[精品]2019学年高一数学下学期期末结业考试试题 文(实验班,含解析) 人教新目标版

合集下载

2019级高一下学期数学期末考试试卷答案

2019级高一下学期数学期末考试试卷答案

a1q 2
1 2

3 2
,解得 q
1 2
, a1
2.
综上所述:
a1
1 2

a1
2
.
16.【答案】5.设 m (2x y)2 , n (x 2 y)2 , 则 4 9 1 ,且 m n 5x2 5 y2 , mn

x2
y2
m
n
m
n
(
4
9)
13 (4n m
9m ) n
3.【答案】D.利用赋值法:令 a 1, b 0 排除 A,B,C,选 D.
合 肥六中卫星 联 校 专用A
4.【答案】C .
m 1
n 3
,
m n
1. 3
5.【答案】B.根据几何概型概率计算公式,即可求出结果.
6.【答案】B.根据茎叶图中数据的分布可得, A 班学生的分数多集中在 70,80 之间, B 班
2
BC
1
BA
AB , AB
,所以选项
CE 0 ,所以选项
B 错误;
A
错误;
33
以 E 为原点,EA,EC 分别为 x 轴,y 轴正方向建立平面直角坐标系,
如图所示, E(0, 0), A(1, 0), B(1, 0),C(0, 3), D(1 , 2 3 ) ,
33
设 O(0, y), y (0,
综上所述,当 a 3时,不等式解集为 R ; 当 a 3时,不等式的解集为 (,3] [a, ) ; 当 a 3 时,不等式的解集为 (, a] [3, ) .…………………………………………12 分
3),
BO
(1,
y),
DO

【优质文档】2019年高一下学期期末数学试卷(解析版)

【优质文档】2019年高一下学期期末数学试卷(解析版)

,∵
,∴
,∴

故选: A.【点睛】本题主要考查了同角三角函数基本关系式,正弦定理,三角形内角和定理,两角和的余弦函数公式
所以 A1B NB1 ,故②正确;③:由②知 A1B 面 AMC1 ,又因为 A1B 面 CBA1 ,所以面 AMC 1 面 CBA1 ,故③ 正确综上所述,正确结论的个数为 3,故答案选 D 考点:点线面的位置关系.
6.已知复数
,则
A.
B.
C.
D.
【答案】 D 【解析】【分析】先计算出 ,然后对 进行化简,得到答案
ti t 0
{
{
2i
a 2t
a2
D. 2
10.复数 z 3 2i ( i 为虚数单位)的共轭复数 z 为( 1i
)A.
1
5 i B.
1
5
1
i C.
5
1
i D.
5 i
22
22
22
22
【答案】 D【解析】 试题分析: z 3 2i 1i
3 2i 1 i 1i 1i
1 5i ,所以 z 的共轭复数为 z
1
等腰直角 ABC
【 答 案 】 B 【 解 析 】 因 为 AP AB AP AC , 所以 AP ( AB AC ) 0, AP CB 0, AP CB .
又因为 BP PC , 所以 P 为 BC的中点,所以 AP是线段 CB的垂直平分线,所以
19.在
中, 、 、 的对边分别为 、 、 ,若

ABC 的形状为等腰三角形 .
,所以

结合向量所成角的范围,可以求得
,故选 D. 点睛:该题考查的是有关向量所成角的问题,在解题的过程

[精品]2019学年高一数学下学期期末结业考试试题 文(实验班,含解析) 人教新目标版

[精品]2019学年高一数学下学期期末结业考试试题 文(实验班,含解析) 人教新目标版

2019年上期高一年级文科实验班结业考试试卷数学(试题卷)第I卷选择题(每题5分,共60分)一、本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的1. 已知集合,,若,则实数的取值范围()A. B. C. D.【答案】C【解析】,解得,又,故实数的取值范围故选2. 下列函数中,既是奇函数又在区间上为增函数的是( )A. B. C. D.【答案】A【解析】A,D为奇函数,B非奇非偶,C为偶函数,排除B,C;易知在上单调递增,在上单调递减,不满足题意,A. 在区间上为增函数.故选A.3. 已知,且,则()A. B. C. D.【答案】B【解析】因为cos=-,所以-sinα=-,sinα=,又α∈,,∴=.4. 已知向量,若,则与夹角为()A. B. C. D.【答案】A【解析】【详解】分析:先判断出方向相反,求出的夹角,与的夹角为,从而可得结果.详解:由,,因为,,所以方向相反,设的夹角为,则与夹角为,由可得,,所以与夹角为,故选A.点睛:本题主要考查平行向量的性质,平面向量夹角余弦公式的应用,属于中档题. 本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).5. 若实数,满足约束条件则的取值范围是()A. B. C. D.【答案】C【解析】画出表示的可行域,由,得,由,得,平移直线,当直线经过时分别取得最小值,最大值,故的取值范围是,故选C.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6. 已知两个不同的平面和两个不重合的直线,有下列四个命题:①若∥,,则;②若则∥;③若∥,,则;④若∥则∥.其中正确命题的个数是()A. 0B. 1C. 2D. 3【答案】D【解析】试题分析:由线面垂直的第二判定定理我们易得①正确;由面面平行的判定方法,我们易得到②为真命题;∵,∴,又由,则,即③也为真命题.若,,则与可能平行也可相交,也可能异面,故④为假命题,故选D.考点:平面与平面之间的位置关系;空间中直线与直线的位置关系;直线与平面的位置关系.7. 已知直线与直线的交点位于第一象限,则实数的取值范围是()A. B. 或C. D.【答案】A【解析】【详解】分析:联立,可解得交点坐标,利用即可得结果.详解:联立,解得,直线与直线的交点位于第一象限,,解得,故选A.点睛:本题考查了直线的交点,分式不等式的解法,意在考查综合利用所学知识解决问题的能力,属于中档题.8. 已知等差数列、的前项和分别为、,若,则的值是()A. B. C. D.【答案】A【解析】设等差数列、的公差分别为和∵∴,即∴,即①∴,即②由①②解得,∴故选A9. 如图,网格纸上正方形小格的边长为1(表示),图中粗线画出的是某零件的三视图,该零件由一个底面半径为,高为的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A. B. C. D.【答案】C【解析】因为加工前的零件半径为3,高为6,所以体积,又因为加工后的零件,左半部为小圆柱,半径为2,高4,右半部为大圆柱,半径为3,高为2,所以体积,所以削掉部分的体积与原体积之比为,故选C.考点:本小题主要考查立体几何中的三视图,考查同学们的空间想象能力.视频10. 已知直线与圆相交于,两点,若,则实数的值为()A. 或B. 或C. 9或-3D. 8或-2【答案】A【解析】由题意可得,圆心(0,3)到直线的距离为,所以,选A。

高中高一数学下册期末考试试卷答案解析

高中高一数学下册期末考试试卷答案解析

高中2019年高一数学下册期末考试试卷答案解析本文导航 1、首页2、高一数学下册期末考试试卷-2高中2019年高一数学下册期末考试试卷答案解析【】高中学生在学习中或多或少有一些困惑,的编辑为大家总结了高中2019年高一数学下册期末考试试卷答案解析,各位考生可以参考。

二.填空题:13. 3 14. y=2x或x+y-3=0 15. 16. ①②③三.解答题:17.所求直线方程为x+y+3=0和17x+y-29=0.18. 解析: (1)将2sin A=3cos A两边平方,得2sin2A=3cos A,即(2cos A-1)(cos A+2)=0.解得cos A=120,∵0a2-c2=b2-mbc可以变形得b2+c2-a22bc=m2.即cos A=m2=12,m=1.(2)∵cos A=b2+c2-a22bc=12,bc=b2+c2-a22bc-a2,即bca2. 故S△ABC=bc2sin Aa2232=334.△ ABC面积的最大值为343.19.解:由题意知(1)由由知,从第三年开始盈利.(2)方案①:年平均纯利润当且仅当n=6时等号成立.故方案①共获利616+48=144(万元),此时n=6.方案②:当n=10,故方案②共获利128 +10=138(万元)比较两种方案,选择第①种方案更合算.本文导航 1、首页2、高一数学下册期末考试试卷-220.解:如图建立平面直角坐标系,由题意可设A、B两人速度分别为3v千米/小时,v千米/小时,再设出发x0小时,在点P改变方向,又经过y0小时,在点Q处与B相遇.则P、Q两点坐标为(3vx0, 0),(0,vx0+vy0).由|OP|2+|OQ|2=|PQ|2知,(3vx0)2+(vx0+vy0)2=(3vy0)2,即 .将①代入又已知PQ与圆O相切,直线PQ在y轴上的截距就是两个相遇的位置.设直线相切,则有答:A、B相遇点在离村中心正北千米处22. .解(1)由D2+E2-4F=4+16-4m=20-4m0,得m5。

