于点D, 若∠ACB=50°, 则∠BOD等于()A. 40°B. 50°C. 60°D. 80°9.如图, 四边形ABCD内接于⊙O, 点I是△ABC的内心, ∠AIC=124°, 点E 在AD的延长线上, 则∠CDE的度数为()A. 56°B. 62°C. 68°D. 78°10.两个一次函数与, 它们在同一直角坐标系中的图象可能是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: =______________.2. 分解因式: a2b+4ab+4b=_______.3. 若二次根式有意义, 则x的取值范围是__________.4.如图, 在Rt△ACB中, ∠ACB=90°, ∠A=25°, D是AB上一点, 将Rt △ABC沿CD折叠, 使点B落在AC边上的B′处, 则∠ADB′等于______.5. 如图所示, 直线a经过正方形ABCD的顶点A, 分别过正方形的顶点B.D作BF⊥a于点F, DE⊥a于点E, 若DE=8, BF=5, 则EF的长为__________.6. 如图抛物线y=x2+2x﹣3与x轴交于A, B两点, 与y轴交于点C, 点P是抛物线对称轴上任意一点, 若点D.E、F分别是BC.BP、PC的中点, 连接DE, DF, 则DE+DF的最小值为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:=12. 在平面直角坐标系中, 已知点, 直线经过点. 抛物线恰好经过三点中的两点.(1)判断点是否在直线上. 并说明理由;(2)求,a b的值;(3)平移抛物线, 使其顶点仍在直线上, 求平移后所得抛物线与轴交点纵坐标的最大值.3. 正方形ABCD的边长为3, E、F分别是AB.BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°, 得到△DCM.(1)求证: EF=FM(2)当AE=1时, 求EF的长.4. 已知是的直径, 弦与相交, .(Ⅰ)如图①, 若为的中点, 求和的大小;(Ⅱ)如图②, 过点作的切线, 与的延长线交于点, 若, 求的大小.5. 学校开展“书香校园”活动以来, 受到同学们的广泛关注, 学校为了解全校学生课外阅读的情况, 随机调查了部分0次1次2次3次4次及以上学生在一周内借阅图书的次数, 并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数人数7 13 a 10 3请你根据统计图表中的信息, 解答下列问题:______, ______.该调查统计数据的中位数是______, 众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生, 根据调查结果, 估计该校学生在一周内借阅图书“4次及以上”的人数.6. 俄罗斯世界杯足球赛期间, 某商店销售一批足球纪念册, 每本进价40元, 规定销售单价不低于44元, 且获利不高于30%. 试销售期间发现, 当销售单价定为44元时, 每天可售出300本, 销售单价每上涨1元, 每天销售量减少10本, 现商店决定提价销售. 设每天销售量为y本, 销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时, 商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时, 商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.D2.D3.B4.D5.B6.B7、B8、D9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、.2.b(a+2)23.4、40°.5.136.三、解答题(本大题共6小题, 共72分)1.x=12、(1)点在直线上, 理由见详解;(2)a=-1, b=2;(3)3.(1)略;(2)5 2.4.(1)52°, 45°;(2)26°5、17、20;2次、2次;;人.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时, 商店每天获利2400元;(3)将足球纪念册销售单价定为52元时, 商店每天销售纪念册获得的利润w元最大, 最大利润是2640元.。

最新人教版九年级数学上册期末考试题(完整版)

最新人教版九年级数学上册期末考试题(完整版)

