几何图形与一元二次方程练习题

合集下载

用一元二次方程解决几何图形问题含答案

用一元二次方程解决几何图形问题含答案

用一元二次方程解决几何图形问题基础题知识点1一般图形的问题1.(衡阳中考)绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为(B)A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=900 2.(山西农业大学附中月考)从一块正方形的木板上锯掉2 m宽的长方形木条,剩下的面积是48 m2,则原来这块木板的面积是(B) A.100 m2B.64 m2C.121 m2 D.144 m23.一个直角三角形的两条直角边相差5 cm,面积是7 cm2,则它的两条直角边长分别为2__cm,7__cm.4.(宿迁中考)一块矩形菜地的面积是120 m2,如果它的长减少2 m,那么菜地就变成正方形,则原菜地的长是12m.5.(深圳中考)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长、宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.解:(1)设矩形的长为x厘米,则宽为(28-x)厘米,依题意,有x(28-x)=180.解得x1=10(舍去),x2=18.则28-x=28-18=10.答:长为18厘米,宽为10厘米.(2)设矩形的长为y厘米,则宽为(28-y)厘米,依题意,有y(28-y)=200.化简,得y2-28y+200=0.∴Δ=282-4×200=784-800=-16<0.∴原方程无实数根.故不能围成一个面积为200平方厘米的矩形.知识点2边框与甬道问题6.(兰州中考)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1 m,另一边减少了2 m,剩余空地的面积为18 m2,求原正方形空地的边长,设原正方形空地的边长为x m,则可列方程为(C)A.(x+1)(x+2)=18B.x2-3x+16=0C.(x-1)(x-2)=18D.x2+3x+16=07.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为(C) A.100×80-100x-80x=7 644B.(100-x)(80-x)+x2=7 644C.(100-x)(80-x)=7 644D.100x+80x=3568.如图所示,相框长为10 cm,宽为6 cm,内有宽度相同的边缘木板,里面用来夹相片的面积为32 cm2,则相框的边缘宽为多少厘米?解:设相框的边缘宽为x cm,根据题意,得(10-2x)(6-2x)=32. 整理,得x2-8x+7=0,解得x1=1,x2=7.当x=7时,6-2×7=-8<0,不合题意,舍去.答:相框的边缘宽为1 cm.易错点忽视根的合理性,忘记验根9.(大同一中期末)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?解:设AB=x,则BC=100-4x(BC≤25).根据题意,得x(100-4x)=400,解得x1=5,x2=20.当x=5时,100-4x=80,不满足BC≤25,不合题意,舍去;当x=20时,100-4x=20.所以AB为20米,BC为20米.中档题10.(高平特力期中)如图,某小区计划在一块长为32 m,宽为20 m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m2.若设道路的宽为x m,则下面所列方程正确的是(A)A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57011.(襄汾期末)如图,在长为70 m,宽为40 m的长方形花园中,欲修宽度相等的观赏路(阴影部分所示),要使观赏路面积占总面积的18,则路宽x 应满足的方程是(C)A .(40-x)(70-x)=2 450B .(40-x)(70-x)=350C .(40-2x)(70-3x)=2 450D .(40-2x)(70-3x)=35012.在一幅长50 cm ,宽30 cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个矩形挂图的面积是1 800 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为x 2+40x -75=0.13.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1.在温室内,沿前侧内墙保留3 m 宽的空地,其他三侧内墙各保留1 m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288 m 2?解:设矩形温室的宽为x m ,则长为2x m .根据题意,得 (x -2)(2x -4)=288.解得x 1=-10(不合题意,舍去),x 2=14.所以2x=2×14=28.答:当矩形温室的长为28 m,宽为14 m时,蔬菜种植区域的面积是288 m2.综合题14.已知,如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm.点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B 开始沿BC边向点C以2 cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?(3)在问题(1)中,△PBQ的面积能否等于7 cm2说明理由.解:(1)设x秒后,△PBQ的面积等于4 cm2.根据题意,得x(5-x)=4.解得x1=1,x2=4.∵当x=4时,2x=8>7,不合题意,舍去.∴x=1.答:1 s后,△PBQ的面积等于4 cm2.(2)设y秒后,PQ=5 cm,则(5-y)2+(2y)2=25.解得y1=0(舍去),y2=2.∴y=2.答:2 s后,PQ的长度等于5 cm.(3)设a秒后,△PBQ的面积等于7 cm2.根据题意,得a(5-a)=7.此方程无解.∴△PBQ的面积不能等于7 cm2.。

北师大版九年级数学上册利用一元二次方程解决几何问题及数字问题测试题

北师大版九年级数学上册利用一元二次方程解决几何问题及数字问题测试题

北师大版初中数学测试题2.6 应用一元二次方程第1课时利用一元二次方程解决几何问题及数字问题1. 在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x 满足的方程是()A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=02.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,•则这个两位数为().A.25 B.36 C.25或36 D.-25或-363.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8cm2 D.64cm24. 两个正方形面积的和为106,周长的差为16,则其中较大的正方形的边长是.5.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.6. 要用一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.若梯子的顶端下滑1m,如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是米.7.有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)8.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?9、一个两位数等于它的个位数字与十位数字的乘积的3倍,并且十位上的数字比个位数小2,求这个两位数。

10、一个三位数,十位数字比百位数字大3,个位数字等于百位数与十位数的和,已知这个三位数比个位数字平方的5倍大12,求这个三位数。

【初中数学】人教版九年级上册第3课时 几何图形与一元二次方程(练习题)

【初中数学】人教版九年级上册第3课时  几何图形与一元二次方程(练习题)

人教版九年级上册第3课时几何图形与一元二次方程(380)1.如图,已知邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,请你计算AB的长度(可利用的围墙长度足够长).2.如图,一块长方形铁皮的长是宽的2倍,四个角各截去一个正方形,制成一个高是5cm,容积是500cm3的无盖长方体容器,求这块铁皮的长和宽.解:设这块铁皮的宽为xcm,则长为cm.由题意列方程为,解得.所以这块铁皮的长和宽分别是cm和cm.3.如图所示,在△ABC中,∠C=90∘,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点C出发沿边CB向点B以2cm/s的速度移动.如果点P,Q同时出发,运动几秒钟时,可使△PCQ的面积为8cm2?4.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.若这两块绿地的面积之和为60平方米,则可列方程.5.某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程为()A.x(x−10)=375B.x(x+10)=375C.2x(2x−10)=375D.2x(2x+10)=3756.从一块正方形的木板上锯掉一个2cm宽的长方形木条,剩下的面积是48cm2,则原来这块木板的面积是()A.100cm2B.64cm2C.121cm2D.144cm2参考答案1.【答案】:根据栅栏的总长度是6m,可设AB=xm,则BC=(6−2x)m,再根据矩形的面积公式列方程,解一元二次方程即可.设AB=xm,则BC=(6−2x)m.根据题意可得x(6−2x)=4,解得x1=1,x2=2. 当x=1时,6−2x=4;当x=2时,6−2x=2(与题意不符,舍去),故AB的长为1m2.【答案】:2x;5(2x−10)(x−10)=500;x1=0(舍去),x2=15;30;153.【答案】:解:设运动t秒时,可使△PCQ的面积为8cm2.·2t(6−t)=8,根据题意,得12解得t1=2,t2=4.答:运动2秒或4秒时,可使△PCQ的面积为8cm2.4.【答案】:(21−3x)(8−2x)=605.【答案】:A【解析】:∵游泳池的长为xm,∴宽可表示为(x−10)m,根据矩形的面积公式,得x(x−10)=375.故选 A6.【答案】:B【解析】:设原正方形的边长是xcm,根据题意可得(x−2)x=48,解得x1=8,x2=−6(不合题意,舍去),所以原正方形的边长是8cm,面积是64cm2.故选 B。

九年级数学上册一元二次方程的实际应用同步练习及答案

九年级数学上册一元二次方程的实际应用同步练习及答案

一元二次方程的实际应用——典型题专项训练知识点 1 用一元二次方程解决几何图形问题1.某中学准备建一个面积为375 m2的矩形游泳池,且游泳池的宽比长短10 m.设游泳池的长为x m,则可列方程为( )A.x(x-10)=375 B.x(x+10)=375C.2x(2x-10)=375 D.2x(2x+10)=3752.如图2-6-1所示,某小区计划在一块长20 m,宽15 m的矩形荒地上建造一个花园(图中阴影部分),使得花园所占面积为荒地面积的一半,其中每个角上的扇形都相同,则每个扇形的半径x是多少?(精确到0.1 m)图2-6-1知识点 2 用一元二次方程解决动态几何图形问题3.如图2-6-2,A,B,C,D为矩形的四个顶点,AB=16 cm,BC=6 cm,动点P,Q 分别从点A,C出发,点P以3 cm/s的速度向点B移动,一直到达点B为止;同时点Q以2 cm/s的速度向点D移动.当其中一点到达终点时,另外一点也随之停止移动.经过多长时间,P,Q两点之间的距离是10 cm?图2-6-24.教材习题2.9第2题变式题如图2-6-3所示,在Rt△ACB中,∠C=90°,AC=8 cm,BC=6 cm, 点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 cm/s.当其中一点到达终点时,另外一点也随之停止移动.经过几秒后,△PCQ的面积为Rt△ACB面积的四分之一?图2-6-35.如图2-6-4所示,一根木棍OE垂直平分柱子AB,AB=200 cm,OE=260 cm,一只老鼠C由柱子底端点A以2 cm/s的速度向顶端点B爬行,同时,另一只老鼠D由点O以3 cm/s的速度沿木棍OE爬行,当老鼠C在线段OA上时,是否存在某一时刻,使两只老鼠与点O组成的三角形的面积为1800 cm2?若存在,求出爬行的时间;若不存在,请说明理由.图2-6-46.如图2-6-5,在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A沿边AB向点B 以1 cm/s的速度移动;同时,点Q从点B沿边BC向点C以2 cm/s的速度移动,经过x s 后△PDQ的面积等于28 cm2,则x的值为( )A.1或4 B.1或6C.2或4 D.2或62-6-52-6-67.如图2-6-6,在Rt△ABC中,∠B=90°,AB=BC=12 cm,点D从点A开始沿AB 边以2 cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,则点D出发________时,四边形DFCE的面积为20 cm2.8.某单位准备将院内一块长30 m、宽20 m的长方形空地建成一个矩形花园.要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图2-6-7所示.要使种植花草的面积为532 m2,那么小道进出口的宽度应为多少?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)图2-6-79.如图2-6-8所示,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,同时点Q从点B开始沿BC边向点C以2 cm/s的速度移动,当其中一点到达终点时,另外一点也随之停止.(1)几秒后,△PBQ的面积等于4 cm2?(2)几秒后,PQ的长度等于5 cm?(3)△PBQ的面积能否等于7 cm2?图2-6-810.如图2-6-9,已知一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心2010海里的圆形区域(包括边界)都属台风区.当轮船到A处时,测得台风中心移到位于点A正南方向的B处,且AB=100海里,若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,试求经过多长时间轮船最初遇到台风;若不会,请说明理由.图2-6-91.A2.解:根据题意,得4×14πx2=12×20×15,解得x1≈6.9,x2≈-6.9(舍去).答:每个扇形的半径x大约是6.9 m.3.解:设经过x s,P,Q两点之间的距离是10 cm,根据题意,得62+(16-5x)2=102,整理,得25x2-160x+192=0,解得x1=1.6,x2=4.8.答:经过1.6 s或4.8 s,P,Q两点之间的距离是10 cm.4.解:设经过x s后,△PCQ的面积为Rt△ACB面积的四分之一.根据题意,得12(6-x)(8-x)=12×6×8×14,化简,得x2-14x+36=0,解得x1=7+13(舍去),x2=7-13.所以经过(7-13)s后,△PCQ的面积为Rt△ACB面积的四分之一.5.解:存在.因为OE垂直平分AB,AB=200 cm,所以OA=100 cm.当老鼠C在OA上运动时,设两只老鼠同时爬行x s时,两只老鼠与点O组成的△COD 的面积为1800 cm2,则AC=2x cm,OC=(100-2x)cm,OD=3x cm.由S△OCD=12OC·OD,得12(100-2x)·3x=1800.整理,得x2-50x+600=0.解得x1=20,x2=30.当x=20时,2x=40<100;当x=30时,2x=60<100,所以x=20和x=30均符合题意.所以当两只老鼠同时爬行20 s或30 s时,它们与点O组成的△COD的面积为1800 cm2.6.C [解析] ∵S矩形ABCD-S△APD-S△BPQ-S△CDQ=S△PDQ,∴12×6-12×12x-12×2x(6-x)-12×6×(12-2x)=28,化简、整理,得x2-6x+8=0,解得x1=2,x2=4.7.1 s或5 s [解析] 设点D出发x s时,四边形DFCE的面积为20 cm2,由题意,得12×12×12-12×4x2-12×(12-2x)2=20,化简、整理得x2-6x+5=0,解得x1=1,x2=5.8.解:设小道进出口的宽度应为x m,根据题意,得(30-2x)(20-x)=532.整理,得x2-35x+34=0.解得x1=1,x2=34.∵34>30,∴不合题意,舍去,∴x=1.答:小道进出口的宽度应为1 m.9.解:(1)设x s后,△PBQ的面积等于4 cm2.此时AP=x cm,BP=(5-x)cm,BQ=2x cm.由S△PBQ=12BP·BQ=4,得12(5-x)·2x=4.整理,得x2-5x+4=0.解得x1=1,x2=4.当x=4时,2x=8>7,说明此时点Q越过点C,不符合要求,舍去,∴1 s后,△PBQ的面积等于4 cm2.(2)设y s后PQ的长度等于5 cm,此时AP=y cm,BP=(5-y)cm,BQ=2y cm.由BP2+BQ2=52,得(5-y)2+(2y)2=52.整理,得y2-2y=0.解得y1=0(不合题意,舍去),y2=2.∴2 s后,PQ的长度等于5 cm.(3)假设△PBQ的面积能等于7 cm2,此时点P,Q的运动时间为z s,则12(5-z)·2z=7,整理,得z2-5z+7=0.∵(-5)2-4×7=-3<0,∴方程没有实数根,∴△PBQ的面积不可能等于7 cm2.10.解:假设轮船途中会遇到台风,且经过t h最初遇到,此时轮船位于C处,台风中心移到E处,连接CE,则AC=20t,AE=AB-BE=100-40t.∵AC2+AE2=EC2,∴(20t)2+(100-40t)2=(2010)2,400t2+10000-8000t+1600t2=4000,t2-4t+3=0,(t-1)(t-3)=0,解得t1=1,t2=3(不合题意,舍去).答:若这艘轮船自A处按原速度继续航行,在途中会遇到台风,经过1 h轮船最初遇到台风.。

