2016年浙江省高考数学试卷(理科)及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年浙江省高考数学试卷(理科)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.(5分)(2016•浙江)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=() A.[2,3]B.(﹣2,3]C.[1,2)D.(﹣∞,﹣2]∪[1,+∞)
2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()
A.m∥l B.m∥n C.n⊥l D.m⊥n
3.(5分)(2016•浙江)在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y﹣2=0上的投影构成的线段记为AB,则|AB|=
()
A.2 B.4 C.3 D.6
4.(5分)(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()
A.∀x∈R,∃n∈N*,使得n<x2 B.∀x∈R,∀n∈N*,使得n<x2
C.∃x∈R,∃n∈N*,使得n<x2 D.∃x∈R,∀n∈N*,使得n<x2
5.(5分)(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期() A.与b有关,且与c有关 B.与b有关,但与c无关
C.与b无关,且与c无关D.与b无关,但与c有关
6.(5分)(2016•浙江)如图,点列{A n}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N*,(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为△A n B n B n+1的面积,则()
A.{S n}是等差数列B.{S n2}是等差数列
C.{d n}是等差数列D.{d n2}是等差数列
7.(5分)(2016•浙江)已知椭圆C1:+y2=1(m>1)与双曲线C2:﹣y2=1(n>0)的
焦点重合,e1,e2分别为C1,C2的离心率,则()
A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1 8.(5分)(2016•浙江)已知实数a,b,c.()
A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100
B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100
C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100
D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.
9.(4分)(2016•浙江)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是.
10.(6分)(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.
11.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.
12.(6分)(2016•浙江)已知a>b>1,若log a b+log b a=,a b=b a,则a=,b=.
13.(6分)(2016•浙江)设数列{a n}的前n项和为S n,若S2=4,a n+1=2S n+1,n∈N*,则a1=,S5=.
14.(4分)(2016•浙江)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P 和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.
15.(4分)(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.
三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.16.(14分)(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B
(Ⅱ)若△ABC的面积S=,求角A的大小.
17.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面
ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,
(Ⅰ)求证:EF⊥平面ACFD;
(Ⅱ)求二面角B﹣AD﹣F的余弦值.
18.(15分)(2016•浙江)已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(Ⅰ)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围
(Ⅱ)(i)求F(x)的最小值m(a)
(ii)求F(x)在[0,6]上的最大值M(a)
19.(15分)(2016•浙江)如图,设椭圆C:+y2=1(a>1)
(Ⅰ)求直线y=kx+1被椭圆截得到的弦长(用a,k表示)
(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.
20.(15分)(2016•浙江)设数列满足|a n﹣|≤1,n∈N*.
(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)
(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.
2016年浙江省高考数学试卷(理科)
参考答案与试题解析
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.(5分)
【考点】并集及其运算.
【分析】运用二次不等式的解法,求得集合Q,求得Q的补集,再由两集合的并集运算,即可得到所求.
【解答】解:Q={x∈R|x2≥4}={x∈R|x≥2或x≤﹣2},
即有∁R Q={x∈R|﹣2<x<2},
则P∪(∁R Q)=(﹣2,3].
故选:B.
【点评】本题考查集合的运算,主要是并集和补集的运算,考查不等式的解法,属于基础题.2.(5分)
【考点】直线与平面垂直的判定.
【分析】由已知条件推导出l⊂β,再由n⊥β,推导出n⊥l.
【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,
∴m∥β或m⊂β或m⊥β,l⊂β,
∵n⊥β,
∴n⊥l.
故选:C.
【点评】本题考查两直线关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.