最新人教版九年级数学上册期末考试题(完整版)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的倒数是()A. B. C. D.2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见, 随机对全校100名学生家长进行调查, 这一问题中样本是()A. 100B. 被抽取的100名学生家长C. 被抽取的100名学生家长的意见D. 全校学生家长的意见3. 下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是14.如图, 数轴上的点A, B, O, C, D分别表示数-2, -1, 0, 1, 2, 则表示数的点P应落在A. 线段AB上B. 线段BO上C. 线段OC上D. 线段CD上5.下列对一元二次方程x2+x﹣3=0根的情况的判断, 正确的是()A. 有两个不相等实数根B. 有两个相等实数根C. 有且只有一个实数根D. 没有实数根6. 正十边形的外角和为()A. 180°B. 360°C. 720°D. 1440°7.如图, 点B、F、C、E在一条直线上, AB∥ED, AC∥FD, 那么添加下列一个条件后, 仍无法判定△ABC≌△DEF的是()A. AB=DEB. AC=DFC. ∠A=∠DD. BF=EC8.如图, 已知是的角平分线, 是的垂直平分线, , , 则的长为()A. 6B. 5C. 4D.9.如图, △ABC中, AD是BC边上的高, AE、BF分别是∠BAC、∠ABC的平分线, ∠BAC=50°, ∠ABC=60°, 则∠EAD+∠ACD=()A. 75°B. 80°C. 85°D. 90°10.下列所给的汽车标志图案中, 既是轴对称图形, 又是中心对称图形的是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 化简: =____________.2. 因式分解: a3-ab2=____________.3. 已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0, 则m=_____.4. 如图, 直线与抛物线交于, 两点, 点是轴上的一个动点, 当的周长最小时, __________.5.把图1中的菱形沿对角线分成四个全等的直角三角形, 将这四个直角三角形分别拼成如图2, 图3所示的正方形, 则图1中菱形的面积为__________.6. 菱形的两条对角线长分别是方程的两实根, 则菱形的面积为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中a= +1.3. 如图, 在Rt△ABC中, ∠ACB=90°, ∠A=40°, △ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE, 交AC的延长线于点F, 求∠F的度数.4. 如图, 点A, B, C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上, AB∥x轴, ∠ABC=135°, 且AB=4.(1)填空: 抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2, 当2m﹣5≤x≤2m﹣2时, y的最大值为2, 求m的值.5. 在一次中学生田径运动会上, 根据参加男子跳高初赛的运动员的成绩(单位: m), 绘制出如下的统计图①和图②, 请根据相关信息, 解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩, 由高到低确定9人进入复赛, 请直接写出初赛成绩为1.65m的运动员能否进入复赛.6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、D4、B5、A6、B7、C8、D9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、22.a(a+b)(a﹣b)3、24、12 5.5.12.6、24三、解答题(本大题共6小题, 共72分)1、无解2、3.(1) 65°;(2) 25°.4、(1)(m, 2m﹣5);(2)S△ABC =﹣;(3)m的值为或10+2 .5.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】