用一元二次方程解决几何图形问题含答案

用一元二次方程解决几何图形问题含答案

用一元二次方程解决几何图形问题含答案用一元二次方程解决几何图形问题基础题知识点1:一般图形的问题1.绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米。

设绿地的宽为x米,根据题意,可列方程为x(x+10)=900.2.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48平方米,则原来这块木板的面积是64平方米。

3.一个直角三角形的两条直角边相差5cm,面积是7平方厘米,则它的两条直角边长分别为2cm和7cm。

4.一块矩形菜地的面积是120平方米,如果它的长减少2米,那么菜地就变成正方形,则原菜地的长是12米。

5.一个矩形周长为56厘米。

1) 当矩形面积为180平方厘米时,长、宽分别为18厘米和10厘米。

2) 不能围成面积为200平方厘米的矩形,因为方程y^2-28y+200=0无实数根。

知识点2:边框与甬道问题6.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花,原空地一边减少了1米,另一边减少了2米,剩余空地的面积为18平方米。

求原正方形空地的边长,设原正方形空地的边长为x米,则可列方程为(x-1)(x-2)=18.7.在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为22米,因为可列方程为100×80-100x-80x=7644.10.某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.设道路的宽为x m,则草坪的面积为(32-2x)(20-x),因此正确的方程是A:(32-2x)(20-x)=570.11.在长为70 m,宽为40 m的长方形花园中,欲修宽度相等的观赏路(阴影部分所示),要使观赏路面积占总面积的1/8,则路宽x应满足的方程是C:(40-2x)(70-3x)=2450.。

2023年九年级数学中考复习一元二次方程的应用 几何图形变换 面积问题 常考题型专题训练

2023年九年级数学中考复习一元二次方程的应用  几何图形变换 面积问题 常考题型专题训练

2022-2023学年九年级数学中考复习一元二次方程的应用《几何图形变换+面积问题》常考题型专题训练(附答案)1.如图,一个长为acm,宽为bcm的矩形铁片.(1)如果a=30,b=20,在矩形的中央挖掉一个200cm2的矩形后,成为一个各条边一样宽的铁框,求这个铁框的宽度;(2)如果a=2b,在四个角上分别裁掉四个边长为4cm的正方形,把它制作成一个体积为4576cm3的无盖长方体,求原矩形的面积.2.如图,用一面足够长的墙为一边,其余三边用总长36米的围栏建两个面积相同的生态园,由于场地限制,垂直于墙的一边长不超过6米.(围栏宽忽略不计)(1)每个生态园的面积为48平方米,求每个生态园的边长;(2)每个生态园的面积能否达到60平方米?请说明理由.3.为庆祝中国共产党成立100周年,某市举办了“学党史感党恩跟党走”建党100周年文艺汇演主题活动,活动前,主办方工作人员准备利用一面墙(墙的最大可利用长度为26米)作为一边,用48米隔栏绳作为另三边,设立一个面积为300平方米的矩形表演区,如图,为了方便进出,在两边空出两个各为1米的出入口(出入口不用隔栏绳),那么围成的这个矩形ABCD的长与宽分别是多少米呢?4.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和是否存在最小值?若存在,请求出最小值及此时两段铁丝的长度;若不存在,请说明理由.5.如图,一个边长为8m的正方形花坛由4块全等的小正方形组成.在小正方形ABCD中,点G,E,F分别在CD,AD,AB上,且DG=1m,AE=AF=x,在△AEF,△DEG,五边形EFBCG三个区域上种植不同的花卉,每平方米的种植成本分别是20元、20元、10元.(1)当x=2时,小正方形ABCD种植花卉所需的费用;(2)试用含有x的代数式表示五边形EFBCG的面积;(3)当x为何值时,大正方形花坛种植花卉所需的总费用是715元?6.学校准备利用操场开元旦晚会,师生坐在足球场区域,已知足球场宽度为72m(观众席不一定要占满球场宽度),其他三边利用总长为140m的移动围栏围成一个矩形的观众席,并在观众席内按行、列,摆放单人座椅,要求每个座位占地面积为1m2(如图所示),且观众席内的区域恰好都安排了座位.(1)若观众席内有x行座椅,用含x的代数式表示每行的座椅数,并求x的最小值;(2)若全校师生共2400人,那么座位够坐吗?请说明理由.7.某牧场准备利用现成的一堵“7”字形的墙面(粗线A﹣B﹣C表示墙面)建饲养场,已知AB⊥BC,AB=3米,BC=15米,现计划用总长为38米的篱笆围建一个“日”字形的饲养场BDEF,并在每个区域开一个宽2米的门,如图(细线表示篱笆,饲养场中间用篱笆GH隔开),点F可能在线段BC上,也可能在线段BC的延长线上.(1)如图1,当点F在线段BC上时,①设EF的长为x米,则DE=米;(用含x的代数式表示)②若围成的饲养场BDEF的面积为132平方米,求饲养场的宽EF的长;(2)如图2,当点F在线段BC延长线上,所围成的饲养场BDEF的面积能否为156平方米?如果能达到,求出EF的长;如果不能,请说明理由.8.如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2.(1)求原正方形空地的边长;(2)在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度.9.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点D从点C开始沿CA边运动,速度为1cm/s,与此同时,点E从点B开始沿BC边运动,速度为2cm/s,当点E到达点C时,点D同时停止运动,连接AE,设运动时间为ts,△ADE的面积为S.(1)是否存在某一时刻t,使DE∥AB?若存在,请求出此时刻t的值,若不存在,请说明理由.(2)点D运动至何处时,S=S△ABC?10.如图,在矩形ABCD中、AB=15cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向点D移动(点P停止移动时,点Q也停止移动).设移动时间为t(s).连接PQ,QB.(1)当t为何值时,P、Q两点间的距离为13cm?(2)四边形APQD的形状可能为矩形吗?若可能,求出t的值;若不可能,请说明理由.11沿AC向点C方向运动,动点Q从点C出发,沿线段CB向点B方向运动.如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动的时间为ts,求:(1)用含t的代数式表示Rt△CPQ的面积S;(2)当t=3秒时,这时,P、Q两点之间的距离是多少?(3)当t为多少秒时,S=S△ABC?12.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P,Q同时出发,几秒钟后,可使PQ的长为4厘米?(2)点P,Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.13.如图A,B,C,D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到达B点为止,点Q以2m/s的速度向D点移动,当点P到达B点时点Q随之停止运动.(1)AP=,BP=,CQ=,DQ=(用含t的代数式表示);(2)t为多少时,四边形PBCQ的面积为33cm2;(3)t为多少时,点P和点Q的距离为10cm.14.如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿AB边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从B点开始沿BC边向点C以2厘米/秒的速度移动(到达点C即停止运动).(1)如果P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于△ABC的三分之一?(2)如果P、Q两点分别从A、B两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从B出发,沿BC移动(到达点C即停止运动),几秒钟后,P、Q相距6厘米?15.已知:如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:(1)经过秒时,求△PBQ的面积;(2)当t为何值时,△PBQ是直角三角形?(3)是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.16.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时间t,使△AMN的面积达到3.5cm2?若存在,求出时间t;若不存在,说明理由.17.在Rt△ABC中,AC=6cm,BC=8cm,点P从A点出发以每秒1个单位长的速度向C 点移动,点Q从C点出发以每秒2个单位长的速度向点B移动,点P、Q分别从起点同时出发,移动到某一位置所用的时间为t秒(1)当时间t=3时,求线段PQ的长;(2)当移动时间t等于何值时,△PCQ的面积为8cm2?(3)点D为AB的中点,连接CD,移动P、Q能否使PQ、CD互相平分?若能,求出点P、Q移动时间t的值;若不能,请说明理由.18.如图,AO=BO=6厘米,OC是一条射线,OC⊥AB.一动点P从点A以1厘米/秒的速度向点B爬行,另一动点Q从点O以2厘米/秒的速度沿射线OC方向爬行,它们同时出发,当点P到达B点时点Q也停止运动.设运动时间为t秒.(1)直接写出OQ=(用t的代数式).(2)经过多少秒,△POQ的面积为8平方厘米.(3)当t=时,△PBQ为等腰三角形(直接写出答案)19.如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC 向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?20.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动.如果P、Q 两点在分别到达B、C两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,△PBQ的面积等于8cm2?(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;写出t为何值时,s的值最小.(3)当t=时,试判断△DPQ的形状.(4)计算四边形DPBQ的面积,并探索一个与计算结果有关的结论.参考答案1.解:(1)设这个铁框的宽度为xcm,根据题意可得:(30﹣2x)(20﹣2x)=200,解得:x1=5,x2=20(不合题意舍去),答:这个铁框的宽度为5cm;(2)由题意可得:4(a﹣8)(b﹣8)=4576,则4(2b﹣8)(b﹣8)=4576,解得:b1=30,b2=﹣18(不合题意舍去),则a=30×2=60(cm),故ab=30×60=1800(cm2),答:原矩形的面积为1800cm2.2.解:(1)设垂直于墙的一边长为x米,则平行于墙的一边长为米,根据题意得:x•=48,整理得:x2﹣12x+32=0,解得:x1=4,x2=8(不符合题意,舍去),∴==12.答:每个生态园的长为12米,宽为4米.(2)每个生态园的面积不能达到60平方米,理由如下:设垂直于墙的一边长为y米,则平行于墙的一边长为米,根据题意得:y•=60,整理得:y2﹣12y+40=0,∵Δ=(﹣12)2﹣4×1×40=﹣16<0,∴该方程没有实数根,即每个生态园的面积不能达到60平方米.3.解:设垂直于墙的一边长为x米,则平行于墙的一边长为(48+2﹣2x)米,根据题意得:x(48+2﹣2x)=300,整理得:x2﹣25x+150=0,解得:x1=10,x2=15,当x=10时,48+2﹣2x=48+2﹣2×10=30>26,不符合题意,舍去;当x=15时,48+2﹣2x=48+2﹣2×15=20<26,符合题意.答:围成的这个矩形ABCD的长为20米,宽为15米.4.解:(1)设其中一段铁丝长为xcm(0<x≤10),则另一段铁丝长为(20﹣x)cm,根据题意得:()2+()2=17,整理得:x2﹣20x+64=0,解得:x1=4,x2=16(不符合题意,舍去),∴20﹣x=20﹣4=16.答:这段铁丝剪成两段后的长度分别是4cm,16cm.(2)设其中一段铁丝长为acm(0<a≤10),则另一段铁丝长为(20﹣a)cm,两个正方形的面积之和为wcm2,根据题意得:w=()2+()2,即w=(a﹣10)2+,∵>0,∴当a=10时,w取得最小值,此时20﹣a=20﹣10=10,答:两个正方形的面积之和存在最小值,此时两段铁丝的长度均为10cm.5.解:(1)若x=2,则DE=2,∴S△AEF=AE×AF=2,S△DFG=DG×DF=×1×2=1,∴S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DFG=16﹣×4﹣2+×1=13.∴所需费用为:20×2+20×1+10×13=190(元);(2)设AE=AF=x米,则DF=(4﹣x)米.∴S△AEF=AE×AF=x2,S△DFG=DG×DF=×1×(4﹣x)=2﹣x,∴S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DFG=16﹣x2﹣2+x=﹣x2+x+14,(3)根据题意得4×[20×x2+20×(2﹣x)+10×(﹣x2+x+14)]=715,整理得4x2﹣4x+1=0,解得x1=x2=.答:当AE=AF=米时,正方形花坛种植花卉所需的总费用是715元.6.解:(1)∵移动围栏的总长为140m,且观众席内有x行座椅,∴每行的座椅数为(140﹣2x)个.∵140﹣2x≤72,∴x≥34,∴x的最小值为34.(2)座位够坐,理由如下:依题意得:x(140﹣2x)=2400,整理得:x2﹣70x+1200=0,解得:x1=30(不符合题意,舍去),x2=40,∴若全校师生共2400人,那么座位够坐.7.解:(1)①设EF的长为x米,则DE=38+2+2﹣(3x﹣3)=(45﹣3x)(米).故答案为:(45﹣3x).②依题意得:x(45﹣3x)=132,整理得:x2﹣15x+44=0,解得:x1=4,x2=11.当x=4时,45﹣3x=45﹣3×4=33>15,不合题意,舍去;当x=11时,45﹣3x=45﹣3×11=12<15,符合题意.答:饲养场的宽EF的长为11米.(2)不能达到,理由如下:设EF的长为y米,则DE==米,依题意得:y•=156,整理得:y2﹣20y+104=0,∵Δ=(﹣20)2﹣4×1×104=﹣16<0,∴该方程没有实数根,即当点F在线段BC延长线上,所围成的饲养场BDEF的面积不能达到156平方米.8.解:(1)设原正方形空地的边长为xm,则剩余部分长(x﹣4)m,宽(x﹣5)m,依题意得:(x﹣4)(x﹣5)=650,整理得:x2﹣9x﹣630=0,解得:x1=30,x2=﹣21(不合题意,舍去).答:原正方形空地的边长为30m.(2)设小道的宽度为ym,则栽种鲜花的区域可合成长(30﹣y)m,宽(30﹣1﹣y)m 的矩形,依题意得:(30﹣y)(30﹣1﹣y)=812,整理得:y2﹣59y+58=0,解得:y1=1,y2=58(不合题意,舍去).答:小道的宽度为1m.9.解:(1)存在,理由如下:假设存在某一时刻t,使DE∥AB,∴=,∵AC=6,BC=8,CD=t,CE=8﹣2t,∴=,∴t=,符合题意(t最大为8÷2=4秒),∴存在某一时刻t=秒,使DE∥AB;(2)设运动t秒时,S=S△ABC,根据图示可知,S=S△ACE﹣S△DCE=S△ABC,∵S△ABC=AC•CB=×6×8=24平方厘米,S△ACE=AC•CE=×6×(8﹣2t)=(24﹣6t)平方厘米,S△DCE=CD•CE=t(8﹣2t)=(4t﹣t2)平方厘米,∴S=(24﹣6t)﹣(4t﹣t2)=24﹣6t﹣4t+t2=(t2﹣10t+24)平方厘米,∴S=S△ABC,∴t2﹣10t+24=×24,解一元二次方程得:t1=7,t2=3,∵点E到达点C时,点D同时停止运动,在整个运动过程中0≤t≤4,∴t=3秒符合题意,∴此时CD=3(cm),∴CD=3cm时,S=S△ABC.10.解:(1)设出发t秒后P、Q两点间的距离是13cm.则AP=3t,CQ=2t,作QM⊥AB于M,则PM=|15﹣2t﹣3t|=|15﹣5t|,(15﹣5t)2+52=132,解得:t=0.6或t=5.4,答:P、Q出发0.6和5.4秒时,P,Q间的距离是13cm;(2)四边形APDQ的形状有可能为矩形;理由:当四边形APQD为矩形,则AP=DQ,即3t=15﹣2t,解得:t=3.答:当P、Q出发3秒时四边形APQD为矩形.11.解:(1)若运动的时间为ts,则CP=(20﹣4t)cm,CQ=2tcm,∴S=CP•CQ=(20﹣4t)×2t=20t﹣4t2.又∵,∴0≤t≤5.∴Rt△CPQ的面积S=20t﹣4t2(0≤t≤5).(2)当t=3时,CP=20﹣4t=20﹣4×3=8(cm),CQ=2t=2×3=6(cm),∴PQ===10(cm).(3)依题意得:20t﹣4t2=××15×20,整理得:t2﹣5t+6=0,解得:t1=2,t2=3.∴t为2或3时,S=S△ABC.12.解:(1)设x秒钟后,可使PQ的长为4cm,由题意得:(6﹣x)2+(2x)2=(4)2,解得:x=2或x=,答:P、Q同时出发2或秒钟后,可使PQ的长为4厘米;(2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:(6﹣y)•2y=×6×8,整理,得y2﹣6y+12=0,∵Δ=36﹣4×12<0,∴方程无解,即:不存在.13.解:(1)当运动时间为ts时,AP=3tcm,BP=(16﹣3t)cm,CQ=2tcm,DQ=(16﹣2t)cm.故答案为:3tcm;(16﹣3t)cm;2tcm;(16﹣2t)cm.(2)依题意得:[(16﹣3t)+2t]×6=33,整理得:16﹣t=11,解得:t=5.答:当t为5时,四边形PBCQ的面积为33cm2.(3)过点Q作QE⊥AB于点E,则PE=|(16﹣3t)﹣2t|=|16﹣5t|,如图所示.依题意得:|16﹣5t|2+62=102,即(16﹣5t)2=82,解得:t1=,t2=.答:当t为或时,点P和点Q的距离为10cm.14.解:(1)设t秒后,△PBQ的面积等于△ABC的三分之一,根据题意得:×2t(6﹣t)=××6×8,解得:t=2或4.答:2秒或4秒后,△PBQ的面积等于△ABC的三分之一.(2)设x秒时,P、Q相距6厘米,根据题意得:(6﹣x)2+(2x)2=36,解得:x=0(舍去)或x=.答:秒时,P、Q相距6厘米.15.解:(1)经过秒时,AP=cm,BQ=cm,∵△ABC是边长为3cm的等边三角形,∴AB=BC=3cm,∠B=60°,∴BP=3﹣=cm,∴△PBQ的面积=BP•BQ•sin∠B=×××=;(2)设经过t秒△PBQ是直角三角形,则AP=tcm,BQ=tcm,△ABC中,AB=BC=3cm,∠B=60°,∴BP=(3﹣t)cm,△PBQ中,BP=(3﹣t)cm,BQ=tcm,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,当∠BQP=90°时,BQ=BP,即t=(3﹣t),t=1(秒),当∠BPQ=90°时,BP=BQ,3﹣t=t,t=2(秒),答:当t=1秒或t=2秒时,△PBQ是直角三角形.(3)过P作PM⊥BC于M,△BPM中,sin∠B=,∴PM=PB•sin∠B=(3﹣t),∴S△PBQ=BQ•PM=•t•(3﹣t),∴y=S△ABC﹣S△PBQ=×32×﹣×t×(3﹣t)=t2﹣t+,∴y与t的关系式为y=t2﹣t+,假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的,则S四边形APQC=S△ABC,∴t2﹣t+=××32×,∴t2﹣3t+3=0,∵(﹣3)2﹣4×1×3<0,∴方程无解,∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的.16.解:(1)设经过ts,△AMN的面积等于矩形ABCD面积的,则DN=2tcm,AM=tcm,AN=AD﹣DN=(6﹣2t)cm,∴AN•AM=AD•AB,即(6﹣2t)t=×6×3,整理得:t2﹣3t+2=0,即(t﹣1)(t﹣2)=0,解得:t1=1,t2=2,则经过1s或2s,△AMN的面积等于矩形ABCD面积的;(2)不存在,理由为:假设存在时间ts,使△AMN的面积达到3.5cm2,则AN•AM=3.5,整理得:2t2﹣6t+7=0,∵Δ=36﹣56=﹣20<0,∴方程没有实数根,则△AMN的面积不能达到3.5cm2.17.解:(1)∵AP=t,CQ=2t,∴t=3时,AP=3,CQ=6,∴PC=6﹣3=3在Rt△PCQ中,由勾股定理,得PQ==3.答:PQ=3;(2)∵AP=t,CQ=2t,∴PC=6﹣t.∴(6﹣t)×2t=8,解得:t1=2,t2=4.(3)PQ、CD不互相平分.当PQ、CD互相平分,∴四边形PCQD是平行四边形,∴PD∥CQ.PD=CQ.∵点D为AB的中点,∴P是AC的中点,∴AP=AC=3,PD=CQ=BC=4.∴t=≠.∴PQ、CD不互相平分.18.解:(1)由函数图象,得OQ=2t,故答案为:2t;(2)当P在AO上,,解得:t1=2,t2=4.∵t1=2,t2=4在0<t<6范围内,∴t1=2,t2=4.P在BO上,=8,解得:t3=3+,t4=3﹣.∵t3=3+在6<t<12范围内,∴t3=3+;(3)在Rt△BOQ中,由勾股定理,得BQ2=4t2+36,BP=12﹣t,BP2=144﹣24t+t2,∵△PBQ是等腰三角形,∴PB=BQ,∴PB2=BQ2,∴4t2+36=144﹣24t+t2,解得:t1=﹣4+2,t2=﹣4﹣2(舍去).当PB=PQ时,BP2=144﹣24t+t2,PQ2=4t2+(6﹣t)2,t1=,t2=(舍去).故答案为:﹣4+2或.19.解:(1)设x秒后,可使△CPQ的面积为8cm2.由题意得,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,则(6﹣x)•2x=8,整理,得x2﹣6x+8=0,解得x1=2,x2=4.则P、Q同时出发,2秒或4秒后可使△CPQ的面积为8cm2(2)设运动y秒时,△CPQ与△ABC相似.若△CPQ∽△CAB,则=,即=,解得y=2.4秒;若△CPQ∽△CBA,则=,即=,解得y=秒.综上所述,运动2.4秒或秒时,△CPQ与△ABC相似.20.解:(1)设经过t秒,△PBQ的面积等于8cm2则:BP=6﹣t,BQ=2t,所以S△PBQ=×(6﹣t)×2t=8,即t2﹣6t+8=0,可得:t=2或4,即经过2秒或4秒,△PBQ的面积等于8cm2.(2)根据(1)中所求出的S△PBQ=PB•BQ=×(6﹣t)×2t,整理得S△PBQ=﹣t2+6t(0<t<6).则S五边形APQCD=S矩形ABCD﹣S△PBQ=72﹣(﹣t2+6t)=t2﹣6t+72=(t﹣3)2+63(0<t <6),当t=﹣=3时,S五边形APQCD=63,故当t=3秒,五边形APQCD的面积最小,最小值是63cm2,(3)当t=1.5s时,AP=1.5,BP=4.5,CQ=9,∴DP2=146.25,PQ2=29.25,DQ2=117,∴PQ2+DQ2=DP2,∴△DPQ为Rt△;(4)S DPBQ=6×12﹣t×12﹣×6(12﹣2t),=72﹣36,=36,∴四边形DPBQ的面积是固定值36.。