2019学年高一数学下学期期末考试试题(含解析) (2)

2019学年高一数学下学期期末考试试题(含解析) (2)

2019学年高一数学下学期期末考试试题(含解析)考试时间120分钟,满分150分一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填在括号里)1.已知:1231p x -<-<,:(3)0q x x -<,则p 是q 的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】A【解析】解:∵1230x -<-<,可得12x <<,设集合A 为{}|12x x <<, 又∵(3)0x x -<,可得03x <<,设集合B 为{}|03x x <<, 则A B Ü,可得p 是q 的充分不必要条件.2.下列函数中,在区间(0,)+∞上为增函数的是().A .ln(2)y x =+B .y =C .12xy =D .1y x x=+【答案】A【解析】解:A 项、ln(2)y x =+在(2,)-+∞上为增函数,符合题目要求. 故选A .3.将函数sin(2)y x ϕ=+的图像沿x 轴向左平移π8个单位,得到一个偶函数的图像,则ϕ的一个可能取值为().A .3π4B .π3C .π4D .π6【答案】C【解析】解:∵sin(2)y x ϕ=+左移π8个单位,函数变为ππsin 2sin 284y x x ϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,∵πsin 24y x ϕ⎛⎫=++ ⎪⎝⎭是偶函数,取x 为x -,则ππsin 2sin 244x x ϕϕ⎛⎫⎛⎫++=-++ ⎪ ⎪⎝⎭⎝⎭,∴ππ22π()44x x k k ϕϕ++-++=∈Z , ∴π2π2k ϕ=-,取1k =, 得π4ϕ=,即ϕ一个可能取值为π4. 故选C .4.在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含4x 的项的系数是().A .10-B .5-C .10D .5【答案】C【解析】解:521x x ⎛⎫- ⎪⎝⎭的展开项215535155C ()()(1)C k k k k k k k T x x x ----+=-=-,令354k -=,可得3k =, ∴553355(1)C (1)C 10k k---=-=.故选C .5.将4名学生分到两个班级,每班至少1人,不同的方法有()种.A .25B .16C .14D .12【答案】C【解析】解:4名学生中有2名学生分在一个班的种数为24C 6=,有3名学生分在一个班有3242C A 8⋅=种结果,∴6814+=种,共有14种结果. 故选C .6.右图是求样本1x ,2x ,,10x 平均数x 的程序框图,图中空白框中应填入的内容的().A .n S S x =+B .10nx S S =+ C .S S n =+D .xS S n=+【答案】A【解析】解:该程序的作用是求样本1x ,210x x ,平均数x ,∵“输出x ”的前一步是“Sx n=”, ∴循环体的功能是累加个样本的值,应为n S S x =+. 故选A .7.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是().A .221B .463C .121D .263【答案】B【解析】解:将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,共有分法:123777C C C 63++=种,其中满足两组中各数之和相等的分法如下4种, ①1,2,4,7;3,5,6. ②1,3,4,6;2,5,7. ③1,6,7;2,3,4,5. ④1,2,5,6;3,4,7. ∴两组中各数之和相等的概率463P =. 故选B .8.已知集合{}230123|222A x x a a a a =+⨯+⨯+⨯,其中{}0,1(0,1,2,3)k a k ∈=,且30a ≠,则A 中所有元素之和是().A .120B .112C .92D .84【答案】C【解析】解:根据集合A 的形式,可以把0a ,1a ,2a ,3a 看做四位二进制数,四位二进制共可以表示0至15, ∵30a ≠,∴可表示8至15的数字,由等差数列求和可得891592++=. 故选C .二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)9.在ABC △中,若2a =,cos A ,1cos 4B =-,b =__________.【解析】解:∵cos A ,sin A =,由正弦定理sin sina bA B=,∴sin2sina BbA==.10.在等比数列{}n a中,若2420a a+=,4660a a+=,则b=__________.【答案】【解析】解:设等比数列{}n a中公比为q,∵242462420(=60a aa a q a a+=⎧⎪⎨+=+⎪⎩),∴23q=,∴q=11.已知a,b均为单位向量,它们的夹角为60︒,那么||a b+=__________.【解析】解:∵222||()||||2cos,a b a b a b a b a b+=+=++⋅⋅<>==12.设函数2,(),x x af xx x a<⎧=⎨⎩≥,对任意实数b,关于x的方程()0f x b-=总有实数根,则a的取值范围是__________.【答案】[0,1]【解析】解:∵对任意实数b,关于x的方程()0f x b-=总有实数根,即对任意实数b函数()f x的图像与直线y b=总有交点,奇函数()f x的值域为R,在同一坐标系中画出y x=与2y x=的图像,由图可得,当[0,1]a ∈时,函数()f x 的值域为R , ∴[0,1]a ∈.13.若422345123345(1)x mx a x a x a x a x a x a x -=+++++,其中26a =-,则实数m =__________. 12345a a a a a ++++=__________.【答案】32;116【解析】解:由题意4(1)mx -的展开式的通项为14()C r r rr T m x +=-,令1r =得24a m =-, ∵26a =-,∴64m -=-,解得32m =, 在展开式中令1x =得412345312a a a a a ⎛⎫-=++++ ⎪⎝⎭,即12345116a a a a a =++++.14.设M 为不等式组40400x y x y y +-⎧⎪-+⎨⎪⎩≤≥≥所表示的平面区域,N 为不等式组04t x t y t -⎧⎨-⎩≤≤≤≤所表示的平面区域,其中[0,4]t ∈,在M 内随机取一点A ,记点A 在N 内的概率为P .(1)若1t =,则P =__________. (2)P 的最大值是__________. 【答案】38;12【解析】解:由题意可得,当1t =时,如图,233448P =⨯=,如图,当2(4)t t -取得最大值时,P 最大,最大值为12.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分13分)设ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,且4cos 5B =,2b =. (1)若53a =,求角A 的度数.(2)求ABC △面积的最大值. 【答案】(1)30︒. (2)3.【解析】(1)∵4cos 5B =,3sin 5B ,由正弦定理sin sin a bA B=, ∴5131sin sin 3252a A Bb ==⨯⨯=,∴30A =︒.(2)∵2224cos 25a c b B ac +-==, ∴22845a c ac +-=,∵222a c ac +≥,∴8245ac ac -≤,∴10ac ≤,当且仅当a c = 1sin 32S ABC ac B =△≤,∴ABC △的面积的最大值为3.16.(本小题满分13分)已知函数2()(1)cos f x x x =.(1)求函数()f x 的定义域及其单调减区间. (2)求函数()f x 的值域.【答案】(1)定义域为π|π,2x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z ,单调递减区间为π2π,ππ63k k k ⎡⎤++∈⎢⎥⎣⎦Z .(2)13,22⎡⎤-⎢⎥⎣⎦.【解析】解:(1)∵2()(1)cos f x x x =+21cos x ⎛= ⎝2cos cos x x x =11cos2222x x =++ ππ1sin cos2cos sin2662x x =++π1sin 262x ⎛⎫=++ ⎪⎝⎭,∵ππ32π2π2π262k x k +++≤≤ π42π2π+2k π33k x +≤≤ π2πππ63k x k ++≤≤,即()f x 单调递减区间为π2π,ππ63k k k ⎡⎤++∈⎢⎥⎣⎦Z ,∵tan x 中ππ2x k ≠+,k ∈Z , ()f x 定义域为π|π,2x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z .(2)∵πsin 2[1,1]6x ⎛⎫+∈- ⎪⎝⎭,∴13(),22f x ⎡⎤∈-⎢⎥⎣⎦.17.(本小题满分14分)一名学生骑自行车上学,从他家到学校的途中有5个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.求:(1)这名学生在途中遇到2次红灯次数的概率. (2)这名学生在首次停车前经过了3个路口的概率. (3)这名学生至少遇到一次红灯的概率. 【答案】(1)80243.(2)827.(3)211243. 【解析】解:(1)设事件A 为在途中遇到2次红灯,251122280()=C 33333243P A ⨯⨯⨯⨯⨯=.(2)设首次停车前经过3个路口,为事件B , 说明前3个交通岗都是绿灯, 328()327P B ⎛⎫== ⎪⎝⎭.(3)设至少遇到一次红灯为事件C ,则其互斥事件为全遇到绿灯,设互斥事件为D , ∴()1()P C P D =- 5221113243⎛⎫=-= ⎪⎝⎭.18.(本小题满分13分)一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6. (1)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率. (2)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率. (3)若一次从袋中随机抽取3个球,求球的最大编号为4的概率. 【答案】(1)536.(2)29.(3)12. 【解析】解:(1)设先后两次从袋中取出球的编号为m ,n , 则两次取球的编号的一切可能结果(m,)n 有6636⨯=种,其中和为6的结果有(1,5),(5,1),(2,4),(4,2),(3,3),共5种, 则所求概率为536P =.(2)每次从袋中随机抽取2个球,抽到编号为6的球的概率12C 1C 3b b P ==, ∴3次抽取中,恰有2次抽到6号球的概率为2223122C (1)3339P P ⎛⎫⎛⎫-=⨯= ⎪ ⎪⎝⎭⎝⎭.(3)若3个球中最大编号为4,说明一定抽到4,剩下两个在1,2,3中任选2个,所求概率2336C 1C 2P ==,19.(本小题满分14分)设m ∈R ,不等式2(31)2(1)0mx m x m -+++>的解集记为集合P . (1)若{}|12P x x =-<<,求m 的值. (2)当0m >时,求集合P .(3)若{}|32x x P -<<⊆,求m 的取值范围. 【答案】见解析.【解析】解:(3)依题意,当(3,2)x ∈-时,不等式2(31)2(1)0mx m x m -+++>恒成立, 当0m =时,原不等式化为20x -+>,即{}|2P x x =<,符合题意, 当0m >时,由(2)知01m <<时,符合题意, 当0m <时, ∵1112m m m+=+<, ∴12m P xx m ⎧+⎫=<<⎨⎬⎩⎭, 此时一定有13m m +-≤成立,解得104m -<≤, 综上,若{}|32x x P -<<⊆,1,14m ⎡⎤∈-⎢⎥⎣⎦.20.(本小题满分13分)已知每项均为正整数的数列1:A a ,2a ,3a ,4a ,,n a ,其中等于i 的项有k 个(1,2,3)i =,设12(1,2,3)j j b k k k j =+++=,12()(1,2,3)m g m b b b nm m =+++-=.(1)设数列:1A ,2,1,4,求(1)g ,(2)g ,(3)g ,(4)g ,(5)g . (2)若数列A 满足12100n a a a n +++-=,求函数()g m 的最小值.【答案】(1)(1)2g =-;(2)3g =-;(3)4g =-;(4)4g =-;(5)4g =-. (2)100-.【解析】解:(1)根据题目中定义,12k =,21k =,30k =,41k =,0(5,6,7)j k j ==,12b =,2213b =+=,32103b =++=,44b =,4(5,6,7)m b m ==, 1(1)412g b =-⨯=-, 12(2)423g b b =+-⨯=-, 123(3)b 434g b b =++-⨯=-,1234(4)444g b b b b =+++-⨯=-, 12345(5)454g b b b b b =++++-⨯=-.(2)∵1(1)()m g m g m b n ++-=-,由“数列A 含有n 项”及bj 的含义知1m b n +≤, ∴(1)()0g m g m +-≤, 即()(1)g m g m +≥, 又∵设整数{}12max ,n M a a a =,当m M ≥时,必有m b n =,∴(1)(2)(1)()(1)g g g M g M g M -==+≥≥≥, ∴()g m 最小值为(1)g M -, ∵1231(1)(1)M g M b b b b n M --=++++--1231()()()()M b n b n b n b n -=-+-+-++-2334()()()M M M k k k k k k k =----+----++-23[2(1)]M k k M k =-+++-12312(23)()M M k k k Mk k k k =-++++++++12()n M a a a b =-++++,∵123100n a a a a n ++++-=.(1)100g M -=-,∴()g m 最小值为100-.。