人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。

()2. 一个正方形的对角线互相垂直且平分。

()3. 一个圆的半径是直径的一半。

()4. 一个长方体的对角线互相垂直。

()5. 一个等腰三角形的底角等于顶角。

()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。

2. 一个正方形的对角线长是边长的______倍。

3. 一个圆的周长是直径的______倍。

4. 一个长方体的体积是长、宽、高的______。

5. 一个等腰三角形的底边长是腰长的______倍。

四、简答题(每题2分,共10分)1. 简述等边三角形的性质。

2. 简述正方形的性质。

3. 简述圆的性质。

4. 简述长方体的性质。

5. 简述等腰三角形的性质。

五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。

2. 一个正方形的边长为8cm,求其对角线长。

3. 一个圆的直径为14cm,求其周长。

4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。

5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。

九年级数学上册期末考试题及答案【精选】

九年级数学上册期末考试题及答案【精选】

九年级数学上册期末考试题及答案【精选】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.下列式子中, 属于最简二次根式的是()A. B. C. D.2.若单项式am﹣1b2与的和仍是单项式, 则nm的值是()A. 3B. 6C. 8D. 93.在实数|﹣3|, ﹣2, 0, π中, 最小的数是()A. |﹣3|B. ﹣2C. 0D. π4.已知一个多边形的内角和为1080°, 则这个多边形是()A. 九边形B. 八边形C. 七边形D. 六边形5.已知正多边形的一个外角为36°, 则该正多边形的边数为().A. 12B. 10C. 8D. 66.下列各运算中, 计算正确的是()A. a12÷a3=a4B. (3a2)3=9a6C. (a﹣b)2=a2﹣ab+b2D. 2a•3a=6a27.如图, 把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°, 那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°8.如图, 已知是的角平分线, 是的垂直平分线, , , 则的长为()A. 6B. 5C. 4D.9.如图, CB=CA, ∠ACB=90°, 点D在边BC上(与B, C不重合), 四边形ADEF为正方形, 过点F作FG⊥CA, 交CA的延长线于点G, 连接FB, 交DE于点Q, 给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC, 其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个10.往直径为的圆柱形容器内装入一些水以后, 截面如图所示, 若水面宽, 则水的最大深度为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 9的平方根是__________.2. 因式分解: __________.3. 若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点, 则a的值为_____.4. 如图, 抛物线与直线交于A(-1,P), B(3,q)两点, 则不等式的解集是__________.5. 如图, 点A, B是反比例函数y= (x>0)图象上的两点, 过点A, B分别作AC⊥x轴于点C, BD⊥x轴于点D, 连接OA, BC, 已知点C(2, 0), BD=2, S△BCD=3, 则S△AOC=__________.6. 如图. 在的正方形方格图形中, 小正方形的顶点称为格点. 的顶点都在格点上,则的正弦值是__________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 在平面直角坐标系中, 已知点, 直线经过点. 抛物线恰好经过三点中的两点.(1)判断点是否在直线上. 并说明理由;(2)求,a b的值;(3)平移抛物线, 使其顶点仍在直线上, 求平移后所得抛物线与轴交点纵坐标的最大值.3. 如图, 在▱ABCD中, AE⊥BC, AF⊥CD, 垂足分别为E, F, 且BE=DF(1)求证: ▱ABCD是菱形;(2)若AB=5, AC=6, 求▱ABCD的面积.4. 如图, 点C为△ABD外接圆上的一动点(点C不在上, 且不与点B, D重合), ∠ACB=∠ABD=45°.(1)求证: BD是该外接圆的直径;(2)连结CD, 求证: AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM, 连接DM, 试探究,三者之间满足的等量关系, 并证明你的结论.5. 抚顺某中学为了解八年级学生的体能状况, 从八年级学生中随机抽取部分学生进行体能测试, 测试结果分为A, B, C, D四个等级. 请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数, 并补全条形图;(3)若该中学八年级共有700名学生, 请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生, 做为该校培养运动员的重点对象, 请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.6. 某公司今年1月份的生产成本是400万元, 由于改进技术, 生产成本逐月下降, 3月份的生产成本是361万元. 假设该公司2.3.4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.C3.B4.B5.B6.D7、B8、D9、D10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.±32.3.-1或2或14. 或.5、5.6.三、解答题(本大题共6小题, 共72分)1.x=12、(1)点在直线上, 理由见详解;(2)a=-1, b=2;(3)3.(1)略;(2)S平行四边形ABCD =244.(1)详略;(2)详略;(3)DM2=BM2+2MA2,理由详略.5.(1)50;(2)16;(3)56(4)见解析6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。