北师大版数学初三上册利用一元二次方程解决几何问题同步课时练习题及解析

北师大版数学初三上册利用一元二次方程解决几何问题同步课时练习题及解析

北师大版数学初三上册22.6.1 利用一元二次方程解决几何问题同步课时练习题1. 用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一边长为x米,则依照题意可列出关于x的方程为( ) A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=62. 公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1 m,另一边减少了2 m,剩余空地的面积为18 m2,求原正方形空地的边长.设原正方形空地的边长为x m,则可列方程为( )A.(x+1)(x+2)=18 B.x2-3x+16=0C.(x-1)(x-2)=18 D.x2+3x+16=03. 如图,AB⊥BC,AB=10 cm,BC=8 cm,一只蝉从C沿CB的方向以每秒1 cm的速度爬行,蝉开始爬行的同时,一只螳螂由A点沿AB方向以每秒2 cm的速度爬行,当螳螂和蝉爬行x秒后,它们分别到达了M,N的位置,现在△MNB的面积恰好为24 cm2,由题意可列方程( ) A.2x·x=24 B.(10-2x)(8-x)=24C.(10-x)(8-2x)=24 D.(10-2x)(8-x)=484. 小明把一张边长为10 cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(如图).假如那个无盖的长方体底面积为81 cm2,那么剪去的正方形边长为( )A.2 cm B.1 cm C.0.5 cm D.0.5 cm或9.5 cm5. 一块矩形菜地的面积是120 cm2,假如它的长减少2 cm,那么菜地就变成正方形,则原菜地的长是____cm.6. 已知小明与小亮两人在同一地点,若小明向北直走160 m,再向东直走80 m,可到购物中心,则小亮向西直走____m后,他与购物中心的距离为340 m.7. 现有一块长80 cm,宽60 cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1 500 cm2的无盖的长方体盒子,依照题意列方程,化简可得______________________________.8. 如图,在Rt△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P 从A点开始沿AB边向点B以1 cm/s的速度移动,点Q从B点开始沿BC 边向点C以2 cm/s的速度移动,则点P,Q分别从点A,B同时动身,通过_______秒钟,使△PBQ的面积等于8 cm2.9. 已知菱形的周长为40,两对角线之比为3∶4,则两对角线的长分别为________________.10. 如图,用两段等长的铁丝恰好能够分别围成一个正五边形和一个正六边形,其中正五边形的边长为(x2+17)cm,正六边形的边长为(x2+2x)c m(其中x>0).求这两段铁丝的总长.11. 为响应市委市政府提出的建设“绿色都市”的号召,我市某单位预备将院内一块长30 m,宽20 m的长方形空地,建成一个矩形花园.要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地点种植花草.如图所示,要使种植花草的面积为532 m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)12. 如图,两艘船同时从A点动身,一艘船以15海里/时的速度向东北方向航行,另一艘船以20海里/时的速度向东南方向航行,那么几小时后两船正好相距100海里?13. 如图,要建筑一个四边形花圃ABCD,要求AD边靠墙,CD⊥AD,AD∥BC,AB∶CD=5∶4,且三边的总长为20 m.设AB的长为5x m.(1)要求AD的长;(用含字母x的式子表示)(2)若该花圃的面积为50 m2,且周长不大于30 m,求AB的长.14. 要在一块长52 m,宽48 m的矩形绿地上,修建同样宽的两条互相垂直的甬路,下面分别是小亮和小颖的设计方案.小亮设计的方案如图①所示,甬路宽度均为x m,剩余的四块绿地面积共2300 m2.小颖设计的方案如图②所示,BC=HE=x,AB∥CD,HG∥EF,AB ⊥EF,∠1=60°.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积.(友情提示:小颖设计方案中的x与小亮设计方案中的x取值相同)15. 某工厂拟建一座平面图形为矩形且面积为200平方米的三级污水处理池(如图所示).由于地势限制,三级污水处理池的长、宽都不能超过1 6米.假如池的外围墙的建筑单价为每米400元,中间两条隔墙的建筑单价为每米300元,池底的建筑单价为每平方米80元(墙的厚度忽略不计).当三级污水处理池的总造价为47 200元时,求池长x.16. 小明和同桌小聪在课后复习时,对练习册“目标与评定”中的一道摸索题,进行了认真地探究.【摸索题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,假如梯子的顶端沿墙下滑0.4米,那么点B 将向外移动多少米?(1)请你将小明对“摸索题”的解答补充完整:解:设点B将向外移动x米,即BB1=x,则A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12,得方程___________________,解方程,得x1=____,x2=_________ _____,∴点B将向外移动____米.(2)解完“摸索题”后,小聪提出了如下两个问题:【问题一】在“摸索题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?什么缘故?【问题二】在“摸索题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?什么缘故?请你解答小聪提出的这两个问题.参考答案:1---4 BCDC5. 126. 2207. x2-70x +825=08. 2或49. 12和1610. 解:∵用两段等长的铁丝恰好能够分别围成一个正五边形和一个正六边形,∴5(x2+17)=6(x2+2x),整理,得x2+12x -85=0,(x +6)2=121,解得x1=5,x2=-17(不合题意,舍去).5×(52+17)×2=420(c m).答:这两段铁丝的总长为420 cm11. 解:设小道进出口的宽度为x 米,依题意得(30-2x)(20-x)=532.整理,得x2-35x +34=0.解得x1=1,x2=34.∴34>30(不合题意,舍去),∴x =1.答:小道进出口的宽度应为1米12. 解:设x 小时后两船相距100海里,依照题意,得(15x)2+(20x)2=1002,解得x1=4,x2=-4(舍去).答:4小时后两船相距100海里13. (1)作BH ⊥AD 于点H ,则AH =3x ,由BC =DH =20-9x 得AD =20-6x(2)由2(20-9x)+3x +9x ≤30得x ≥53,由12[(20-9x)+(20-6x)]×4x =50得3x2-8x +5=0,∴x1=53,x2=1(舍去),∴5x =253.答:AB 的长为253m14. (1)依照小亮的设计方案列方程得(52-x)(48-x)=2 300,解得x1=2,x2=98(舍去),∴小亮设计方案中甬路的宽度为2 m(2)易证四边形ADCB 为平行四边形,由(1)得x =2,∴BC =HE =2=A D ,过点A 作AI ⊥CD 于点I ,则ID =12AD =1,∴AI =3,∴小颖设计方案中四块绿地的总面积=52×48-52×2-48×2+(3)2=2 299(m2)15. (2x +200x ×2)·400+200x ×2×300+200×80=47 200,整理得x2-39x +350=0,解得x1=25(舍去),x2=1416. (1) (x +0.7)2+22=2.52 0.8 -2.2(舍去) 0.8(2) 【问题一】可不能是0.9米.若AA1=BB1=0.9,则A1C =2.4-0.9=1.5,B1C =0.7+0.9=1.6, 1.52+1.62=4.81,2.52=6.25,∵A1C2+B1C2≠A1B12,∴该题的答案可不能是0.9米 【问题二】有可能.设梯子顶端从A处下滑x米,点B向外也移动x米,则有(x+0.7)2+(2.4-x) 2=2.52,解得x=1.7或x=0(舍去).∴当梯子顶端从A处下滑1.7米时,点B向外也移动1.7米,即梯子顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等。