2019学年高一数学下学期期末考试试题(含解析)

2019学年高一数学下学期期末考试试题(含解析)

2019学年高一数学下学期期末考试试题(含解析)(考试时间为120分钟,满分为150分)一、选择题:本大题共25小题,每小题3分,共75分.1.在ABC △中,若222sin sin sin A B C +<,则ABC △的形状是().A .锐角三角形B .钝角三角形C .直角三角形D .无法确定【答案】B【解析】由正弦定理:222a b c +<, 故为2220a b c +-<,又∵222cos 2a b c c ab+-=,∴cos 0c <, 又∵0πc <<, ∴ππ2c <<, 故B .2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率依次为1P ,2P ,3P ,则(). A .123P P P =< B .231P P P =< C .132P P P =< D .123P P P ==【答案】D【解析】无论三种中哪一抽法都要求个体被抽概率相同. 选D .3.若非零实数a ,b ,c 满足a b c >>,则一定成立的不等式是().A .ac bc >B .ab ac >C .||||a c b c ->-D .111a b c<< 【答案】C【解析】A .a b >,c 不一定为正,错;B .同A ,a 不一定为正,错;C .||||a b a c b c >⇒->-正确;D .反例:1a =,1b =-,2c =-,1111a b=>=-错误, 选C .4.函数2()f x x =,定义数列{}n a 如下:1()n n a f a +=,*n ∈N ,若给定1a 的值,得到无穷数列{}n a 满足:对任意正整数n ,均有1n n a a +>,则1a 的取值范围是().A .(,1)(1,)-∞-+∞B .(,0)(1,)-∞+∞C .(1,)+∞D .(1,0)-【答案】A【解析】由1n n a a +>,2n n a a >,∴(1)0n n a a ->, ∴1n a >或0n a <, 而[1,0]n a ∈-时, 1n n a a +>不对n 恒成立,选A .5.已知不等式501x x -<+的解集为P ,若0x P ∈,则“0||1x <”的概率为(). A .14B .13C .12D .23【答案】B【解析】()(1)050101x s x x x x -+<⎧-<⇒⎨+≠+⎩, ∴{}|1,15P x x x =≠-<<, ||111x x <⇒-<<,∴1(1)15(1)3P --==--.选B .6.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为().A .120B .240C .280D .60【答案】A【解析】选从5双中取1双,15C , 丙从剩下4双任取两双,两双中各取1只, 24C 2224⨯⨯=,∴15C 24120N =⨯=. 选A .7.设0a >,0b >,则下列不等式中不恒成立的是().A .12a a+≥B .222(1)a b a b ++-≥CD .3322a b ab +≥【答案】D【解析】332222()()a b ab a b a ab b +=-+--,当a b <<有3322a b ab +<, 故D 项错误,其余恒成立. 选D .8.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为().A .02B .1429【答案】D【解析】从表第1行5列,6列数字开始由左到右依次选取两个数字中小于20的编号为: 08,02,14,29.∴第四个个体为29. 选D .9.执行如图所示的程序框图,输出的S 值为().A .1B .5C .14D .30【答案】C【解析】S K0 11 25 314 4⇒出14S =.选C .10.如图是1,2两组各7名同学体重(单位:千克)数据的茎叶图.设1,2两组数据的平均数依次为1x 和2x ,标准差依次为1s 和2s ,那么().(注:标准差s =x 为1x ,2x ,,n x 的平均数)3272010*******7632组1组A .12x x <,12s s <B .12x x <,12s s >C .12x x >,12s s >D .12x x >,12s s <【答案】A【解析】第1组7名同学体重为: 53,56,57,58,61,70,72,∴11(535672)61kg 7x =+++=, 222211[(5361)(7261)]43kg 7S =-++-=,第2组7名同学体重为:72,73,61,60,58,56,54,21(545673)62kg 7x =+++=,222221[(5462)(7362)]63kg 7S =-++-=,∴12x x <,2212S S <.故选A .11.如图给出的是计算111112468100+++++的一个程序框图,则判断框内应填入关于i 的不等式为().A .50i <B .50i >C .51i <D .51i >【答案】B 【解析】11124100+++进行了50次, 第50次结束时,102n =,=51i , 此时输出,因此50i >. 选B .12.在()n x y +的展开式中,若第七项系数最大,则n 的值可能等于().A .13,14B .14,15C .12,13D .11,12,13【答案】D【解析】()n x y +的展开式第七项系数为6C n ,且最大, 可知此为展开式中间项, 当展开式为奇数项时:62n=,12n =, 当有偶数项时162n +=,11n =, 或172n +=,13n =, 故11n =,12,13. 选D .13.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色,现从袋中随机抽取3个小球,设每个小球被抽到的机会均等,则抽到白球或黑球的概率为().A .25B .35C .23D .910【答案】D【解析】从袋中5球随机摸3个, 有35C 10=,黑白都没有只有1种, 则抽到白或黑概率为1911010-=. 选D .14.已知数列{}n a 的前n 项的乘积为2n n T c =-,其中c 为常数,*n ∈N ,若43a =,则c =().A .4B .3C .2D .1【答案】A【解析】44433232T ca T c-===-, ∴4c =. 选A .15.组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司仪、司机思想不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这思想工作,则不同的选派方案共有().A .36种B .12种C .18种D .48种【答案】A【解析】若小张或小赵入选,有选法:113223C C C 24⋅⋅=种,若小张,小赵都入选,有:2323A A 12⋅=种,可知共有241236+=种. 选A .16.若423401234(2x a a x a x a x a x =++++,则2202413()()a a a a a ++-+的值为().A .1B .1-C .0D .2【答案】A【解析】令1x =,4014(2a a a +++=+,令1x =-,401234(2a a a a a -+-+=-+, 而2202413()()a a a a a ++-+024*******()()a a a a a a a a a a =++++-+-+444(2(2(34)1=-+=-=.选A .17.有4个人同乘一列有10节车厢的火车,则至少有两人在同一车厢的概率为().A .63125B .62125C .63250D .31125【答案】B【解析】4个人乘10节车厢的火车, 有41010000=种方法,没有两人在一车厢中有410A 10987=⨯⨯⨯种, ∴至少有两人在同一车厢概率为:4104A 49606211010000125p =-==. 选B .18.某车站,每天均有3辆开往省城的分为上、中、下等级的客车,某人某天准备在该车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序,为了尽可能乘上上等车,他采取如下策略;先放过第一辆车,如果第二辆车比第一辆车则上第二辆,否则上第三辆车,那么他乘上上等车的概率为().A .14B .12C .23D .13【答案】B【解析】设三车等次为:下、中、上, 它们先后次序为6种: 下 中 上 ×→没乘上上等 下 上 中 √→乘上上等 中 下 上 √ 中 上 下 √ 上 下 中 × 上 中 下 × 情况数为3,12p =. 选B .19.在某地的奥运火炬传递活动中,有编号为1,2,3,,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为().A .151B .168C .1306D .1408【答案】B【解析】共有318C 17163=⨯⨯种事件数, 选出火炬手编号为13(1)n a a n =+-,11a =,由1、4、7、10、13、16,可得4种, 12a =,由2、5、8、11、14、17,可得4种,3n a =,由3、6、9、12、15、18,可得4种,4311716368p ⨯==⨯⨯.选B .20.