九年级数学上册期末考试卷【及答案】

九年级数学上册期末考试卷【及答案】

九年级数学上册期末考试卷【及答案】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 估计5 ﹣的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间2.已知是二元一次方程组的解, 则的算术平方根为()A. ±2B.C. 2D. 43. 关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定4.对于反比例函数, 下列说法不正确的是A. 图象分布在第二、四象限B.当时, 随的增大而增大C. 图象经过点(1,-2)D.若点, 都在图象上, 且, 则5. 一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.若, 则的值是()A. 4B. 3C. 2D. 17.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 18.如图, 在中, , , 为边上的一点, 且.若的面积为, 则的面积为()A. B. C. D.9.如图, 在矩形AOBC中, A(–2, 0), B(0, 1).若正比例函数y=kx的图象经过点C, 则k的值为()A. –B.C. –2D. 210.如图, 正五边形内接于⊙, 为上的一点(点不与点重合), 则的度数为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 16的算术平方根是____________.2. 分解因式: 4ax2-ay2=____________.3. 已知二次函数y=x2, 当x>0时, y随x的增大而_____(填“增大”或“减小”).4. 如图, 点, , , 在上, , , , 则________.5. 如图, C为半圆内一点, O为圆心, 直径AB长为2 cm, ∠BOC=60°, ∠BCO=90°, 将△BOC绕圆心O逆时针旋转至△B′OC′, 点C′在OA上, 则边BC扫过区域(图中阴影部分)的面积为_________cm2.6. 菱形的两条对角线长分别是方程的两实根, 则菱形的面积为__________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 先化简, 再求值: , 其中m= +1.3. 如图, 在口ABCD中, 分别以边BC, CD作等腰△BCF, △CDE, 使BC=BF, CD=DE, ∠CBF=∠CDE, 连接AF, AE.(1)求证: △ABF≌△EDA;(2)延长AB与CF相交于G, 若AF⊥AE, 求证BF⊥BC.4. 如图, AB为⊙O的直径, C为⊙O上一点, ∠ABC的平分线交⊙O于点D, DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系, 并说明理由;(2)过点D作DF⊥AB于点F, 若BE=3 , DF=3, 求图中阴影部分的面积.(1)求每次运输的农产品中A, B产品各有多少件;(2)由于该农户诚实守信, 产品质量好, 加工厂决定提高该农户的供货量, 每次运送的总件数增加8件, 但总件数中B产品的件数不得超过A产品件数的2倍, 问产品件数增加后, 每次运费最少需要多少元.6. 现代互联网技术的广泛应用, 催生了快递行业的高度发展, 据调查, 长沙市某家小型“大学生自主创业”的快递公司, 今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件, 现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件, 那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能, 请问至少需要增加几名业务员?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、A4、D5、A6、D7、B8、C9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、42.a(2x+y)(2x-y)3、增大.4.70°5、4π6、24三、解答题(本大题共6小题, 共72分)1、95 x=2、33.(1)略;(2)略.4.(1)DE与⊙O相切, 理由略;(2)阴影部分的面积为2π﹣.5、(1)每次运输的农产品中A产品有10件, 每次运输的农产品中B产品有30件, (2)产品件数增加后, 每次运费最少需要1120元.6、(1)该快递公司投递总件数的月平均增长率为10%;(2)该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务, 至少需要增加2名业务员.。

2024年人教版初三数学上册期末考试卷(附答案)

2024年人教版初三数学上册期末考试卷(附答案)

2024年人教版初三数学上册期末考试卷一、选择题(每题1分,共5分)1. 已知一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是()cm。

A. 18B. 20C. 22D. 242. 下列哪个数不是有理数?()A. 3/4B. 0C. √2D. 2/33. 一个正方形的周长是36cm,那么它的面积是()cm²。

A. 36B. 81C. 144D. 1964. 如果一个圆的半径是4cm,那么它的面积是()cm²。

A. 16πB. 32πC. 64πD. 128π5. 下列哪个图形是中心对称图形?()A. 矩形B. 梯形C. 圆D. 三角形二、判断题(每题1分,共5分)1. 一个数的平方根是唯一的。

()2. 两个全等的三角形一定是相似的。

()3. 一个等腰三角形的底角一定是锐角。

()4. 一个圆的周长等于它的直径的π倍。

()5. 一个平行四边形的对角线互相垂直。

()三、填空题(每题1分,共5分)1. 一个数的立方根是它自己的数叫做______数。

2. 一个等腰三角形的两个底角是______角。

3. 一个圆的半径是5cm,那么它的周长是______cm。

4. 一个正方形的边长是6cm,那么它的周长是______cm。

5. 一个等腰梯形的两个底角是______角。

四、简答题(每题2分,共10分)1. 简述有理数的概念。

2. 简述等腰三角形的性质。

3. 简述圆的性质。

4. 简述平行四边形的性质。

5. 简述等腰梯形的性质。

五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为10cm,腰长为8cm,求这个三角形的周长。

2. 已知一个正方形的周长为36cm,求它的面积。

3. 已知一个圆的半径为5cm,求它的面积。

4. 已知一个平行四边形的底边长为8cm,高为6cm,求它的面积。

5. 已知一个等腰梯形的上底长为8cm,下底长为12cm,高为5cm,求它的面积。

六、分析题(每题5分,共10分)1. 分析有理数和无理数的区别。

完整版)初三上数学期末考试试卷含答案

完整版)初三上数学期末考试试卷含答案

完整版)初三上数学期末考试试卷含答案注意事项:1.本试卷共6页,全卷共三大题28小题,满分130分,考试时间120分钟;2.选择题部分必须使用2B铅笔填涂,填空题、解答题必须用黑色签字笔答题,答案填在答题卡相应的位置上;3.在草稿纸、试卷上答题无效;4.各题必须答在黑色答题框内,不得超出答题框。