一元二次方程应用题(几何图形面积问题)

一元二次方程应用题(几何图形面积问题)

解题思路
假设长方形的长为l,宽为w, 通过列方程建立方程组,然后 求解得出面积。
解答与解析
通过解方程组,得出长方形的 长、宽和面积的具体数值,详 细解析计算过程和答案。
实例3 :三角形面积问题
问题提出
已知直角三角形的斜边长度为c, 某一直角边的长度为a,求三角形 的面积。
解题思路
根据已知条件,利用勾股定理和三 角形面积公式建立方程,然后求解 得出面积。
一元二次方程应用题(几 何图形面积问题)
本演示将介绍一元二次方程的应用,特别是在解决几何图形面积问题时的应 用。通过精彩的实例和深入的讲解,帮助你全面理解和掌握这一知识点。
一元二次方程介绍
简要介绍一元二次方程的概念、形式和解法方法,以及元二次方程解决几何图形的面积问题,通过代入、求解方程, 计算各种图形的面积。
解答与解析
通过解方程和应用三角形面积公式, 得出三角形的面积的具体数值,详 细解析计算过程和答案。
总结与实践建议
总结一元二次方程在解决几何图形面积问题中的应用要点,并提供一些建议和实践步骤,以帮助你更好地掌握这一 知识。
实例1:正方形面积问题
1
问题提出
给定正方形的对角线长度为d,求正方形的面积。
2
解题思路
假设正方形的边长为x,利用勾股定理建立方程,然后求解得出面积。
3
解答与解析
通过解方程,得出正方形的边长和面积的具体数值,详细解析计算过程和答案。
实例2 :长方形面积问题
问题提出
已知长方形的周长为P,求长方 形的面积。

列一元二次方程解几何图形问题

列一元二次方程解几何图形问题

列一元二次方程解几何图形问题代数、几何的综合题一直是中考的热点,用代数方法解几何问题,是初中数学的一种重要思想.在解几何题时,如果能根据几何问题中的数量关系,恰当地建立一元二次方程模型,并借助一元二次方程的相关知识来求解,定能收到事半功倍的效果.下面举例说明.一、利用勾股定理建立一元二次方程模型例1.(深圳中考题)在△ABC 中,AB 边上的中线CD=3,AB=6,BC+AC=8,则△ABC 的面积为______________________.分析:对于本题,先画出图形,判断出△ABC 为直角三角形后,再利用勾股定理建立一元二次方程模型求边长.解:如图,在△ABC 中,CD 是AB 边上的中线,∵ CD=3,AB=6,∴AD=BD=3,∴CD=AD=BD.∴∠A=∠ACD ,∠B=∠BCD.∵∠A +∠B +∠ACD +∠BCD=180°.∴∠A +∠B=90°.∴△ABC 为直角三角形,∴AC 2+BC 2=AB 2=36.又∵BC+AC=8,∴设BC 的长为x ,则8AC x =-.∴22(8)36x x -+=,整理,得28140x x -+=.解得4x =.∴4BC =,4AC =或4BC =,4AC =. ∴12ABC S BC ∆=·1(472AC =+=. 说明:本题主要考查直角三角形中线的有关性质、一元二次方程的相关知识以及综合分析、解答问题的能力.二、利用面积公式建立一元二次方程模型例2. (辽宁十一市中考题)如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽.(部分参考数据:2321024=,2522704=,2482304=)分析:本题是一道典型的列一元二次方程解决的实际应用问题.下面从两个角度给出如下的解法.解法(1):由题意转化为右图,设道路宽为x 米.根据题意,可列出方程为()()2032540x x --=.整理得2521000x x -+=.解得150x =(舍去),22x =.答:道路宽为2米.解法(2):由题意转化为右图,设道路宽为x 米,根据题意列方程得: ()220322032540x x ⨯-++=.整理得:2521000x x -+=.解得:12x =,250x =(舍去).答:道路宽应是2米.说明:把不规则的图形转化为规则的图形是解决这类问题的关键所在,同时整体代换的思想方法在解题中起着化难为易的作用,同学们应该既能理解它,又会应用它.。

一元二次方程训练题50道

一元二次方程训练题50道

一元二次方程训练题50道理解一元二次方程是解决数学问题的基础,因此训练题对于加深理解和掌握解题方法非常重要。

以下是50道一元二次方程的训练题:1. 解方程,x^2 4x + 4 = 0。

2. 解方程,2x^2 7x + 3 = 0。

3. 解方程,3x^2 + 5x 2 = 0。

4. 解方程,4x^2 12x + 9 = 0。

5. 解方程,x^2 + 6x + 9 = 0。

6. 解方程,2x^2 + 3x 2 = 0。

7. 解方程,x^2 5x + 6 = 0。

8. 解方程,3x^2 8x 3 = 0。

9. 解方程,4x^2 + 4x + 1 = 0。

10. 解方程,x^2 3x 10 = 0。

11. 解方程,2x^2 11x + 5 = 0。

12. 解方程,3x^2 + 7x 6 = 0。

13. 解方程,x^2 9 = 0。

14. 解方程,2x^2 18 = 0。

15. 解方程,3x^2 27 = 0。

16. 解方程,x^2 2x + 1 = 0。

17. 解方程,2x^2 8x + 8 = 0。

18. 解方程,3x^2 + 6x + 3 = 0。

19. 解方程,x^2 7x + 10 = 0。

20. 解方程,2x^2 5x 3 = 0。

21. 解方程,3x^2 + 4x 4 = 0。

22. 解方程,x^2 4 = 0。

23. 解方程,2x^2 8 = 0。

24. 解方程,3x^2 12 = 0。

25. 解方程,x^2 6x + 9 = 0。

26. 解方程,2x^2 + 2x 4 = 0。

27. 解方程,3x^2 3x 6 = 0。

28. 解方程,x^2 8x + 16 = 0。

29. 解方程,2x^2 12x + 18 = 0。

30. 解方程,3x^2 + 9x + 6 = 0。

31. 解方程,x^2 5 = 0。

32. 解方程,2x^2 20 = 0。

33. 解方程,3x^2 45 = 0。

34. 解方程,x^2 5x + 6 = 0。

一元二次方程应用题(几何图形面积问题)

一元二次方程应用题(几何图形面积问题)
解:设道路宽为x米,则
(32 2x)(20 2x) 570 化简得,x2 36x 35 0
(x 35)(x 1) 0 x1 35, x2 1
其中的 x=35超出了原矩形的宽,应舍去.
答:道路的宽为1米.
例3. (2003年,舟山)如图,有长为24米的篱笆,一面 利用墙(墙的最大可用长度a为10米),围成中间隔 有一道篱笆的长方形花圃。设花圃的宽AB为x米, 面积为S米2, (1)求S与x的函数关系式;(2)如果要围成面积为 45米2的花圃,AB的长是多少米?
例1. 镜框有多宽?
一块四周镶有宽度相等的花边的镜框如下图,它的 长为8m,宽为5m.如果镜框中央长方形图案的面积为 18m2 ,则花边多宽? 解:设镜框的宽为xm ,则镜框中央长方形图案的长 为(8-2x)m, 宽为(5-2x) m,得
8
x
x
x
(8-2x)
5
18m2
x
例1. 镜框有多宽?
一块四周镶有宽度相等的花边的镜框如下图,它的
例2:在一块长80米,宽60米的运动场 外围修筑了一条宽度相等的跑道,这 条跑道的面积是1500平方米,求这条 跑道的宽度。
列一元二次方程解应题
补充练习: 1、(98年北京市崇文区中考题)如图,有一面 积是150平方米的长方形鸡场,鸡场的一边靠墙 (墙长18米),墙对面有一个2米宽的门,另三边 (门除外)用竹篱笆围成,篱笆总长33米.求鸡 场的长和宽各多少米?
例1 在矩形ABCD中,AB=6cm,BC=12cm, 点P从点A开始以1cm/s的速度沿AB边向点 B移动,点Q从点B开始以2cm/s的速度沿BC 边向点C移动,如果P、Q分别从A、B同时出 发,几秒后⊿ PBQ的面积等于8cm2?

初中数学一元二次方程的应用题型分类——图形相关问题6(附答案)

初中数学一元二次方程的应用题型分类——图形相关问题6(附答案)