已知数列1:A a ,2a ,,12(0,3)n n a a a a n <<<≤≥具有性质P :对任意i ,(1)j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项,给出下列三个结论:①数列0,2,4,6具有性质P . ②若数列A 具有性质P ,则10a =.③数列1a ,2a ,3123(0)a a a a <<≤具有性质P ,则1322a a a +=, 其中,正确结论的个数是(). A .3 B .2 C .1 D .0【答案】A【解析】①数列0,2,4,6,j i a a +,(13)j i a a j i j -≤≤≤, 两数中都是该数列中项, 432a a -=,①正确,若{}n a 有P 性质,去{}n a 中最大项n a ,n n a a +与n n a a -至少一个为{}n a 中一项,2n a 不是,又由120n a a a ≤≤≤,则0是,0n a =,②正确,③1a ,2a ,3a 有性质P ,1230a a a <<≤, 13a a +,31a a -,至少有一个为{}n a 中一项,1︒.13a a +是{}n a 项,133a a a +=,∴10a =,则23a a +,不是{}n a 中项, ∴322a a a -=⇒∴1322a a a +=.2︒.31a a -为{}n a 中一项,则311a a a -=或2a 或3a ,①若313a a a -=同1︒;②若312a a a -=,则32a a =与23a a <不符; ③311a a a -=,312a a =. 综上1322a a a +=,③正确, 选A .21.x ,y 满足约束条件20220220x y x y x y +-⎧⎪--⎨⎪-+⎩≤≤≥,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为().A .12或1- B .2或12C .2或1D .2或1-【答案】D 【解析】观察选项有12,1-,1,2. 当2a =时,y ax z =+与22y x =+重合时,纵截距最大,符合, 1a =-时,y ax z =+与y x z =-+重合时,纵截距最大,符合, 12a -<<时,y ax z =+经过(0,2)B 时,纵截距最大,不符合,12,1舍去, 故2a =或1-, 选D .12x 222.函数()||f x x x =.若存在[1,)x ∈+∞,使得(2)0f x k k --<,则k 的取值范围是().A .(2,)+∞B .(1,)+∞C .1,2⎛⎫+∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭【答案】D【解析】当12k ≤时,20x k -≥,因此(2)0f x k k --<, 可化为2(2)0x k k --<, 即存在[1,]x ∈+∞,使22()440f x x kx k k =-+-<成立,由于22()44f x x kx k k =-+-的对称轴为 21x k =≤,所以22()44f x x kx k k =-+-,连[1,]x ∈+∞单调递增,因此只要(1)0g <, 即21440k k k -+-<,解得114k <<, 又因12k ≤,所以1142k <≤,当12k >时,2(2)0(2)0f x k k x k k --<⇔---<恒成立,综上,14k >. 选D .23.设O 为坐标原点,点(4,3)A ,B 是x 正半轴上一点,则OAB △中OBOA的最大值为(). A .43B .53C .54D .45【答案】见解析 【解析】(4,3)A , 3sin 5AOB =∠,sin sin AB OBAOB A=∠,∴sin 5sin sin 3OB A A AB AOB ==∠, 由(0,π)A ∈得sin (0,1]A ∈, ∴当π2A =时55sin 33OB A AB ==, 为最大值:选B .24.数列{}n a 的通项公式为*||()n a n c n =-∈N ,则“1c ≤”是“{}n a 为递增数列”的().A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】见解析【解析】若{}n a 递增, 1|1|||0n n a a n c n c +-=+--->22(1)()n c n c +->-.∴有12c n <+, ∵1322n +>, ∴1c ≤为{}n a 递增充分不必要条件. 选A .25.将五个1,五个2,五个3,五个4,五个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一行中任何两数之差的绝对值不超过2,考察每行中五个数之和,记这五个和的最小值为m ,则m 的最大值为().A .8B .9C .10D .11【答案】C【解析】1︒,5个1分在同列,5m =,2︒,5个1分在两列,则这两列出现最大数至多为3,故2515320m ⨯+⨯=≤,有10m ≤, 3︒,5个1在三列,3515253m ⨯+⨯+⨯≤,∴0m ≤,4︒,若5个1在至少四列中,其中某一列至少有一个数大于3,矛盾,∴1M ≤, 如图可取10. 故选C .二、填空题:本大题共11小题,每小题3分,共33分.把答案填在题中横线上.26.执行如图所示的程序框图,若1M =,则输出的S =__________;若输出的14S =,则整数M = __________.【答案】见解析 【解析】n S 0 01 2 1M =时,2S =, 2 63 14 当3n =时出来,故3M =.27.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________. 【答案】见解析【解析】7245%74(145%)72.1⨯+⨯-=.28.在一个有三个孩子的家庭中,(1)已知其中一个是女孩,则至少有一个男孩的概率是__________. (2)已知年龄最小的孩子是女孩,则至少有一个男孩的概率是__________. 【答案】见解析【解析】共有2228⨯⨯=种,只有男孩1种除去,只有女孩有1种, ∴161817p =-=-.29.在AOB △的边OA 上有5个点,边OB 上有6个点,加上O 点共12个点,以这12个点为顶点的三角形有__________个. 【答案】见解析【解析】3331267C C C 16S --=,连12个点中任取3个点,除去同一直线上点.30.如图,在23⨯的矩形方格纸上,各个小正方形的顶点称为格点,以格点为顶点的等腰直角三角形共有__________个.【答案】见解析【解析】直角边长为1时,2464=⨯个,7214⨯=个, 直角边长为2时,248⨯=个,时,4个, ∴总共有24148450+++=.31.从{}1,2,3,4,5中随机选取一个数为a ,从{}2,4,6中随机选取一个数为b ,则b a >的概率是__________. 【答案】见解析【解析】共有5315⨯=种, b a >有共9种, ∴93155P ==.32.已知正方形ABCD .(1)在A ,B ,C ,D 四点中任取两点连线,则余下的两点在此直线异侧的概率是__________.(2)向正方形ABCD 内任投一点P ,则PAB △的面积大于正方形ABCD 面积四分之一的概率是__________. 【答案】见解析【解析】(1)共有24C 6=种, 异侧2种, ∴2163P ==.(2)在CDFE 内,14ABC PAB D S S >⋅平行四边形△,【注意有文字】而12CEDF ABCD S S =⋅,∴12P =. OF E CB A D33.已知当实数x ,y 满足12121x y x y x y +⎧⎪--⎨⎪-⎩≤≥≤时,1ax by +≤恒成立,给出以下命题:①点(,)P x y 所形成的平面区域的面积等于3. ②22x y +的最大值等于2.③以a ,b 为坐标的点(,)Q a b 所形成的平面区域的面积等于4.5. ④a b +的最大值等于2,最小值等于1-. 其中,所有正确命题的序号是__________. 【答案】见解析 【解析】①13322S ==≠,d =②当1x =-,1y =-时, 222x y +=取最大,②对;③1ax by +≤恒成立, 当且仅当111b a a b ⎧⎪⎨⎪--⎩≤≤≤,③193322S =⨯⨯=,③对;④1a b ==时,2a b +=最大, 12a b ==-时,1a b +=-最小,④对. 综上②③④.34.设M 为不等式组40400x y x y y +-⎧⎪-+⎨⎪⎩≤≥≥,所表示的平面区域,N 为不等式组04t x t y t -⎧⎨-⎩≤≤≤≤所表示的平面区域,其中[0,4]t ∈,在M 内随机取一点A ,记点A 在N 内的概率为P .(ⅰ)若1t =,则P =__________. (ⅱ)P 的最大值是__________. 【答案】见解析【解析】①不等式组4040x y x y y +-⎧⎪-+⎨⎪⎩≤≥0≥平面区域为M ,184162M S =⨯⨯=,不等式组(04)04t x tt y t-⎧⎨-⎩≤≤≤≤≤≤, 表示的面积为2(4)t t - 22(2)8t =--+. 1t =时,283168P -+==. ②2t =时,081162P +==, 且2(4)t t -最大,P 最大.35.若不等式*1111()1232a n n n n n++++>∈+++N 恒成立,则a 的范围__________.