一、选择题1.方程x(x+2)=0的解是A。

x=0 B。

x=2 C。

x=0或x=2 D。

x=0或x=-22.有一组数据:6,4,6,5,3,则这组数据的平均数、众数、中位数分别是A。

4.8,6,5 B。

5,5,5 C。

4.8,6,6 D。

5,6,53.将抛物线y=3x先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线对应的函数表达式是A。

y=3(x+2)+1 B。

y=3(x+2)-1 C。

y=3(x-2)+1 D。

y=3(x-2)-14.在Rt△ABC中,∠C=90°,BC=l,AC=2,那么cosB的值是A。

2 B。

5/12 C。

5/25 D。

5/245.若二次函数y=x^2-2x+k的图像经过点(-1,y1),(2,y2),则y1与y2的大小关系为A。

y1>y2 B。

y1=y2 C。

y1<y2 D。

不能确定6.某商店6月份的利润是4800元,8月份的利润达到6500元.设平均每月利润增长的百分率为x,可列方程为A。

4800(1-x)=6500 B。

4800(1+x)=6500 C。

6500(1-x)=4800 D。

4800+4800(1+x)+4800(1+x)=65007.二次函数y=ax^2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是A。

a>0 B。

当-10 C。

当x>3时,y<0 D。

当x=-1时,y=0注意事项:本试卷共6页,全卷共三大题28小题,满分130分,考试时间120分钟。

选择题部分需使用2B铅笔填涂,填空题和解答题需使用黑色签字笔作答,答案填在答题卡相应位置上。

初中数学9年级上册期末考试试卷

初中数学9年级上册期末考试试卷

初中数学9年级上册期末考试试卷一、选择题(每题3分,共30分)1. 下列方程中,是一元二次方程的是()A. x + 2y = 1B. x²+5 = 0C. 2x + 3/x = 0D. x²+2x - 3 = x² - 12. 二次函数y = x² - 2x + 3的顶点坐标是()A. (1,2)B. (-1,2)C. (1, - 2)D. (-1, - 2)3. 已知关于x的一元二次方程x² - 3x + m = 0有两个不相等的实数根,则m的取值范围是()A. m < 9/4B. m ≤ 9/4C. m > 9/4D. m ≥ 9/44. 把抛物线y = - 2x²向上平移1个单位,再向右平移1个单位后,得到的抛物线是()A. y = - 2(x - 1)²+1B. y = - 2(x + 1)²+1C. y = - 2(x - 1)² - 1D. y = - 2(x + 1)² - 15. 若关于x的一元二次方程kx² - 2x - 1 = 0有两个实数根,则k的取值范围是()A. k ≥ - 1且k≠0B. k ≥ - 1C. k > - 1且k≠0D. k > - 16. 一个不透明的口袋里有4个红球和若干个白球,它们除颜色外完全相同,从口袋中随机摸出一球,记下颜色后放回,通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,则口袋中白球的个数可能是()A. 12B. 13C. 14D. 157. 二次函数y = ax²+bx + c(a≠0)的图象如图所示,则下列结论正确的是()A. a < 0,b < 0,c > 0B. a < 0,b < 0,c < 0C. a < 0,b > 0,c > 0D. a < 0,b > 0,c < 08. 某商品经过两次降价,由每件25元调至16元,设平均每次降价的百分率为x,则可列方程为()A. 25(1 - x)²=16B. 25(1 - x²)=16C. 25(1 - 2x)=16D. 25(2 - x)=169. 已知二次函数y = ax²+bx + c(a≠0)的图象过点(-1,0),且对任意实数x都有4x - 12≤ax²+bx + c≤2x² - 8x + 6,则()A. a = - 1,b = 2,c = 3B. a = 1,b = - 2,c = - 3C. a = - 2,b = 4,c = - 8D. a = 2,b = - 4,c = 810. 对于二次函数y = x² - mx + m - 2,以下结论:①不论m取何值,抛物线总与x轴有两个交点;②当m = 3时,函数图象的顶点坐标是(3/2,-1/4);③若x1,x2是方程x² - mx + m - 2 = 0的两根,且x1 < x2,则x1 < 1 < x2;④当m > 2时,抛物线与x轴的两个交点间的距离为2。