初中数学一元二次方程的应用题型分类——图形相关问题6(附答案)1.如图,在宽度为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540m 2,求道路的宽.如果设小路宽为xm ,根据题意,所列方程正确的是( )A .(20+x )(32﹣x )=540B .(20﹣x )(32﹣x )=100C .(20﹣x )(32﹣x )=540D .(20+x )(32﹣x )=5402.有一个会议室的桌子,其桌面为如图所示的矩形ABCD ,其中1m =AB ,3m BC =,现在要在此桌面上铺上台布(矩形EFGH ),并将四个角(阴影)减掉,然后台布向四周垂下,并且垂下的长度相同,已知所购买的台布的面积是桌面面积的3倍,若四周垂下的长度为xm ,根据题意,列出的方程是( )A .()()31313x x ++=⨯⨯B .()()3212313x x ++=⨯⨯C .()()33131x x --=⨯D .()()3321231x x --=⨯3.如图所示,在一幅矩形风景画的四周镶一条相同宽度的边框,制成一幅长为80cm ,宽为50cm 的挂图,设边框的宽为xcm ,如果风景画的面积是2800cm 2,下列方程符合题意的是( )A .(50+x )(80+x )=2800B .(50+2x )(80+2 x )=2800C .(50﹣x )(80﹣x )=2800D .(50﹣2x )(80﹣2x )=28004.王叔叔从市场上买了一块长80 cm,宽70 cm 的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长为x cm 的正方形后,剩余的部分刚好能围成一个底面积为3000 cm 2的无盖长方体工具箱.根据题意可列方程为 ( )A .(80-x )(70-x )=3000B .80×70-4x 2=3000C .(80-2x )(70-2x )=3000D .80×70-4x 2-(70+80)x =30005.某校团委准备举办学生绘画展览,为美化画面,在长8 dm 、宽为5 dm 的矩形内画面四周镶上宽度相等的彩纸,并使彩纸的面积等于222dm (如图),若设彩纸的宽度为x dm ,则可得方程式为( )A .4010x 16x 18--=B .()()82x 52x 62++=C .()()82x 52x 18--=D .2405x 8x 422x --+=6.准备在一块长为30m ,宽为24m 的长方形花圃内修建四条宽度相等且与各边垂直的小路,如图所示,四条小路的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80m 2,则小路的宽度为( )A .1mB .54m C .2m D .65m 7.如图是由三个边长分别是2,3和x 的正方形所组成的图形,若直线AB 将它分成面积相等的两部分,则x 的值是( )A .1或4B .2或3C .3或4D .1或28.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18D.x2+3x+16=09.在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的边框,制成一幅挂图,如图所示,设边框的宽为xcm,如果整个挂图的面积是5400cm2 ,那么下列方程符合题意的是()A.(50-x)(80-x)=5400 B.(50-2x)(80-2x)=5400C.(50+x)(80+x)=5400 D.(50+2x)(80+2x)=540010.如图,一块长和宽分别为30cm和20cm的矩形铁皮,要在它的四角截去四个边长相等的小正方形,折成一个无盖的长方体盒子,使它的侧面积为272cm2,则截去的正方形的边长是()cmA.4cm B.8.5cm C.4cm或8.5cm D.5cm或7.5cm 11.建一个面积为480平方米的长方形存车处,存车处的一面靠墙,另三面用铁栅栏围起来,已知铁栅栏的长是92米,存车处的长是________米,宽是________米.12.如图,用20 m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m2.13.给定一个边长为3的正方形,存在一个矩形,使它的周长和面积分别是这个正方形周长和面积的2倍,则这个矩形较长边的边长为______.14.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为_____.84cm,则原15.从正方形的铁皮上,截去5cm宽的一个长方形铁皮,余下的面积为2正方形面积为______2cm.16.如图,有一块长30 m、宽20 m的矩形田地,准备修筑同样宽的三条直路,把田地分成六块,种植不同品种的蔬菜,并且种植蔬菜面积为矩形田地面积的78%,则道路的宽为___________17.如图,将一张长方形纸板的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若长方形纸板边长分别为40cm和30cm,且折成的长方体盒子表面积是950cm2,此时长方体盒子的体积为_____cm3.18.某养殖场为落实国家环保政策,建造一个池底为正方形、深度为2m的长方体无盖水池,池壁的造价为每平方米150元,池底的造价为每平方米300元,总造价为9600元,则该水池池底的边长为_____m.19.长方形的长比宽多4厘米,面积是60平方厘米,则它的长是______厘米.20.如图在一块长为22米,宽为17米的矩形地面上,要修建一条长方形道路LMPQ及一条平行四边形道路RSTK,剩余部分种上草坪,使草坪面积为300平方米,若LM=RS=x米,则根据题意可列出方程为______21.将一块面积为2120m的矩形菜地的长减少2m,它就变成了正方形,求原菜地的长.22.如图,从一块长80厘米,宽60厘米的铁片中间截去一个小长方形,使截去小长方形的面积是原来铁片面积的一半,并且剩下的长方框四周的宽度一样,求这个宽度.23.如图,要设计一幅宽为20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条宽度相等,如果要使余下的图案面积为504cm2,彩条的宽应是多少cm.24.如图,某小区规划在一个长30m,宽20m的矩形场地上,修建两横两竖四条同样宽的道路,且横、竖道路分别与矩形的长、宽平行,其余部分种草坪,若使每块草坪的56m.应如何设计道路的宽度?面积都为225.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?26.小李准备进行如下的操作,把一根长50cm的铁丝剪成两段,并把每段首尾相连各围成一个长宽不等的矩形,两矩形相似且相似比为2:3.78cm,较小矩形的长宽各是多少?(1)要使这两个矩形的面积之和为291cm,你同意吗?说明理由.(说明:相(2)小李认为这两个矩形的面积和不可能为2似多边形的周长比等于相似比,面积比等于相似比的平方)27.一张长为30cm,宽20cm的矩形纸片,如图1所示,将这张纸片的四个角各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图1所示,如果折成的长方体纸盒的底面积为264cm2,求剪掉的正方形纸片的边长.28.小淇准备利用38m长的篱笆,在屋外的空地上围成三个相连且面积相等的矩形花园.围成的花园的形状是如图所示的矩形CDEF,矩形AEHG和矩形BFHG.若整个花园ABCD(AB>BC)的面积是30m2,求HG的长.29.已知正方形ABCD的边长为10,现改变该正方形的边长,使其变为矩形.若AD 的长增加了x,AB的长减少了kx(其中k>0,x>0).(1)若k=2,请说明改变后得到的矩形面积是否可为125;(2)若改变后得到的矩形面积仍为100,求x与k的数量关系.30.如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子.(纸板的厚度忽略不计).(1)若该无盖盒子的底面积为900cm2,求剪掉的正方形的边长;(2)求折成的无盖盒子的侧面积的最大值.参考答案1.C 【解析】 【分析】设小路宽为x 米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32﹣x )(20﹣x )米2,进而即可列出方程,求出答案. 【详解】解:利用平移,原图可转化为右图,设小路宽为x 米, 根据题意得:(20﹣x )(32﹣x )=540. 故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.另外还要注意解的合理性,从而确定取舍. 2.B 【解析】 【分析】根据所购买的台布的面积是桌面面积的3倍,求出桌面面积即矩形ABCD ,的面积和台布面积即矩形EFGH 的面积,列出等式,即可得解. 【详解】 根据题意,得桌面面积为:13ABCD S AB BC =⋅=⨯矩形台布面积为:()()3212EFGH S EF F x G x ⋅+==+矩形 又由3EFGH ABCD S S =矩形矩形,可得()()3212313x x ++=⨯⨯ 故答案为B. 【点睛】此题主要考查一元二次方程的实际应用,解题关键是理解题意,列出等式. 3.D 【解析】 【分析】根据图求出风景画的长、宽,再利用矩形的面积公式即可得出答案. 【详解】由题意得:风景画的长为:(802)x cm -,宽为:(502)x cm - 利用矩形的面积公式得:(802)(502)2800x x --= 故选:D. 【点睛】本题考查了一元二次方程的几何应用,依据题意求出风景画的长、宽是解题关键. 4.C 【解析】根据题意可知裁剪后的底面的长为(80-2x )cm ,宽为(70-2x )cm ,从而根据底面积可以列出相应的方程即可. 解:由题意可得, (80−2x )(70−2x )=3000, 故选C. 5.C 【解析】 【分析】先求出中间空白矩形的面积,再根据大矩形的长、宽和彩纸的宽求出中间空白矩形的长、宽,最后利用面积公式即可得. 【详解】由题意得,中间空白矩形的面积为2852218()dm ⨯-=由图可知,中间空白矩形的长为:(82)x dm -,宽为:(52)x dm - 利用面积公式得:(82)(52)18x x --= 故选:C.本题考查了一元二次方程的几何应用,依题意得出中间空白矩形的长、宽是解题关键. 6.B【解析】【分析】设小路的宽度为x米,则小正方形的边长为4x米,根据小路的横向总长度(30+4x)米和纵向总长度(24+4x)米,结合矩形的面积公式得到:(30+4x+24+4x)x=80.通过解方程求得x的值即可.【详解】设小路的宽度为x米,则小正方形的边长为4x米,依题意得:(30+4x+24+4x)x=80整理得:4x2+27x−40=0解得x1=−8(舍去),x2=54.故选B.【点睛】考查了一元二次方程的应用,解题的关键是找到该小路的总的长度,利用矩形的面积公式列出方程并解答.7.D【解析】【分析】补全图形,然后根据面积相等列方程,解方程即可得到结论.【详解】解:如图,补全图形,∵直线AB将它分成面积相等的两部分,∴12(2+3+x)×3﹣x(3﹣x)=12×(2+3+x)×3﹣2×1,解得x=1或x=2,【点睛】本题考查了一元二次方程的应用,补全图形,利用割补法表示出两部分的面积是解题的关键. 8.C 【解析】 【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18. 故选C .考点:由实际问题抽象出一元二次方程. 9.D 【解析】由题意可知当四周镶上一条宽为xcm 的边框后,整个挂图的长为(80+2x )cm ,宽为(50+2x )cm ,则这个挂图的面积可表达为(80+2x)(50+2x),结合镶好边框后的挂图面积为5400cm 2,可得方程为:(80+2x)(50+2x)=5400. 故选D. 10.C 【解析】 【分析】设截去的正方形的边长为xcm ,对于该长方形铁皮,四个角各截去一个边长为x 厘米的小正方形,长方体底面的长和宽分别是(30−2x )cm 和(20−2x )cm ,侧面积为2x[(30−2x )+(20−2x )]cm 2,根据长方体的侧面积为272cm 2列方程求出x 的值即可. 【详解】解:设截去正方形的边长为xcm ,依题意有:2x[(30−2x )+(20−2x )]=272, 解得x 1=4,x 2=8.5,即截去的正方形的边长是4cm 或8.5cm . 故选:C . 【点睛】此题考查了一元二次方程的应用,解题的关键在于理解题意,找出等量关系列出方程进行求解.11.80 40 6 12【解析】【分析】根据题意设垂直于墙的边为x 米,另一边则为(92-2x )米,根据面积公式列出方程解出即可.【详解】设垂直于墙的一边是x 米,由题意可得:()922480x x -=,解得:140x =,26x =,则92212x -=或80,所以存车处的长和宽各是40米、12米或80米、6米.故答案为:80、40;6、12.【点睛】本题考查一元二次方程应用,关键在于正确设出各边长列出面积公式.12.50【解析】设与墙平行的一边长为xm ,则另一面为202x - , 其面积=2201·1022x x x x -=--, ∴最大面积为241005042ac b a -== ; 即最大面积是50m 2.故答案是50.【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单.13.【解析】【分析】设矩形较长边的边长为x (x >6),则较短边的边长为(3×4-x ),由矩形的面积公式结合矩形的面积,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】解:设矩形较长边的边长为x (x >6),则较短边的边长为(3×4-x ),由题意得:x (3×4-x )=2×3×3, 整理得:x 2-12x+18=0,解得:x 1x 2.故答案为:.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 14.x (x+40)=1200.【解析】【分析】先表示出矩形场地的长,再根据矩形的面积公式即可列出方程.【详解】由题意可得,x (x+40)=1200,故答案是:x (x+40)=1200.【点睛】考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程. 15.原正方形的面积1442cm【解析】【分析】可设正方形的边长是xcm ,根据“余下的面积是84cm 2”,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x-5,根据矩形的面积公式即可列出方程求解.【详解】设原正方形的边长为cm x ,由题意可得:()584x x -=,解得:112x =,27x =-(舍去),原正方形的面积21212144cm =⨯=.本题考查了一元二次方程应用以及矩形及正方形面积公式,表示出矩形各边长是解题关键.16.2 m【解析】【详解】设道路为x米宽,由题意得:20×30−20x×2−30x+2x2=30×20×78%,整理得:x2−35x+66=0,解得:x=2,x=33,经检验是原方程的解,但是x=33>30,因此不合题意舍去.故答案是:2 m.【点睛】本题中,植蔬菜面积的面积=矩形耕地的面积-三条道路的面积+道路重叠部分的两个小正方形的面积.如果设道路宽x,可根据此关系列出方程求出x的值,然后将不合题意的舍去即可. 17.1500【解析】【分析】设剪掉的小正方形的边长为xcm,根据长方体盒子表面积是950cm2列出方程,求出方程的解得到x的值,再计算体积即可.【详解】解:设剪掉的小正方形的边长为xcm,根据题意,得:2x2+20x×2=30×40﹣950,整理得:x2+20x﹣125=0,解得:x1=5,x2=﹣25(不合题意,舍去),当x=5时,长方体盒子的体积为:x(30﹣2x)(20﹣x)=5×20×15=1500(cm3),故答案为:1500.【点睛】此题考查了一元二次方程的应用,准确识别图形,弄清题中的等量关系是解本题的关键.18.4【解析】设正方形池底的边长为xm ,池壁的面积为4x×2m 2.根据池底的造价×池底的面积+池壁的造价×池壁的面积=总造价,方程可列出,进而可求出正方形池底的边长.【详解】解:设池底的边长为xm .300x 2+1200x =9600,解得x 1=4,x 2=﹣8(舍),答:池底的边长为4m .故答案为:4.【点睛】本题考查了一元二次方程的应用.本题应熟记正方形的面积公式、长方体的表面积公式.注意本题池壁的造价,池底的造价不同.19.10【解析】【分析】首先设长为x cm ,根据长与宽的关系,得到宽为()4x cm -,然后根据长方形面积公式可列出方程并解方程即可.【详解】解:设长方形的长为x cm ,则它的宽为()4x cm -,根据题意得:()460x x -=解得:110x =,26x =-(舍去)答:这个长方形的长是为10cm .故答案为10.【点睛】本题考查的是一元二次方程的运用,要灵活运用长方形的面积公式对题意进行分析从而列出方程.20.(22−x)(17−x)=300.【解析】将每条道路平移到矩形的一边处,表示出新矩形的长和宽,利用矩形的面积的计算方法得到方程即可.【详解】根据题意得:(22−x)(17−x)=300;故答案为:(22−x)(17−x)=300.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于理解题意列出方程.21.原菜地长为12m .【解析】【分析】设原菜地的长为xm ,根据正方形的性质可得原矩形菜地的宽,再根据矩形的面积公式列出方程求解即可.【详解】设原菜地的长为xm ,则原矩形菜地的宽(2)x m -由题意得:(2)120x x -=解得:112x =,210x =-(不合题意,舍去)答:原菜地的长为12m .【点睛】本题考查了一元二次方程的实际应用,依据题意正确建立方程是解题关键.22.长方框的宽度为10厘米【解析】【分析】设长方框的宽度为x 厘米,则减去小长方形的长为(80﹣2x )厘米,宽为(60﹣2x )厘米,根据长方形的面积公式结合截去小长方形的面积是原来铁片面积的一半,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:设长方框的宽度为x 厘米,则减去小长方形的长为(80﹣2x )厘米,宽为(60﹣2x )厘米,依题意,得:(80﹣2x )(60﹣2x )=12×80×60, 整理,得:x 2﹣70x+600=0, 解得:x 1=10,x 2=60(不合题意,舍去).答:长方框的宽度为10厘米.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 23.1cm .【解析】【分析】设每个彩条的宽度为xcm ,根据剩余面积为504cm 2,建立方程求出其解即可.【详解】设每个彩条的宽度为xcm ,由题意,得(30﹣2x )(20﹣2x )=504,解得:x 1=24(舍去),x 2=1.答:每个彩条的宽度为1cm .【点睛】本题考查一元二次方程的应用,解题的关键是根据剩余面积=总面积-彩条面积列出方程. 24.道路的宽度应设计为1m.【解析】【分析】设道路的宽度为x m ,横、竖道路分别有2条,所以草坪的宽为:(20-2x )m ,长为:(30-2x )m ,草坪的总面积为56×9,根据长方形的面积公式即可得出结果.【详解】解:设道路的宽度为x m.由题意得:()()302202569x x --=⨯化简得:225240x x -+=()()1240x x --=解得:11x =,224x =(舍)答:道路的宽度应设计为1m.【点睛】本题考查的是一元二次方程的实际应用,根据题目条件进行设未知数,列出方程并且求解是解题的关键.25.所围矩形猪舍的长为12m、宽为8m【解析】【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【详解】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m,由题意得x(27﹣2x+1)=96,解得:x1=6,x2=8,当x=6时,27﹣2x+1=16>15(舍去),当x=8时,27﹣2x+1=12.答:所围矩形猪舍的长为12m、宽为8m.【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.26.(1)较小矩形宽4厘米,长6厘米;(2)同意,理由见解析.【解析】【分析】(1)根据相似多边形的性质,得较小的矩形周长为20厘米,再根据较小矩形的面积,列出方程,即可求解;(2)根据较小矩形的面积,列出一元二次方程,从而得判别式的值小于零,进而即可得到结论.【详解】(1)∵两矩形相似且相似比为2:3,∴23CC=小大,49SS=小大,∴C 小=20,设小矩形较短一边长x 厘米,则邻边长为(10-x )厘米,则x (10-x )=78×413,解得:x 1=4,x 2=6(舍去), ∴较小矩形宽为4厘米,长为6厘米;(2)同意.理由如下:设小矩形较短一边长x 厘米,则邻边长为(10-x )厘米,则x (10-x )=91×413,即:x 2-10x +28=0, ∵Δ=2(10)412812--⨯⨯=-<0,∴一元二次方程无解,∴两矩形的面积不可能为91cm 2.【点睛】本题主要考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键.27.4cm【解析】试题分析:设剪掉的正方形纸片的边长为x cm ,则围成的长方体纸盒的底面长是(30-2x )cm, 宽是(30-2x )cm,根据底面积等于264 cm 2列方程求解.解:设剪掉的正方形纸片的边长为x cm .由题意,得 (30-2x )(20-2x )=264.整理,得 x 2 -25x + 84=0.解方程,得14x =,221x =(不符合题意,舍去).答:剪掉的正方形的边长为4cm .28.HG 的长是2m【解析】【分析】设HG 的长为xm ,将BC ,AB 表示出来,再利用整个花园面积为30 m 2列出方程,解之即可.【详解】解:设HG 的长为xm ,则3384,23x BC xm AB m -==, 由题意得,33843023x x ⋅=- 解得,12152,2x x ==∵AB BC >, ∴2152x =不合题意,舍去. 答:HG 的长是2m .【点睛】此题考查一元二次方程的实际运用,掌握长方形的面积计算公式是解决问题的关键. 29.(1)改变后得到的矩形面积不能为125;(2)x =1k k -. 【解析】【分析】(1)根据矩形的面积公式结合改变后矩形的面积为125,即可得出关于x 的一元二次方程,由根的判别式△=−100<0,即可得出改变后得到的矩形面积不能为125;(2)根据矩形的面积公式结合改变后矩形的面积为100,即可得出关于x 的一元二次方程,由k >0,x >0,即可得出x 与k 的数量关系.【详解】(1)依题意,得:(10+x )(10﹣2x )=125,整理,得:2x 2+10x+25=0.∵△=102﹣4×2×25=﹣100<0,∴改变后得到的矩形面积不能为125.(2)依题意,得:(10+x )(10﹣kx )=100,整理,得:kx 2﹣(1﹣k )x =0.∵k >0,x >0,∴x =1k k-. 【点睛】本题考查了根的判别式以及一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.30.(1)5cm;(2)最大值是800cm2.【解析】【分析】(1)设剪掉的正方形的边长为x cm,则AB=(40-2x)cm,根据盒子的底面积为484cm2,列方程解出即可;(2)设剪掉的正方形的边长为x cm,盒子的侧面积为y cm2,侧面积=4个长方形面积;则y=-8x2+160x,配方求最值.【详解】(1)设剪掉的正方形的边长为x cm,则(40﹣2x)2=900,即40﹣2x=±30,解得x1=35(不合题意,舍去),x2=5;答:剪掉的正方形边长为5cm;(2)设剪掉的正方形的边长为x cm,盒子的侧面积为y cm2,则y与x的函数关系式为y=4(40﹣2x)x,即y=﹣8x2+160x,y=﹣8(x﹣10)2+800,∵﹣8<0,∴y有最大值,∴当x=10时,y=800;最大答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm2.【点睛】本题考查了一元二次方程的应用和二次函数的最值问题,根据几何图形理解如何建立一元二次方程和函数关系式是解题的关键;明确正方形面积=边长×边长,长方形面积=长×宽;理解长方体盒子的底面是哪个长方形;解题时应该注意如何利用配方法求函数的最大值.。