【答案】见解析 【解析】设11()12f n n n=+++ 111(1)2212(1)f n n n n +=++++++ 111(1)()212(1)1f n f n n n n +-=+-+++ 1102122n n =->++. ∴()f n 是关于n 递增数列(,2)n n ∈N ≥, ∴7()(2)12f n f =≥, ∴712a <.36.当[1,9]x ∈时,不等式22|3|32x x x kx -++≥恒成立,则k 的取值范围是__________. 【答案】见解析【解析】等价为22|3|32x x x k x -++≥, 设22|3|32()x x x f x x-++=,当13x ≤≤,32()3f x x=+,在[1,3]上单减, min 41(3)3f f ==,当39x <≤,32()2323f x x x =+-≥, 当且仅当322x x=,4x =成立, ∴()f x 最小值为13. ∴13k ≤.三、解答题:(本大题共6小题,每题7分,共42分.解答应写出文字说明,证明过程或演算步骤.)37.已知ABC △为锐角三角形,a ,b ,c 分别为角A ,B ,C 2sin c A =. (1)求角C .(2)当c =ABC △面积的最大值. 【答案】见解析 【解析】(1)正弦定理:sin sin a cA c=,∵π02c <<,∴π3c =. (2)余弦定理是:2222cos c a b ab c =+-, ∴2212a b ab =+-, 又∵22a b ab ab +-≥, ∴12ab ≤,1sin 2ABC S ab c ==△≤当仅当a b =时取得∴max S =38.已知函数1()(2)a f x a x x a -⎛⎫=-- ⎪⎝⎭,其中0a ≠.(Ⅰ)若1a =,求()f x 在区间[0,3]上的最大值和最小值. (Ⅱ)解关于x 的不等式()0f x >. 【答案】见解析【解析】(Ⅰ)1a =,2()(2)(1)1f x x x x =-=--,()22f x x '=-, ∴∴min (1)1f f ==-, max max[(3),(0)]f f f =,而(3)3(0)f f =>, ∴max 3f =. (Ⅱ)0a >时, 1(2)0a x x a -⎛⎫--> ⎪⎝⎭,∵1120a a a a-+-=>, ∴12a a-<, 此时()0f x >解集为:[|2x x >或1a x a -⎤<⎥⎦,0a <时,1(2)0a x x a -⎛⎫--< ⎪⎝⎭.①10a -<<,则12a a-<, ()0f x >解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦.②1a =-,无解.③1a <-,解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦. 综上:0a >,[|2x x >或1a x a -⎤<⎥⎦. 10a -<<,1|2a x x a -⎡⎤<<⎢⎥⎣⎦1a =-,∅.1a <-,12a x a -⎡⎤<<⎢⎥⎣⎦.39.在参加某次社会实践的学生中随机选取40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中.a(Ⅰ)求a 的值及成绩在区间[80,90)内的学生人数.(Ⅱ)从成绩小于60分的学生中随机选2名学生,求最多有1名学生成绩在区间[50,60)内的概率. 【答案】见解析【解析】(Ⅰ)10.30.150.10.050.05a =----- 0.035=.(Ⅱ)[40,50)有0.00510402⨯⨯=人, [59,60)有0.0110404⨯⨯=人,两名学生都在[50,60)概率为: 2426C 62C 155P ===, ∴23155P =-=求.【注意有文字】40.已知数列{}n a 的前n 项和31n n S =-,其中*n ∈N . (Ⅰ)求数列{}n a 的通项公式.(Ⅱ)若数列{}n b 满足11b =,13(2)n n n b b a n -=+≤. (ⅰ)证明:数列13n n b -⎧⎫⎨⎬⎩⎭为等差数列.(ⅱ)求数列{}n b 的前n 项和n T . 【答案】见解析【解析】(Ⅰ)11(31)(31)n n n n n a S S --=-=--- 123n -⋅,2n ≥,∴123(*)n n a n -=⋅∈N ,即11112323233n n n n n n n b b b b -----=+⋅⇔=+, ∴112233n n n n b b ----=, ∴13n n b -⎧⎫⎨⎬⎩⎭为首项为1,公差为2的等差数列. (Ⅱ)1nn i c T b ==∑,∴112(1)213nn b n n -=+-=-, ∴1(21)3n n b n -=-⋅, ∴11333(21)3n n T n -=⨯︒+⨯++-⋅ 231333(21)3n n T n =⨯+⨯++-⋅ ∴21212(333)(21)3n n n T n -=--++++-⋅(1)31n n T n =-⋅+,*n ∈N .41.某大学调研学生在A ,B 两家餐厅用餐的满意度,从在A ,B 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60),得到A餐厅分数的频率分布直方图,和B 餐厅分数的频数分布表:A 餐厅分数频率分布直方图频率分数B 餐厅分数频数分布表(Ⅰ)在抽样的100人中,求对A (Ⅱ)从该校在A ,B 两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A 餐厅评价的“满意度指数”比对B 餐厅评价的“满意度指数”高的概率.(Ⅲ)如果从A ,B 两家餐厅中选择一家用餐,你会选择哪一家?说明理由. 【答案】见解析【解析】(Ⅰ)(0.0030.0050.012)100.2P =++⨯=, 1000.220N =⨯=人.(Ⅱ)记A 指数比B 高为事件C ,A 评价指数为1为事件1A ,为2为事件2A ,B 评价指数数为0为事件0B ,为1为事件1B .∴1()(0.020.02)100.4P A =+⨯=,2()0.4P A =,0235()0.1100P B ++==, 14015()0.55100P B +==, 102021()()P C P A B A B A B =++,()0.40.10.40.10.40.550.3P C =⨯+⨯+⨯=.(Ⅲ)A :0.4 1.2⨯=, ()00.10.55120.35 1.25E Y =⨯+⨯+⨯=,EX EY <.选B .42.设m ∈R ,不等式2(31)2(1)0mx m x m -+++>的解集记为集合P . (Ⅰ)若{}|12P x x =-<<,求m 的值. (Ⅱ)当0m >时,求集合P .(Ⅲ)若{}|32x x P -<<⊆,求m 的取值范围. 【答案】见解析【解析】(Ⅰ)∵{}|12P x x =-<<,∴1-,2为2(31)2(1)0mx m x m -+++=的两根, 1x =-代入得(31)2(1)0m m m ++++=,∴12m =-.(Ⅱ)(2)[(1)]0x mx m --+>, 当0m >时,112x =,21m x m+=. ①12m m+=时,1m =,2x ≠; ②12m m +>时,01m <<,2x <或1m x m+>;③12m m +<时,1m >,2x >或1m x m+<. 综上01m <<,1|2,m P x x x m +⎧⎫=<>⎨⎬⎩⎭,1m =,{}|72,2P x x x =∈≠, 1m >,1|,2m P x x x m +⎧⎫=<>⎨⎬⎩⎭. (Ⅲ)(3,2)x ∈-时,2(31)2(1)0mx m x m -+++>恒成立, 0m =时,20x -+>,{}|2P x x =<合题, 0m >时,由(I )得01m <≤合题, 0m <时,1112m m m+=+<, ∴1|2m P x x m +⎧⎫=<<⎨⎬⎩⎭, 此时13m m +-≤,解得104m -<≤, 综上,1,14m ⎡⎤∈-⎢⎥⎣⎦.四、附加题43.已知数列{}n a 是首项为1,公比为q 的等比数列. (Ⅰ)证明:当01q <<时,{}n a 是递减数列.(Ⅱ)若对任意*k ∈N ,都有k a ,2k a +,1k a +成等差数列,求q 的值. 【答案】见解析【解析】(Ⅰ)1n n a q -=, 111(1)n n n n n a a q q q q --+-=-=-,当01q <<时:有10n q ->,10q -<, ∴10n n a a +-<, ∴{}n a 为递减数列.(Ⅱ)∵k a ,2k a +,1k a +成等差数列, ∴112()0k k k q q q +--+=, 12(21)0k q q q -⋅--=,∵0q ≠, ∴2210q q --=,解得:1q =或12q =-.44.从某校高一年级随机抽取n 名学生,获得了他们日平均睡眠时间(单位:小时)的数据,整理得到数据分组及频数分布表:频率(Ⅰ)求n 的值.(Ⅱ)若10a =,补全表中数据,并绘制频率分布直方图.(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,若上述数据的平均值为7.84,求a ,b 的值,并由此估计该校高一学生的日平均睡眠时间不少于8小时的概率. 