新人教版九年级数学上册期末考试题及答案【必考题】

新人教版九年级数学上册期末考试题及答案【必考题】

新人教版九年级数学上册期末考试题及答案【必考题】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小6.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,AB 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.因式分解:x3﹣4x=_______.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是__________.6.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.先化简,再求值:2221111x x xx x++⎛⎫-÷⎪--⎝⎭,其中2x=.3.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、B6、D7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)12、x(x+2)(x﹣2)3、30°或150°.4、10.5、40°6、24三、解答题(本大题共6小题,共72分)1、1x=2、11x+,13.3、(1)略;(24、(1)DE与⊙O相切,理由略;(2)阴影部分的面积为25、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。

初三上册数学期末考试题及答案

初三上册数学期末考试题及答案

初三上册数学期末考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A3. 一个等腰三角形的两边长分别为3和4,那么它的周长是A. 7B. 10C. 11D. 14答案:C4. 已知一个数列的前三项为1, 2, 4,那么第四项是A. 8C. 6D. 5答案:A5. 函数y=2x+3的图像经过点A. (0, 3)B. (1, 5)C. (2, 4)D. (3, 9)答案:B6. 一个圆的直径是10厘米,那么它的半径是A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是A. 24立方厘米B. 12立方厘米C. 26立方厘米D. 36立方厘米答案:A8. 一个数的绝对值是5,这个数可能是B. -5C. 5或-5D. 0答案:C9. 一个角的补角是90°,那么这个角是A. 90°B. 45°C. 30°D. 60°答案:B10. 一个数的立方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是____。

答案:±52. 一个数的倒数是2,这个数是____。

答案:1/23. 一个数的相反数是-3,这个数是____。

答案:34. 一个数的绝对值是10,这个数是____。

答案:±105. 一个数的平方根是4,这个数是____。

答案:16三、解答题(共50分)1. 解方程:x² - 5x + 6 = 0(10分)答案:x₁ = 2,x₂ = 32. 已知等腰三角形的两边长分别为5cm和10cm,求第三边的长度。

(10分)答案:第三边的长度为10cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新九年级上册数学期末考试试卷一、选择题(每题2分,共20分)1、在下列数中,最接近1的数是()A.最小的自然数B.最小的正整数 B.最小的质数 D.最小的合数2、在下列各数中,不是有理数的数是()A. 0.3333 B3.B. -0.C. 0.……D. 1/7993、下列各对数中,互为相反数的有()A. -(-1)和-|-(+2)|B. -21/5和-|-21/5|C. 0.2和-|0.2|D. 0和|-0|4、下列各图中,阴影部分用分数表示是()A. 1/3B. 1/4C. 1/6D. 1/85、如果一个两位正数的个位数字是a,十位数字是b,那么这个两位正数可以表示为()A. a + bB. abC. a + 10bD. b + 10a6、如果一个三位数的个位数字是a,十位数字是b,百位数字是c,那么这个三位数可以表示为()A. abcB. a + b + cC. 100a + 10b + cD. 10a + b7、如果四个人的平均年龄是28岁,且这四个人的年龄各不相同,则年龄最大的可能是()岁。

A. 31 BB. 35C. 45D. 55E. 608、下列四个式子中,表示y是x的函数的是()A. y = 2x BB. y = 2x + 1C. y = |2x|D. y = x/39、下列各图中,阴影部分用分数表示是()A. 1/4B./2C./4D./810、下列各图中,阴影部分用分数表示是()A./4B./2C./8D./6二、填空题(每题3分,共30分)11、如果一个两位数的个位数字是8,十位数字是a,则这个两位数可以表示为________。