九年级数学: 第3课时用一元二次方程解决几何图形等问题

九年级数学: 第3课时用一元二次方程解决几何图形等问题

第3课时用一元二次方程解决几何图形等问题知识点1规则图形的面积问题1.某中学准备建一个面积为375 m2的矩形游泳池,且游泳池的宽比长短10 m.设游泳池的长为x m,则可列方程为()A.x(x-10)=375 B.x(x+10)=375C.2x(2x-10)=375 D.2x(2x+10)=3752.从一块正方形的木板上锯掉一个2 m宽的长方形木条,剩下部分的面积是48 m2,则原来这块正方形木板的边长是()A.8 m B.9 m C.10 m D.11 m3.直角三角形两直角边的长度比是3∶4,而斜边长等于10 cm,那么这个直角三角形的面积为________cm2.4.如图21-3-3,某工人师傅要在一个面积为15 m2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1 m,则裁剪后剩下的阴影部分的面积为________.图21-3-35.如图21-3-4,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.图21-3-4知识点2边框与甬道问题6.2017·酒泉如图21-3-5,某小区计划在一块长为32 m,宽为20 m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m2,若设道路的宽为x m,则下面所列方程正确的是()图21-3-5A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=5707.如图21-3-6,小明家有一块长1.5 m、宽1 m的矩形地毯,为了使地毯美观,小明请来工匠在地毯的四周镶上宽度相同的花色地毯,镶完后地毯的面积是原地毯面积的2倍,则花色地毯的宽为________m.图21-3-68.在一张矩形床单的四周绣上宽度相等的花边,剩下部分的面积为1.6 m2,已知床单的长是2 m,宽是1.4 m,求花边的宽度.9.某小区有一块长18米,宽8米的长方形空地,计划在其中修建两块相同的长方形花圃.为方便游人观赏,准备在花圃周边修建如图21-3-7所示的“两横三纵”人行通道,其中横向人行通道的宽度是纵向人行通道宽度的一半.设纵向人行通道的宽度为x米,当x 为何值时,花圃的面积之和为72平方米?图21-3-710.如图21-3-8,矩形ABCD的周长是20 cm,以AB,AD为边向外作正方形ABEF 和正方形ADGH,若两正方形的面积之和为68 cm2,则矩形ABCD的面积是()图21-3-8A.24 cm2 B.21 cm2 C.16 cm2 D.9 cm211.小明家的餐桌桌面是长为160 cm,宽为100 cm的长方形,小明的妈妈准备设计一块桌布,其面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为x cm,则所列方程为()A.(160+x)(100+x)=2×160×100B .(160+2x )(100+2x )=2×160×100C .(160+x )(100+x )=160×100D .2(160x +100x )=160×10012.如图21-3-9,有一块长5米、宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,其所占面积是整个地毯面积的1780.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.图21-3-913.要在一块长52 m 、宽48 m 的矩形绿地上修建同样宽的两条互相垂直的甬路.图21-3-10①②分别是小亮和小颖的设计方案.(1)求小亮的设计方案中甬路的宽度;(2)求小颖的设计方案中四块绿地的总面积.(友情提示:小颖设计方案中的x 与小亮设计方案中x 的取值相同)图21-3-1014.已知:如图21-3-11,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm.点P从点A开始沿AB边向点B以1 cm/s的速度匀速运动,点Q从点B开始沿BC边向点C以2 cm/s 的速度匀速运动.当其中一点到达终点时,另一点也随之停止运动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积为4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度为5 cm?(3)在(1)中,△PBQ的面积能否为7 cm2?并说明理由.图21-3-111.A [解析] ∵游泳池的长为x m , ∴宽可表示为(x -10)m ,根据矩形的面积公式,得x(x -10)=375. 故选A .2.A [解析] 设原来这块正方形木板的边长是x m . 根据题意,得x(x -2)=48,解得x 1=8,x 2=-6(不合题意,舍去), ∴原来这块正方形木板的边长是8 m . 故选A . 3.244.2 m 2 [解析] 设大正方形的边长为x m ,则小正方形的边长为(x -1)m . 根据题意,得x(2x -1)=15,解得x 1=3,x 2=-52(不合题意,舍去).则x -1=3-1=2,∴裁剪后剩下的阴影部分的面积=15-22-32=2(m 2). 故裁剪后剩下的阴影部分的面积为2 m 2. 5.解:设AB 为x m ,则BC 为(50-2x)m . 根据题意,得x(50-2x)=300, 2x 2-50x +300=0, 解得x 1=10,x 2=15.当x =10时,50-2x =30>25(不合题意,舍去); 当x =15时,50-2x =20<25(符合题意).答:当AB 的长为15 m ,BC 的长为20 m 时,可使矩形花园的面积为300 m 2. 6.A [解析] 将两条纵向的道路向左平移,水平方向的道路向下平移,即可得草坪的长为(32-2x)米,宽为(20-x)米,所以草坪的面积为新得矩形长与宽的乘积,即可列出方程.故选A .7.0.25 [解析] 设花色地毯的宽为x m ,那么地毯的面积=(1.5+2x)(1+2x)m 2. 因为镶完后地毯的面积是原地毯面积的2倍, 所以(1.5+2x)(1+2x)=2×1.5×1, 即8x 2+10x -3=0.解得x =0.25或x =-1.5(舍去). 故花色地毯的宽为0.25 m .8.解:设花边的宽度为x m .依题意,得 (2-2x)(1.4-2x)=1.6,解得x 1=1.5(不合题意,舍去),x 2=0.2. 答:花边的宽度为0.2 m .9.解:依题意可得(18-3x)(8-2×12x)=72,解得x 1=2,x 2=12(不合题意,舍去).答:当x 的值为2时,花圃的面积之和为72平方米. 10.C11.B [解析] 由题意,得桌布的面积为160×100×2 cm 2,桌布的长为(160+2x)cm ,宽为(100+2x)cm ,则(160+2x)(100+2x)=2×160×100.12.解:(1)设配色条纹的宽度为x 米.依题意,得 2x ×5+2x ×4-4x 2=1780×5×4,解得x 1=174(不符合题意,舍去),x 2=14.答:配色条纹的宽度为14米.(2)配色条纹部分的造价:1780×5×4×200=850(元),其余部分的造价:(1-1780)×5×4×100=1575(元),∴总造价为850+1575=2425(元). 答:地毯的总造价是2425元.13.]解:(1)根据小亮的设计方案列方程,得 (52-x)(48-x)=2300.解这个方程,得x 1=2,x 2=98(不合题意,舍去). 答:小亮的设计方案中甬路的宽度为2 m .(2)过点A 作AI ⊥CD ,过点H 作HJ ⊥EF ,垂足分别为I ,J ,如图所示.∵AB ∥CD ,∠1=60°, ∴∠ADI =60°. 又∵BC ∥AD ,∴四边形ADCB 是平行四边形, ∴BC =AD. 由(1)得x =2, ∴BC =HE =2 m =AD.在Rt △ADI 中,利用勾股定理可得AI = 3 m . 同理可得HJ = 3 m .52×48-52×2-48×2+(3)2=2299(m 2). 答:小颖的设计方案中四块绿地的总面积为2299 m 2.14.解:(1)设x s 后,△PBQ 的面积为4 cm 2,此时,AP =x cm ,BP =(5-x)cm ,BQ =2x cm .由S△PBQ=12BP·BQ,得12(5-x)·2x=4,整理,得x2-5x+4=0,解得x1=1,x2=4.当x=4时,2x=8>7,说明此时点Q越过点C,不符合要求,舍去.答:1 s后,△PBQ的面积为4 cm2.(2)仿照(1),由BP2+BQ2=PQ2,得(5-x)2+(2x)2=52,整理,得x2-2x=0,解得x1=0(不合题意,舍去),x2=2.答:2 s后,PQ的长度为5 cm.(3)不能.理由:仿照(1),得12(5-x)·2x=7,整理,得x2-5x+7=0,Δ=b2-4ac=(-5)2-4×1×7=25-28=-3<0,∴此方程无实数根,∴△PBQ的面积不能为7 cm2.。