【答案】见解析 【解析】(Ⅰ)2500.04n ==. (Ⅱ)组号 分组 频数 频率1 [5,6) 20.04 2[6,7) 10 0.20 3[7,8) 100.20 4[8,9) 20 0.40 5[9,10)80.16(Ⅲ)112 5.5+10 6.5+7.58.589.578450210950a b a b ⎧⨯⨯⨯+⨯+⨯=-⎪⎨⎪++++=⎩,1515a b =⎧⎨=⎩, ∴158230.465050P +===.频率睡眠时间45.已知关于x 的一元二次方程2220x ax b -+=,其中a ,b ∈R .(Ⅰ)若a 随机选自集合{}0,1,2,3,4,b 随机选自集合{}0,1,2,3,求方程有实根的概率. (Ⅱ)若a 随机选自区间[0,4],b 随机选自区间[0,3],求方程有实根的概率. 【答案】见解析【解析】(Ⅰ)可能发生有4520⨯=个, 有14个符合题意, ∴1472010P ==, 22(2)40a b ∆=-->,∴a b ≥, 此时符合题意.(Ⅱ)[0,4]a ∈,[0,3]b ∈,∴区域{}Ω=()|04,03a b a b ⋅≤≤≤≤, 面积Ω=3412μ⨯=,事件A 为有实根, {}()|04,03,A a b a b a b =⋅≤≤≤≤≥,153433212A μ=⨯-⨯⨯=, ∴1552()Ω128M P A μμ===.46.经统计,某校学生上学路程所需要时间全部介于0与50之间(单位:分钟).现从在校学生中随机抽取100人,按上学所学时间分组如下:第1组(0,10],第2组(10,20],第3组(20,30],第4组(30,40],第5组(40,50],得打如图所示的频率分布直方图.(分钟)(Ⅰ)根据图中数据求a 的值.(Ⅱ)若从第3,4,5组中用分成抽样的方法抽取6人参与交通安全问卷调查,应从这三组中各抽取几人? (Ⅲ)在(Ⅱ)的条件下,若从这6人中随机抽取2人参加交通安全宣传活动,求第4组至少有1人被抽中的概率.【答案】见解析【解析】(Ⅰ)(0.0050.010.030.035)101a ++++⨯=, 0.02a =.(Ⅱ)第3组人数为1000.330⨯=人, 第4组人数为0.210020⨯=人, 第5组人数为0.110010⨯=人, ∴比例为3:2:1,∴第3组,4组,5组各抽3,2,1人. (Ⅲ)记3组人为1A ,2A ,3A ,4组人为1B ,2B ,5组人为1C ,共有28C 15=种, 符合有:11()A B 12()A B 21()A B 22()A B 31()A B 32()A B 12()B B 11(,)B C 21(,)B C 9种,∴93155P ==.47.一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6. (Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率.(Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率. (Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X ,求随机变量X 的分布列.(Ⅳ)若从袋中每次随机抽取1个球,有放回的抽取3次,记球的最大编号为X ,求随机变量X 的分布列. 【答案】见解析【解析】(Ⅰ)共有3666=⨯种, 和为6的共5种, ∴536P =. (Ⅱ)1526C 1C 3P ==为抽2个球,有6的概率,∴2232122C (1)3339P P -=⨯⨯=为所求. (Ⅲ)X 可取3,4,5,6, 3336C 1(3)C 20P x ===,2336C 3(4)C 20P x ===,2436C 63(5)C 2010P x ====,2336C 1(6)C 2P x ===.(Ⅳ)11(1)6216P X ⎛⎫=== ⎪⎝⎭,33321331117(2)C C 666216P X ⎛⎫⎛⎫⎛⎫==+⋅+⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 32221331121219(3)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 32221331131337(4)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 32221331141461(5)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,32221331151591(6)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.48.在测试中,客观题难度的计算公式为ii R P N=,其中i P 为第i 题的难度,i R 为答对该题的人数,N 为参加测试的总人数,现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如下表所示:测试后,随机抽取了20(Ⅰ)根据题中数据,估计这240(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X ,求X 的分布列和数学期望.(Ⅲ)试题的预估难度和实测难度之间会有偏差,设i P '为第i 题的实测难度,请用i P 和i P '设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理. 【答案】见解析 【解析】(Ⅰ)55540.220R P N ===, ∴2400.248N =⨯=人. (Ⅱ)X 可取0,1,2,216220C 12(0)C 19P X ===,11164220C C 32(1)C 95P X ⋅===,24220C 3(2)C 95P X ===.X 0 1 201219959595EX =⨯+⨯+⨯=. (Ⅲ)定义2121[()()]i i n n S P P P P n=-++-i P 为第i 题预估难度,且0.05S <,则合理222221[(0.80.9)(0.80.8)(0.70.7)(0.70.6)(0.20.4)]5S =-+-+-+-+-0.012=.∵0.0120.05S =<, ∴合理.49.已知数列{}n a 的通项公式为12(1)(1)n n a n n λ+=+-⋅+,其中λ是常数,*n ∈N . (Ⅰ)当21a =-时,求λ的值.(Ⅱ)数列{}n a 是否可能为等差数列?证明你的结论. (Ⅲ)若对于任意*n ∈N ,都有0n a >,求λ的取值范围. 【答案】见解析【解析】(Ⅰ)2n =时2321a λ=-=-, ∴2λ=.(Ⅱ)13a λ=+,232a λ=-,373a λ=+,474a λ=-, 若存在入使{}n a 为等差数列 有:2132a a a =+, 2(32)(3)(73)λλλ-=+++ ∴12λ=-,21332a a λ-=-=,43172a a λ--=-=, 矛盾,∴不存在入使{}n a 为等差数列. (Ⅲ)∵0n a >,∴12(1)(1)0n n n λ++-⋅+>,即1(1)(1)2n nnλ+--⋅<+,n ∈N .①当n 为正偶数:12nλ<-,随n 增大变大,13222λ<-=.②当n 为正奇数:12nλ<--,随n 变大而变大,2λ-≥. 综上:31,2λ⎡⎫∈-⎪⎢⎣⎭.50.设a ∈R ,*n ∈N ,求和:231n a a a a +++++=__________.【答案】见解析【解析】当0a =时,211n a a a ++++=,当1a =时,11n a a n +++=+,当0a ≠,且1a ≠时1111n na a a a+-++=-,∴11,11,11n n a a a a++=⎧⎪⎨-≠⎪-⎩.51.设数列{}n a 的通项公式为*3()n a n n =∈N ,数列{}n b 定义如下:对任意*m ∈N ,m b 是数列{}n a 中不大于23m 的项的个数,则3b =__________;数列{}m b 的前m 项和m S =__________. 【答案】见解析【解析】633n ≤,∴243n ≤, ∴3243b =, 由233m n ≤, ∴213m n -≤ ∴213m m b -=,3(19)3(91)198m mm S -==--,故243;3(91)8m-.52.已知函数2()(13)4f x mx m x =+--,m ∈R .当0m <时,若存在0(1,)x ∈+∞,使得0()0f x >,则m 的取值范围为__________. 【答案】见解析【解析】0m <,2(1)(13)4f mx m x =+--开口朝下, 13311222n m x m m-=-=->, 若0(1,)x ∃∈+∞使0()0f x >,则2(13)160m m -+>, 即291010m m ++>, ∴1m <-或109m -<<,综上:1(,1),09⎛⎫-∞-- ⎪⎝⎭.53.设不等式组23034057200x y x y x y -⎧⎪-⎨⎪--⎩≥≥≤,表面的平面区域是W ,则W 中的整点(横、纵坐标均为整数的点)个数是().A .231B .230C .219D .218【答案】见解析【解析】3405720x y x y -⎧⎨--⎩≥,8060x y =-⎧⎨=-⎩,∴(80,60)A -,23057200x y x y -=⎧⎨--=⎩,6040x y =⎧⎨=⎩, (60,40)B ,分别取80x =-,79-,60,求出y 值, 可知总数有231, 选A .2x 3。