12、如果一个三位数的百位数字是c,十位数字是b,个位数字是a,则这个三位数可以表示为________。

13、如果四个人的平均年龄是30岁,且这四个人的年龄各不相同,则年龄最大的可能是________岁。

14、在一个等腰三角形中,已知一条腰长为a厘米,底边长为b厘米,则这个等腰三角形的周长可以表示为________。

15如果三个连续整数的和是99,则中间那个整数是________。

16在一个长方形中,已知长为a厘米,宽为b厘米,则这个长方形的周长可以表示为________。

九年级上册语文期末考试试卷分析一、命题思路本次九年级上册语文期末考试主要是为了检验学生一个学期以来对知识的掌握情况,同时也为教学策略的调整提供依据。

考试内容严格按照课程标准的要求,着重考查学生的阅读理解、写作和语言运用能力。

二、试题特点1、覆盖面广:本次试卷涵盖了整个教材的内容,包括课文阅读、词语解释、语法知识、作文等,不仅考查了学生的基础知识,还考查了学生的综合能力。

2、注重能力:本次试卷注重考查学生的能力,包括阅读理解、写作和语言运用能力。

阅读理解部分选取了多篇课外文章,考查学生的阅读速度和理解能力;写作部分要求学生写一篇不少于500字的作文,考查学生的写作水平;语言运用部分则考查学生的语言运用能力。

3、突出重点:本次试卷突出考查了学生的重点知识,如文言文阅读、名著阅读、议论文阅读等,这些内容在整个教材中占据了重要地位,也是学生需要重点掌握的内容。

三、学生答题情况分析1、阅读理解部分:大部分学生能够较好地理解文章内容,但在一些细节问题上容易出错,如对文章中某些词语的理解不准确,对文章结构把握不够等。

2、写作部分:大部分学生的作文能够符合要求,但在语言表达和思路拓展方面还有待提高。

部分学生存在审题不准确、思路狭窄、语句不通顺等问题。

3、语言运用部分:学生在完成句子和语言表达方面还存在一些问题,如用词不当、语法错误等。

四、教学建议根据学生的答题情况,我们可以提出以下教学建议:1、加强基础知识教学:在教学过程中,要注重基础知识的教学,如词语解释、语法知识等,让学生掌握扎实的基础知识。

2、培养学生的阅读理解能力:在教学过程中,要注重培养学生的阅读理解能力,引导学生深入理解文章内容,把握文章结构,理解作者的意图。

3、加强写作指导:在教学过程中,要加强写作指导,引导学生拓展思路,提高语言表达能力和写作水平。

4、注重语言运用能力的培养:在教学过程中,要注重培养学生的语言运用能力,让学生能够准确地表达自己的意思。

五、反思与展望通过本次考试,我们可以看到学生的整体水平还有待提高。

在今后的教学中,我们要更加注重培养学生的综合能力,不仅要让学生掌握基础知识,还要让学生能够灵活运用知识解决问题。

同时我们也要不断反思自己的教学方法和策略,不断改进和提高教学质量。

三年级上册期末考试英语试卷一、听力部分1、请听录音,选出你听到的单词。

A. bookB. bagC. carD. desk2、请听录音,选出你听到的选项。

A. Where is the library?B. Where is the post office?C. Where is the police station?D. Where is the bus stop?3、请听录音,根据问句选择正确的答句。

A. Yes, it is.B. No, it isn't.C. Yes, please.D. No, please.二、笔试部分4、请选出正确的单词完成句子。

A. I have a _______.B. He has a _______.C. They have _______.41、请根据图片提示,用英文描述图片内容。

411、请阅读下面的对话,并根据对话内容回答问题。

Q1: Who is the man in the picture?Q2: What is he wearing?Q3: What is he holding in his hand?Q4: What does he want to do?4111、请根据题目要求,完成句子。

题目要求:请描述你的书包,包括颜色、大小和里面的物品。

请翻译下面的句子。

“我的家庭住在一个小镇上。

”请根据图片提示,写出一篇小故事。

故事主题:一只小老鼠想要去旅行,但是它不知道如何去实现这个梦想。

它开始寻找帮助,最后它找到了一个友好的人,帮助它实现了它的梦想。

一年级数学上册期末试卷合集一、我会填。

(每空1分,共20分)1、一个班有男生40人,女生50人,男生和女生一共有()人。

2、一(1)班有45名同学,他们有的喜欢看书,有的喜欢画画,其中喜欢看书的同学有30名。

那么喜欢画画的同学有()名。

3、你喜欢的图形是什么?它有几个?能画一画吗?4、8个苹果可以分给()个人,每人得到()个苹果。

5、在下面的圆圈里填上“>”、“<”或“=”。

2+3 5 9-1 8 4 6+2二、我能选。

(每题1分,共5分)(1)下列哪个数字是偶数?A. 9B. 11C. 13D. 15(2)下列哪个图形是三角形?A. |---|---|---|B. \ / \ / \ /C. +-+-+ -(3)你的学号是几?A. 35B. 47C. 29D. 33(4)下列哪个是5的倍数?A. 14B. 16C. 20D. 23(5)下列哪个是几何图形?A.圆形B.长方形C.正方形D.球形三、我会算。