2019-2020年度新人教版九年级数学上册:用一元二次方程解决几何图形问题同步练习及答案-精品试题

2019-2020年度新人教版九年级数学上册:用一元二次方程解决几何图形问题同步练习及答案-精品试题

第3课时用一元二次方程解决几何图形问题要点感知面积(体积)问题属于几何图形的应用题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与_____的内在联系,根据_____公式列出一元二次方程.预习练习1-1 (襄阳中考)用一条长40 cm的绳子围成一个面积为64 cm2的长方形.设长方形的长为x cm,则可列方程为( )A.x(20+x)=64B.x(20-x)=64C.x(40+x)=64D.x(40-x)=641-2 (兰州中考)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.设道路宽为x米,根据题意可列出的方程为_____.知识点1 一般图形的问题1.(白银中考)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6B.x(5-x)=6C.x(10-x)=6D.x(10-2x)=62.有一个面积为16 cm2的梯形,它的一条底边长为3 cm,另一条底边长比它的高线长1 cm,若设这条底边长为x cm,依据题意,列出方程整理后得( )A.x2+2x-35=0B.x2+2x-70=0C.x2-2x-35=0D.x2-2x+70=03.(宿迁中考)一块矩形菜地的面积是120 m2,如果它的长减少2 m,那么菜地就变成正方形,则原菜地的长是_____m.4.一个直角三角形的两条直角边相差5 cm,面积是7 cm2,这两条直角边长分别为_____5.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.知识点2 边框与甬道问题6.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m2,求道路的宽.如果设小路宽为x m,根据题意,所列方程正确的是( )A.(20-x)(32-x)=540B.(20-x)(32-x)=100C.(20+x)(32-x)=540D.(20-x)(32+x)=5407.如图所示,某小区计划在一个长为40米,宽为26米的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB垂直,另一条与AB平行,其余部分种草,若使每一块草坪的面积都为144平方米,求甬路的宽度.8.如图,某单位准备在图书馆直角墙角处搭建一个面积为450平方米的矩形堆物场,其中两边可以利用图书馆的墙角,并利用已有总长60米的铁围栏,并且中间要用铁围栏分隔为两块,求AB的长度.设AB的长为x米,则可列方程为_____.9.如图所示,在一块正方形空地上,修建一个正方形休闲广场,其余部分铺设草坪,已知休闲广场的边长是正方形空地边长的一半,草坪的面积为147 m2,则休闲广场的边长是_____m.10.在高度为2.8 m的一面墙上,准备开凿一个矩形窗户.现用9.5 m长的铝合金条制成如图所示的窗框.问:窗户的宽和高各是多少时,其透光面积为3 m2(铝合金条的宽度忽略不计)?11.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1.在温室内,沿前侧内墙保留3 m宽的空地,其他三侧内墙各保留1 m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288 m2?12.如图,要设计一个等腰梯形的花坛,花坛上底长120 m,下底长180 m,高80 m,在两腰中点连线(虚线)处有一条横向甬道,上、下底之间有两条纵向甬道,各甬道宽度相等,设甬道的宽为x m.(1)用含x的式子表示甬道的面积;(2)根据设计的要求,甬道的宽不能超过6 m.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数为5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么甬道宽度为多少米时,所建花坛费用为239万元?挑战自我13.已知如图所示,在△ABC中,∠B=90°.AB=5 cm,BC=7 cm.点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?(3)在问题(1)中,△PBQ的面积能否等于7 cm2?说明理由.参考答案要点感知已知量,面积(体积)预习练习1-1 B1-2 (22-x)(17-x)=300.1.B2.A3.12.4.2 cm、7 cm.5.设AB=x m,则BC=(50-2x)m.根据题意,得x(50-2x)=300.解得x1=10,x2=15.当x=10,BC=50-2×10=30>25,故x1=10不合题意,舍去.∴x=15.答:可以围成AB为15 m,BC为20 m的矩形.6.A7.设甬路的宽度为x 米.依题意,得(40-2x)(26-x)=144×6.解得x 1=2,x 2=44(不合题意,舍去).答:甬路的宽度为2米.8.x(60-2x)=450. 9.710.设窗户的高为x m ,则窗户的宽为35.025.9--x =3-32x(m),则根据题意列方程为:x(3-32x)=3, 解得x 1=1.5,x 2=3(不合题意,舍去). 所以窗户的高为1.5 m ,宽为3-32×1.5=2 m. 11.设矩形温室的宽为x m ,则长为2x m.根据题意,得(x-2)·(2x-4)=288.解得x 1=-10(不合题意,舍去),x 2=14.所以x=14,2x=2×14=28.答:当矩形温室的长为28 m ,宽为14 m 时,蔬菜种植区域的面积是288 m 2.12.(1)-2x 2+310x.(2)根据题意,得0.02×[2120180+×80-(-2x 2+310x)]+5.7x=239. 整理,得2x 2-25x+50=0,即(x-10)(2x-5)=0.解得x 1=10,x 2=25. ∵x=10>6(舍去).∴x=25. 答:此时甬道的宽度为25 m. 挑战自我13.(1)设x 秒后,△PBQ 的面积等于4 cm 2.根据题意得x(5-x)=4.解得x 1=1,x 2=4. ∵当x=4时,2x=8>7,不合题意,舍去.∴x=1.(2)设x 秒后,PQ=5,则(5-x)2+(2x)2=25.解得x 1=0(舍去),x 2=2.∴x=2.(3)设x秒后,△PBQ的面积等于7 cm2. 根据题意,得x(5-x)=7.此方程无解. 所以不能.。

用一元二次方程解决几何图形问题

用一元二次方程解决几何图形问题

第3课时用一元二次方程解决几何图形问题1.面积(体积)问题属于几何图形的应用题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与__已知量___的内在联系,根据__面积(体积)___公式列出一元二次方程.2.一个正方形的边长增加了3 cm,面积相应增加了39 cm2,则原来这个正方形的边长为__5___cm.知识点1:一般图形的面积问题1.一个面积为35 m2的矩形苗圃,它的长比宽多2 m,则这个苗圃的长为( C)A.5 m B.6 m C.7 m D.8 m2.用一条长40 cm的绳子围成一个面积为64 cm2的长方形.设长方形的长为x cm,则可列方程为( B)A.x(20+x)=64 B.x(20-x)=64C.x(40+x)=64 D.x(40-x)=643.一个直角三角形的两条直角边相差5 cm,面积是7 cm2,这两条直角边长分别为__2_cm,7_cm___.4.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.解:设AB=x m,则BC=(50-2x) m,根据题意得x(50-2x)=300,解得x1=10,x2=15,当x=10,BC=50-2×10=30>25,故x1=10不合题意,舍去,∴x=15,则可以围成AB为15 m,BC为20 m的矩形知识点2:边框与通道问题5.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上花草.若种植花草的面积为540 m2,求道路的宽.如果设道路的宽为x m,根据题意,所列方程正确的是( A)A.(20-x)(32-x)=540B.(20-x)(32-x)=100C.(20+x)(32-x)=540D.(20-x)(32+x)=540,第5题图),第6题图) 6.如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,若设道路宽为x米,则根据题意可列出方程__(22-x)(17-x)=300___.7.如图,某矩形相框长26 cm,宽20 cm,其四周相框边(图中阴影部分)的宽度相同,都是x cm,若相框内部的面积为280 cm2,求相框边的宽度.解:由题意得(26-2x)(20-2x)=280,整理得x2-23x+60=0,解得x1=3,x2=20(不合题意,舍去),则相框边的宽度为3 cm8.从一块正方形的木板上锯掉2 m宽的长方形木条,剩下的面积是48 m2,则原来这块木板的面积是( B)A.100 m2B.64 m2C.121 m2D.144 m29.如图,正方形ABCD的边长是1,E,F分别是BC,CD上的点,且△AEF是等边三角形,则BE的长为( A)A.2- 3 B.2+ 3C.2+ 5 D.5-2,第9题图),第11题图) 10.在一个矩形地毯的四周镶有宽度相同的花边,已知地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米,则花边的宽为__1___米.11.如图,已知点A是一次函数y=x-4图象上的一点,且矩形ABOC的面积等于3,则点A的坐标为__(3,-1)或(1,-3)___.12.如图是一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中阴影部分)种植的是不同花草.已知种植花草部分的面积为3600平方米,那么花园各角处的正方形观光休息亭的边长为多少米?解:设正方形观光休息亭的边长为x米,依题意得(100-2x)(50-2x)=3600,整理得x2-75x+350=0,解得x1=5,x2=70,∵x2=70>50,不合题意,舍去,∴x=5,即矩形花园各角处的正方形观光休息亭的边长为5米13.小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.解:(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(10-x) cm,由题意得x2+(10-x)2=58,解得x1=3,x2=7,4×3=12,4×7=28,所以小林应把绳子剪成12 cm和28 cm的两段(2)假设能围成.由(1)得,x2+(10-x)2=48,化简得x2-10x+26=0,因为Δ=b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根,所以小峰的说法是对的14.如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB 边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?(3)在问题(1)中,△PBQ的面积能否等于7 cm2?说明理由.解:(1)设x秒后,△PBQ的面积等于4 cm2,根据题意得x(5-x)=4,解得x1=1,x2=4.∵当x=4时,2x=8>7,不合题意,舍去,∴x=1(2)设x秒后,PQ的长度等于5 cm,根据题意得(5-x)2+(2x)2=25,解得x1=0(舍去),x2=2,∴x=2(3)设x秒后,△PBQ的面积等于7 cm2,根据题意得x(5-x)=7,此方程无解,所以不能。

九年级数学上册第2章《第1课时_利用一元二次方程解决几何问题》基础训练(北师大版)

九年级数学上册第2章《第1课时_利用一元二次方程解决几何问题》基础训练(北师大版)

《第1课时 利用一元二次方程解决几何问题》类型1 利用一元二次方程解决几何图形问题1.绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x 米,根据题意,可列方程为( )A .(10)900x x -=B .(10)900x x +=C .10(10)900x +=D .[]2(10)900x x ++=2.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x 的方程为( )A .(5)6x x +=B .(5)6x x -=C .(10)6x x -=D .(102)6x x -=3.已知直角三角形两条直角边的长度之和为7,面积为6,则斜边长为( )A .B .5C .25D .74.如图,某小区内有一块长、宽比为2:1的矩形空地,计划在该空地上修筑两条宽均为2 m 的互相垂直的小路,余下的四块小矩形空地铺成草坪,如果四块草坪的面积之和为312m 2,请求出原来大矩形空地的长和宽.(1)请找出上述问题中的等量关系____________________________________;(2)若设大矩形空地的宽为x m ,可列出的方程为__________________________,方程的解为__________________________,原来大矩形空地的长和宽分别为__________________________.5.如图,某工厂师傅要在一个面积为15m 2的矩形钢板上裁剪下两个相邻的正方形钢板当工作台的桌面,且要使大正方形的边长比小正方形的边长大1 m ,则裁剪后剩下的阴影部分的面积为_________ m2.6.已知如图所示的图形的面积为24,根据图中条件,求出x的值.7.(教材P57复习题T8变式)如图,有一块长方形铁皮,长40 cm,宽30 cm,在它的四角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为600 cm2,那么铁皮各角应切去多大的正方形?8.如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)当a为10时,花圃的面积为_________平方米;(2)通道的面积与花圃的面积之比能否恰好等于3:5?如果能,试求出此时通道的宽.类型2利用一元二次方程解决动态几何问题9.(教材P52例1变式)如图,某海关缉私艇在点O处发现在正北方向相距45海里的点A处有一艘可疑船只,测得它正以60海里/时的速度向正东方向航行,缉私艇随即调整方向,以75海里/时的速度准备在点B处将其拦截,试问需要多长时间?10.如图,某市区南北走向的北京路与东西走向的喀什路相交于点O处.甲沿着喀什路以4 m/s的速度由西向东走,乙沿着北京路以3 m/s的速度由南向北走,当乙走到点O以北50 m处时,甲恰好到点O处,若两人继续向前行走,求两人相距85m 时各自的位置11.(汝州期中)如图,一根木棍OE垂直平分柱子AB,AB=200 cm,OE=260 cm,一只小猫C由柱子底端A点以2 cm/s的速度向顶端B点爬行,同时,另一只小猫D 由O点以3 cm/s的速度沿木棍OE爬行.问:是否存在这样的时刻,使两只小猫与O点组成的三角形面积是1800 cm2?12.(教材P53习题T2变式)如图,在△ABC中,∠C=90°,AC=16cm,BC=8cm,一动点P从点C出发沿着CB方向以2cm/s的速度运动,另一动点Q从点A出发沿着AC方向以4cm/s的速度运动,P,Q两点同时出发,运动时间为t s.(1)若△PCQ的面积是△ABC的面积的14,求t的值;(2)△PCQ的面积能否与四边形ABPQ的面积相等?若能,求出t的值;若不能,说明理由.参考答案1.B2.B3.B4.解:(1)原矩形面积-小路面积=草坪面积(2)(2)(22)312x x --= 1411()x x ==-或舍去 28 m ,14 m .5. 26.解:由题意,得211=24x +-().整理,得21=25x +().解得x =4或x =﹣6(不合题意,舍去).∴x 的值是4.7.解:设切去的小正方形的边长为x cm .依题意,得402x -()302=x -()600.解得12=530x x =,.当x =30时,3020x -<,∴x =30不合题意,应舍去.∴x =5. 答:铁皮各角应切去边长为5cm 的正方形.8.解:(1)800 (2)根据题意,得5(402)(602)8a a --=⨯60⨯40.解得125,45a a ==(舍去).答:通道的面积与花圃的面积之比能等于3:5,此时通道的宽为5米.9.解:设需要x 小时,根据题意,得222(60)45(75)x x +=,解得121,1x x ==-(舍去)答:需要1小时.10.解:设两人继续向前行走x s 时相距85 m .根据题意,得222(503)(4)85x x ++=.解得129,21x x ==-(舍去).则50377,436x x +==.答:两人相距85 m 时,甲走到点O 以东36 m 处,乙走到点O 以北77m 处.11.解:有两种情况:①当小猫C 在AO 上运动时,设x s 后两只小猫与O 点组成的三角形面积为1800 cm 2,由题意,得12x x ⨯3⨯(100-2)=1800,整理,得2506000x x -+=,解得12=20,30x x =.经检验,12=20,30x x =均符合题意;②当小猫C 在OB 上运动时,设y s 后两只小猫与O 点组成的三角形面积为1800 cm 2,由题意,得11002y y ⨯3⨯(2-)=1800,整理,得2506000y y --=,解得12=60,10()y y =-舍去.经检验,y =60符合题意.答:20 s 或30 s 或60 s 后,两只小猫与O 点组成的三角形面积是1800 cm 2.12.解:(1)t 的值为2. (2)△PCQ 的面积不能与四边形ABPQ 的面积相等.理由如下:当△PCQ 的面积与四边形ABPQ 的面积相等时,则1=2PCQ ABC S S △△,即11(164)6422t t ⨯2-=⨯,整理,得2480t t -+=.∵Δ=2(4)--4⨯1-8=-160<, ∴此方程没有实数根.∴△PCQ 的面积不能与四边形ABPQ 的面积相等.。