2019学年高一数学下学期期末考试试题(含解析)

2019学年高一数学下学期期末考试试题(含解析)

2019学年高一数学下学期期末考试试题(含解析)(考试时间为120分钟,满分为150分)一、选择题:本大题共25小题,每小题3分,共75分.1.在ABC △中,若222sin sin sin A B C +<,则ABC △的形状是().A .锐角三角形B .钝角三角形C .直角三角形D .无法确定【答案】B【解析】由正弦定理:222a b c +<, 故为2220a b c +-<,又∵222cos 2a b c c ab+-=,∴cos 0c <, 又∵0πc <<, ∴ππ2c <<, 故B .2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率依次为1P ,2P ,3P ,则(). A .123P P P =< B .231P P P =< C .132P P P =< D .123P P P ==【答案】D【解析】无论三种中哪一抽法都要求个体被抽概率相同. 选D .3.若非零实数a ,b ,c 满足a b c >>,则一定成立的不等式是().A .ac bc >B .ab ac >C .||||a c b c ->-D .111a b c<< 【答案】C【解析】A .a b >,c 不一定为正,错;B .同A ,a 不一定为正,错;C .||||a b a c b c >⇒->-正确;D .反例:1a =,1b =-,2c =-,1111a b=>=-错误, 选C .4.函数2()f x x =,定义数列{}n a 如下:1()n n a f a +=,*n ∈N ,若给定1a 的值,得到无穷数列{}n a 满足:对任意正整数n ,均有1n n a a +>,则1a 的取值范围是().A .(,1)(1,)-∞-+∞B .(,0)(1,)-∞+∞C .(1,)+∞D .(1,0)-【答案】A【解析】由1n n a a +>,2n n a a >,∴(1)0n n a a ->, ∴1n a >或0n a <, 而[1,0]n a ∈-时, 1n n a a +>不对n 恒成立,选A .5.已知不等式501x x -<+的解集为P ,若0x P ∈,则“0||1x <”的概率为(). A .14B .13C .12D .23【答案】B 【解析】()(1)050101x s x x x x -+<⎧-<⇒⎨+≠+⎩,∴{}|1,15P x x x =≠-<<, ||111x x <⇒-<<,∴1(1)15(1)3P --==--.选B .6.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为().A .120B .240C .280D .60【答案】A【解析】选从5双中取1双,15C , 丙从剩下4双任取两双,两双中各取1只, 24C 2224⨯⨯=,∴15C 24120N =⨯=. 选A .7.设0a >,0b >,则下列不等式中不恒成立的是().A .12a a+≥B .222(1)a b a b ++-≥CD .3322a b ab +≥【答案】D【解析】332222()()a b ab a b a ab b +=-+--,a b <<有3322a b ab +<, 故D 项错误,其余恒成立. 选D .8.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为().A .02B .14 29【答案】D【解析】从表第1行5列,6列数字开始由左到右依次选取两个数字中小于20的编号为: 08,02,14,29.∴第四个个体为29. 选D .9.执行如图所示的程序框图,输出的S 值为().A .1B .5C .14D .30【答案】C【解析】S K0 11 25 314 4⇒出14S =.选C .10.如图是1,2两组各7名同学体重(单位:千克)数据的茎叶图.设1,2两组数据的平均数依次为1x 和2x ,标准差依次为1s 和2s ,那么().(注:标准差s x 为1x ,2x ,,n x 的平均数)3272010*******7632组1组A .12x x <,12s s <B .12x x <,12s s >C .12x x >,12s s >D .12x x >,12s s <【答案】A【解析】第1组7名同学体重为: 53,56,57,58,61,70,72,∴11(535672)61kg 7x =+++=,222211[(5361)(7261)]43kg 7S =-++-=,第2组7名同学体重为:72,73,61,60,58,56,54,21(545673)62kg 7x =+++=,222221[(5462)(7362)]63kg 7S =-++-=,∴12x x <,2212S S <.故选A .11.如图给出的是计算111112468100+++++的一个程序框图,则判断框内应填入关于i 的不等式为().A .50i <B .50i >C .51i <D .51i >【答案】B 【解析】11124100+++进行了50次, 第50次结束时,102n =,=51i , 此时输出,因此50i >. 选B .12.在()n x y +的展开式中,若第七项系数最大,则n 的值可能等于().A .13,14B .14,15C .12,13D .11,12,13【答案】D【解析】()n x y +的展开式第七项系数为6C n ,且最大, 可知此为展开式中间项, 当展开式为奇数项时:62n=,12n =, 当有偶数项时162n +=,11n =, 或172n +=,13n =, 故11n =,12,13. 选D .13.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色,现从袋中随机抽取3个小球,设每个小球被抽到的机会均等,则抽到白球或黑球的概率为().A .25B .35C .23D .910【答案】D【解析】从袋中5球随机摸3个, 有35C 10=,黑白都没有只有1种, 则抽到白或黑概率为1911010-=. 选D .14.已知数列{}n a 的前n 项的乘积为2n n T c =-,其中c 为常数,*n ∈N ,若43a =,则c =().A .4B .3C .2D .1【答案】A【解析】44433232T ca T c-===-, ∴4c =. 选A .15.组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司仪、司机思想不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这思想工作,则不同的选派方案共有().A .36种B .12种C .18种D .48种【答案】A【解析】若小张或小赵入选,有选法:113223C C C 24⋅⋅=种,若小张,小赵都入选,有:2323A A 12⋅=种,可知共有241236+=种. 选A .16.若423401234(2x a a x a x a x a x =++++,则2202413()()a a a a a ++-+的值为().A .1B .1-C .0D .2【答案】A【解析】令1x =,4014(2a a a +++=+,令1x =-,401234(2a a a a a -+-+=-, 而2202413()()a a a a a ++-+024*******()()a a a a a a a a a a =++++-+-+444(2(2(34)1=-=-=.选A .17.有4个人同乘一列有10节车厢的火车,则至少有两人在同一车厢的概率为().A .63125B .62125C .63250D .31125【答案】B【解析】4个人乘10节车厢的火车, 有41010000=种方法,没有两人在一车厢中有410A 10987=⨯⨯⨯种, ∴至少有两人在同一车厢概率为:4104A 49606211010000125p =-==. 