(共30分)6、直接写得数。

(每题1分,共10分)1+3= 4-2= 5-3= 6+0= 8-4=7+2= 9-5= 3+5= 2+7= 6+9=7、在○里填上“>”、“<”或“=”。

(每题1分,共10分)5+3○8 9○3+5 7○1+6 8○4+46○2+4 7○5+3 8+2○10 9○6+38、列式计算。

(每题2分,共10分)(1)一个加数是7,另一个加数是5,它们的和是多少?(2)从6、7、8、9这几个数字中选出两个数字,组成一个两位数,这个两位数是多少?(3)减法:9比6多多少?(4)一个数减去7等于2,这个数是多少?小学三年级数学期末考试试卷一、填空题(每空1分,共20分)1、60个同学围成一个圆圈,每个人与左右两边的人的距离都是()米。

2、在一张长12厘米,宽8厘米的纸上,剪下一个最大的正方形,这个正方形的边长是()厘米。

3、一辆汽车从上午9时开始行驶,下午2时停止,共行驶了()小时。

4、小芳晚上9点钟睡觉,早上6点钟起床,她一共睡了()小时。

5、一个三位数,它的个位上是6,十位上是5,这个三位数是(),它与最小的四位数相差()。

6、一个正方形的周长是36厘米,它的边长是()厘米。

7、一个长方形的长是8厘米,宽是6厘米,它的周长是()厘米。

8、4个苹果和3个梨的重量相等,那么1个苹果的重量等于()个梨的重量。

9、一个篮球场的长是28米,宽是15米,它的面积是()平方米。

10、在下面的括号里填上合适的单位。

小华身高130();一辆汽车每小时行驶60();一个铅笔盒长18();一张课桌面积有36()。

二、判断题(每题1分,共10分)1、圆周长的长度等于直径的长度。

()2、一条直线就是一个平角。

()3、两个完全一样的梯形可以拼成一个平行四边形。

()4、平行四边形的对边相等。

()5、长方形和正方形的周长相等。

()6、面积相等的两个三角形不一定等底等高。

()7、一个三角形的高不变,底越长,面积越大。

()8、一个直角三角形中,不可能有两个直角。

()9、一个三位数乘一个一位数,积一定是四位数。

()10、一个游泳池的容积是25升。

()三、选择题(每题2分,共20分)1、下面的图形中不是轴对称图形的是()。

A.扇形B.圆形C.长方形D.平行四边形2、下面的图形中是轴对称图形的个数是()。

A. 0个B. 1个C. 2个D. 3个3、一个正方形的边长增加4厘米,面积就增加()。

A. 16平方厘米B. 4平方厘米C. 32平方厘米D. 8平方厘米4、一张试卷的厚度是0.03厘米,那么一亿张试卷的厚度是()厘米。

A. 30B. 300C. 3000D.5、下面的图形中不是三角形的是()。

A. ① B②③B. ②③C. ①②③D. ①②③④都不是6下面的图形中有一个不是正方形的是()。

九年级历史上册期末试卷及答案一、选择题1、下列哪个选项最能代表古希腊文明?A.空中花园B.罗马斗兽场C.帕特农神庙D.雅典卫城答案:D.雅典卫城2、下列哪个事件标志着古罗马帝国的建立?A.建立共和国B.征服地中海C.恺撒被刺杀D.屋大维称帝答案:D.屋大维称帝3、下列哪个国家是中世纪欧洲最强大的国家?A.英国B.法国C.西班牙D.德国答案:B.法国二、填空题1、______是古埃及文明的象征,它坐落在尼罗河河谷,是埃及法老的陵墓。

答案:金字塔2、古印度文明的代表建筑是______,它是由______主持建造的。

答案:泰姬陵;沙贾汗3、14世纪中叶,欧洲出现了一场思想解放运动,被称为______运动。

其核心思想是______。

相关文档
最新文档