大九年级上《应用一元二次方程》同步练习有答案第1课时几何问题

大九年级上《应用一元二次方程》同步练习有答案第1课时几何问题

6 应用一元二次方程第1课时几何问题1.若两个连续奇数的积是255,则这两个奇数的和是( )A.31 B.32 C.±31 D.±322.已知如图1所示的图形的面积为24,根据图中的条件,可列出方程:______________.图13.如图2,在△ABC中,∠C=90°,AB=10 cm,AC=8 cm,点P,Q同时由A,C两点出发,分别沿AC,CB方向向点C,B移动,它们的速度都是2 cm/s.(1)经过t s后,线段CQ的长为__________ cm,线段PC的长为__________cm.(2)经过几秒,P,Q两点相距210 cm?图24.中国古代数学家杨辉的《田亩比类乘除捷法》中有这样一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?经过计算,你的结论是:长比宽多( )A.12步 B.24步 C.36步 D.48步5.图3是由三个边长分别为6,9和x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是( )图3A.1或9 B.3或5 C.4或6 D.3或66.如图4所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD,则该矩形草坪BC边的长为________.7.如图5,有一矩形地块,该地块长为x米,宽为120米,建筑商将它分成三部分:甲、乙、丙,甲和乙为正方形.现计划将甲建设成住宅区,将乙建设成商场,将丙开辟成公司.若已知丙地的面积为3200平方米,你能算出x的值吗?图58.如图6,△ABC 中,AB =AC =10 cm ,BC =16 cm ,现点P 从点B 出发,沿BC 向点C 运动,运动速度为14 cm/s.问点P 经过几秒后,线段AP 把△ABC 分割而得的三角形中至少有一个是直角三角形?图69.如图7,在△ABC 中,∠B =90°,AB =6 cm ,BC =3 cm ,点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2 cm/s 的速度移动,如果点P ,Q 分别从点A ,B 同时出发.(1)几秒钟后,P,Q两点间的距离为4 2 cm?(2)几秒钟后,△BPQ的面积等于△ABC面积的一半?图710.如图8,已知矩形ABCD,AB=16 cm,BC=6 cm,动点P,Q分别以3 cm/s,2 cm/s 的速度从点A,C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P,Q分别从点A,C同时出发,问经过2 s时,P,Q两点之间的距离是多少厘米?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P,Q分别从点A,C同时出发,问经过多长时间,P,Q两点之间的距离是10 cm?(3)若点P沿着AB→BC→CD移动,点P,Q分别从点A,C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探究经过多长时间后,△PBQ的面积为12 cm2?图811.如图10,用同样规格的黑、白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)设铺设地面所用瓷砖的总块数为y,写出y与n(n表示第n个图形)之间的函数表达式;(2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;(3)若黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中共需花多少元钱购买瓷砖?(4)是否存在黑瓷砖与白瓷砖块数相等的情形?通过计算说明理由.图101.D2.本题答案不唯一,如(x+1)2=253.解:(1)线段CQ的长为2t cm,PC=AC-AP=(8-2t)cm,故答案为2t,(8-2t).(2)∵∠C=90°,∴CQ2+PC2=PQ2(勾股定理),∴(2t)2+(8-2t)2=(210)2,∴4t 2+64-32t +4t 2=40, 化简,得t 2-4t +3=0,解得t 1=1,t 2=3.经检验,t 1,t 2均符合题意. 答:经过1 s 或3 s ,P ,Q 两点相距210 cm . 4.A 5.D 6.12米7.解:根据题意,得(x -120)[120-(x -120)]=3200, 即x 2-360x +32000=0,解得x 1=200,x 2=160. 即x 的值为200或160.8.解:设点P 经过t s 后,线段AP 把△ABC 分割而得的三角形中至少有一个是直角三角形.此时BP =14t cm ,PC =(16-14t )cm.(1)当∠APC =90°时,AP ⊥BC .(如图①)∵AB =AC ,AP ⊥BC ,∴BP =CP =12BC =8 cm ,∴14t =8,∴t =32;(2)当∠PAC =90°时,过点A 作AD ⊥BC 于点D .(如图②)∵AB =AC ,AD ⊥BC ,∴BD =CD =12BC =8 cm ,∴PD =BD -BP =(8-14t )cm.在Rt △ADC 中,AD 2=AC 2-CD 2,∴AD =6 cm. 在Rt △PAC 中,AP 2=PC 2-AC 2, 在Rt △ADP 中,AP 2=AD 2+PD 2,∴PC 2-AC 2=AD 2+PD 2,∴(16-14t )2-100=36+(8-14t )2,解得t =14;(3)当∠PAB =90°时,过点A 作AE ⊥BC 于点E .(如图③)∵AB =AC ,AE ⊥BC , ∴BE =CE =12BC =8 cm ,∴PE =BP -BE =(14t -8)cm.在Rt △AEC 中,AE 2=AC 2-CE 2,∴AE =6 cm. 在Rt △PAB 中,AP 2=BP 2-AB 2. 在Rt △AEP 中,AP 2=AE 2+PE 2, ∴BP 2-AB 2=AE 2+PE 2,∴(14t )2-100=36+(14t -8)2,解得t =50. 综上,点P 经过14 s 或32 s 或50 s 后,线段AP 把△ABC 分割而得的三角形中至少有一个是直角三角形.9.解:(1)设x s 后,P ,Q 两点间的距离为4 2 cm ,则AP =x cm ,BP =(6-x )cm ,BQ =2x cm.在Rt △PBQ 中,根据勾股定理,得 (6-x )2+(2x )2=(4 2)2, 解得x 1=0.4,x 2=2(舍去).∴0.4 s 后,P ,Q 两点间的距离=4 2 cm. (2)设y s 后,△BPQ 的面积等于△ABC 面积的一半, 则有12(6-y )×2y =12×3×6×12,解得y 1=6-3 22,y 2=6+3 22(舍去).∴6-3 22s 后,△BPQ 的面积等于△ABC 面积的一半. 10.解:(1)过点P 作PE ⊥CD 于点E .根据题意, 得EQ =16-2×3-2×2=6(cm),PE =BC =6 cm. 在Rt △PEQ 中,根据勾股定理,得PE 2+EQ 2=PQ 2, 即36+36=PQ 2,∴PQ =6 2 cm ,∴经过2 s 时,P ,Q 两点之间的距离是6 2 cm. (2)设经过x s 后,P ,Q 两点之间的距离是10 cm. 根据题意,得(16-2x -3x )2+62=102,即(16-5x )2=64, ∴16-5x =±8,解得x 1=85,x 2=245,经检验均符合题意,∴经过85 s 或245 s ,P ,Q 两点之间的距离是10 cm.(3)连接BQ .设经过y s 后,△PBQ 的面积为12 cm 2. ①当0≤y ≤163时,PB =(16-3y )cm ,∴12PB ·BC =12,即12×(16-3y )×6=12,解得y =4; ②当163<y ≤223时,BP =3y -AB =(3y -16)cm ,CQ =2y cm ,∴12BP ·CQ =12(3y -16)×2y =12, 解得y 1=6,y 2=-23(舍去);③当223<y ≤8时,QP =CQ -CP =(22-y )cm ,∴12QP ·BC =12(22-y )×6=12,解得y =18(舍去).综上所述,经过4 s 或6 s ,△PBQ 的面积为12 cm 2. 11.解:(1)观察图形可得y =(n +3)(n +2),即y =n 2+5n +6, ∴y 与n (n 表示第n 个图形)之间的函数表达式为y =n 2+5n +6. (2)由题意,得n 2+5n +6=506,解得n =20(负值已舍去), ∴n =20.(3)白瓷砖的块数是n (n +1)=20×(20+1)=420(块), 黑瓷砖的块数是506-420=86(块), 共需86×4+420×3=1604(元),∴在问题(2)中共需花1604元钱购买瓷砖. (4)不存在黑瓷砖与白瓷砖块数相等的情形. 理由:令n (n +1)=n 2+5n +6-n (n +1), 解得n =3±332.∵n 不为整数,∴不存在黑瓷砖与白瓷砖块数相等的情形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18m,宽9m,第二块木板长
27m;
B
.第一块木板长
12m,宽6m,第二块木板长
10m,宽
18m;
C
.第一块木板长
9m,宽4.5m,第二块木板长
7 m,宽
13.5m;
D.以上都不对
四周边衬的宽度(精确到0.1cm)?
老师点评:依据题意知:中央矩形的长宽之比等于封面
的长宽之比=9:7,?由此可以判定:上下边衬宽与左右边 衬宽之比为9:7,设上、下边衬的宽均为9xcm,?则左、右
边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18X)cm,宽为(21-14x)cm.
因为四周的彩色边衬所点面积是封面面积的-,则中央
6.圆的面积公式是什么?
(学生口答,老师点评)
二、探索新知
现在,我们根据刚才所复习的面积公式来建立一些数学 模型,解决一些实际问题.
例1.某林场计划修一条长750m断面为等腰梯形的渠 道,断面面积为1.6 m2,?上口宽比渠深多2m渠底比渠深 多0.4m.
(1)渠道的上口宽与渠底宽各是多少?
(2)如果计划每天挖土48m3,需要多少天才能把这条 渠道挖完?
5
•••上口宽为2.8m,渠底为1.2m.
(2)1.6750=25天
48
答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25
天才能挖完渠道.
学生活动:例2.如图,要设计一本书的封面,封面长27cm,宽21cm,?正中央是一个与整个封面长宽比例相同的 矩形,?如果要使四周的彩色边衬所占面积是封面面积的四 分之一,上、下边衬等宽,左、右边衬等宽,?应如何设计
三、巩固练习
有一张长方形的桌子,长6尺,宽3尺,有一块台布的 面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长 度相同,求台布的长和宽各是多少?(精确到0.1尺)
四、应用拓展
例3.如图(a)、(b)所示,在厶ABC中/B=90°,AB=6cm BC=8cm点P从点A?开始沿AB边向点B以1cm/s的速度运 动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.
2.?难点与关键:根据面积与面积之间的等量关系建立 一元二次方程的数学模型.
教具、学具准备
小黑板
教学过程
一、复习引入
(口述)1.直角三角形的面积公式是什么??一般三角 形的面积公式是什么呢?
2.正方形的面积公式是什么呢?长方形的面积公式又
是什么?
3.梯形的面积公式是什么?
4.菱形的面积ቤተ መጻሕፍቲ ባይዱ式是什么?
5.平行四边形的面积公式是什么?
贝-(6-x)•2x=8
2
整理,得:x2-6x+8=0
解得:xi=2,X2=4
•••经过2秒,点P到离A点1X2=2cm处,点Q离B点2X2=4cm处,经过4秒,点P到离A点1X4=4cm处,点Q离B点2X4=8cm处,所以它们都符合要求.
(2)设y秒后点P移到BC上,且有CP=( 14-y)cm,点Q在CA上移动,且使CQ=(2y-8)cm,过点Q作DQL CB
2.选用作业设计:
一、选择题
1.直角三角形两条直角边的和为7,面积为6,则斜边为().
A./37B.5C.38D.7
2.有两块木板,第一块长是宽的2倍,第二块的长比第一 块的长少2m宽是第一块宽的3倍,已知第二块木板的面积
比第一块大108m?,这两块木板的长和宽分别是(
).
16m,宽
A
.第一块木板长
分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,?渠底为x+0.4,那么,根据梯形的面积公 式便可建模.
解:(1)设渠深为xm
则渠底为(x+0.4)m,上口宽为(x+2)m
依题意,得:丄(x+2+x+0.4)x=1.6
2
整理,得:5x2+6x-8=0
解得:Xi=- =0. 8m,X2=-2(舍)
实际问题与一元二次方程练习题
教学内容
根据面积与面积之间的关系建立一元二次方程的数学 模型并解决这类问题.
教学目标 掌握面积法建立一元二次方程的数学模型并运用它解 决实际问题.
利用提问的方法复习几种特殊图形的面积公式来引入 新课,解决新课中的问题.
重难点关键
1.?重点:根据面积与面积之间的等量关系建立一元二 元方程的数学模型并运用它解决实际问题.
垂足为D则有DQC2
AB AC
••• AB=6 BC=8
•••由勾股定理,得:AC=6^_82=10
DQ£(2y8) 6(y4
105
贝y:1(14-y) •6^勺=12.6
25
整理,得:y2-18y+77=0
解得:y1=7,y2=11
即经过7秒,点P在BC上距C点7cm处(CP=14-y=7), 点Q在CA上距C点6cm处(CQ=?2y-8=6),使△PCD的面积 为12.6c m2.
(1、如果P、Q分别从A、B同时出发,经过几秒钟,
使SaPBQ=8cm2.
(2、如果P、Q分别从A、B同时出发,并且P到B后 又继续在BC边上前进,Q到C?后又继续在CA边上前进,经 过几秒钟,使△PCQ的面积等于12.6cm2.(友情提示:过点Q?乍DQL CB,垂足为D,贝竺CQ)
AB AC
分析:(1)设经过x秒钟,使S"BQ=8cm2,那么AP=x, PB=6-x,QB=2x由面积公式便可得到一元二次方程的数学 模型.
经过11秒,点P在BC上距C点3cm处,点Q在CA上 距C点14cm>10,
•••点Q已超过CA的范围,即此解不存在.
•••本小题只有一解y1=7.
五、归纳小结
本节课应掌握:
利用已学的特殊图形的面积公式建立一元二次方程的 数学模型并运用它解决实际问题.
六、布置作业
1.教材P53综合运用5、6拓广探索全部.
4
矩形的面积是封面面积的.
所以(27-18x) (21-14x)=§X27X21
4
整理,得:16x2-48x+9=0
解方程,得:x=」^,
4
x1^2.8cm x2〜0.2
所以:9xi=25.2cm(舍去),9x2=1.8cm,7x2=1.4cm
因此,上下边衬的宽均为1.8cm,左、右边衬的宽均为
1.4cm.
(2)设经过y秒钟,这里的y>6使厶PCQ的面积等于12.6 cm2.因为AB=6, BC=8由勾股定理得:AC=1Q又由于PA=y,CP=(14-y),CQ=( 2y-8),又由友情提示,便可得到DQ那么根据三角形的面积公式即可建模.
解:(1)设x秒,点P在AB上,点Q在BC上,且使△PBQ的面积为8cm2.
相关文档
最新文档