选B .18.某车站,每天均有3辆开往省城的分为上、中、下等级的客车,某人某天准备在该车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序,为了尽可能乘上上等车,他采取如下策略;先放过第一辆车,如果第二辆车比第一辆车则上第二辆,否则上第三辆车,那么他乘上上等车的概率为().A .14B .12C .23D .13【答案】B【解析】设三车等次为:下、中、上, 它们先后次序为6种: 下 中 上 ×→没乘上上等 下 上 中 √→乘上上等 中 下 上 √ 中 上 下 √ 上 下 中 × 上 中 下 × 情况数为3,12p =. 选B .19.在某地的奥运火炬传递活动中,有编号为1,2,3,,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为().A .151B .168C .1306D .1408【答案】B【解析】共有318C 17163=⨯⨯种事件数, 选出火炬手编号为13(1)n a a n =+-,11a =,由1、4、7、10、13、16,可得4种, 12a =,由2、5、8、11、14、17,可得4种, 3n a =,由3、6、9、12、15、18,可得4种,4311716368p ⨯==⨯⨯.选B .20.已知数列1:A a ,2a ,,12(0,3)n n a a a a n <<<≤≥具有性质P :对任意i ,(1)j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项,给出下列三个结论: ①数列0,2,4,6具有性质P . ②若数列A 具有性质P ,则10a =.③数列1a ,2a ,3123(0)a a a a <<≤具有性质P ,则1322a a a +=, 其中,正确结论的个数是(). A .3 B .2 C .1 D .0【答案】A【解析】①数列0,2,4,6,j i a a +,(13)j i a a j i j -≤≤≤, 两数中都是该数列中项, 432a a -=,①正确,若{}n a 有P 性质,去{}n a 中最大项n a ,n n a a +与n n a a -至少一个为{}n a 中一项,2n a 不是,又由120n a a a ≤≤≤,则0是,0n a =,②正确,③1a ,2a ,3a 有性质P ,1230a a a <<≤, 13a a +,31a a -,至少有一个为{}n a 中一项,1︒.13a a +是{}n a 项,133a a a +=,∴10a =,则23a a +,不是{}n a 中项, ∴322a a a -=⇒∴1322a a a +=.2︒.31a a -为{}n a 中一项,则311a a a -=或2a 或3a ,①若313a a a -=同1︒;②若312a a a -=,则32a a =与23a a <不符; ③311a a a -=,312a a =. 综上1322a a a +=,③正确, 选A .21.x ,y 满足约束条件20220220x y x y x y +-⎧⎪--⎨⎪-+⎩≤≤≥,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为().A .12或1- B .2或12C .2或1D .2或1-【答案】D 【解析】观察选项有12,1-,1,2. 当2a =时,y ax z =+与22y x =+重合时,纵截距最大,符合, 1a =-时,y ax z =+与y x z =-+重合时,纵截距最大,符合, 12a -<<时,y ax z =+经过(0,2)B 时,纵截距最大,不符合,12,1舍去, 故2a =或1-, 选D .12x 222.函数()||f x x x =.若存在[1,)x ∈+∞,使得(2)0f x k k --<,则k 的取值范围是().A .(2,)+∞B .(1,)+∞C .1,2⎛⎫+∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭【答案】D【解析】当12k ≤时,20x k -≥,因此(2)0f x k k --<, 可化为2(2)0x k k --<, 即存在[1,]x ∈+∞,使22()440f x x kx k k =-+-<成立,~由于22()44f x x kx k k =-+-的对称轴为 21x k =≤,所以22()44f x x kx k k =-+-,连[1,]x ∈+∞单调递增,因此只要(1)0g <, 即21440k k k -+-<,解得114k <<, 又因12k ≤,所以1142k <≤,当12k >时,2(2)0(2)0f x k k x k k --<⇔---<恒成立,综上,14k >. 选D .23.设O 为坐标原点,点(4,3)A ,B 是x 正半轴上一点,则OAB △中OBOA的最大值为(). A .43B .53C .54D .45【答案】见解析 【解析】(4,3)A , 3sin 5AOB =∠,sin sin AB OBAOB A=∠,∴sin 5sin sin 3OB A A AB AOB ==∠, 由(0,π)A ∈得sin (0,1]A ∈, ∴当π2A =时55sin 33OB A AB ==, 为最大值:选B .24.数列{}n a 的通项公式为*||()n a n c n =-∈N ,则“1c ≤”是“{}n a 为递增数列”的().A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】见解析【解析】若{}n a 递增, 1|1|||0n n a a n c n c +-=+--->22(1)()n c n c +->-.∴有12c n <+, ∵1322n +>, ∴1c ≤为{}n a 递增充分不必要条件. 选A .25.将五个1,五个2,五个3,五个4,五个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一行中任何两数之差的绝对值不超过2,考察每行中五个数之和,记这五个和的最小值为m ,则m 的最大值为().A .8B .9C .10D .11【答案】C【解析】1︒,5个1分在同列,5m =,2︒,5个1分在两列,则这两列出现最大数至多为3,故2515320m ⨯+⨯=≤,有10m ≤, 3︒,5个1在三列,3515253m ⨯+⨯+⨯≤,∴0m ≤,4︒,若5个1在至少四列中,其中某一列至少有一个数大于3,矛盾,∴1M ≤, 如图可取10. 故选C .二、填空题:本大题共11小题,每小题3分,共33分.把答案填在题中横线上.26.执行如图所示的程序框图,若1M =,则输出的S =__________;若输出的14S =,则整数M = __________.【答案】见解析 【解析】n S 0 01 2 1M =时,2S =, 2 63 14 当3n =时出来,故3M =.27.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________. 【答案】见解析【解析】7245%74(145%)72.1⨯+⨯-=.28.在一个有三个孩子的家庭中,(1)已知其中一个是女孩,则至少有一个男孩的概率是__________. (2)已知年龄最小的孩子是女孩,则至少有一个男孩的概率是__________. 【答案】见解析【解析】共有2228⨯⨯=种,只有男孩1种除去,只有女孩有1种, ∴161817p =-=-.29.在AOB △的边OA 上有5个点,边OB 上有6个点,加上O 点共12个点,以这12个点为顶点的三角形有__________个. 【答案】见解析【解析】3331267C C C 16S --=,连12个点中任取3个点,除去同一直线上点.30.如图,在23⨯的矩形方格纸上,各个小正方形的顶点称为格点,以格点为顶点的等腰直角三角形共有__________个.【答案】见解析【解析】直角边长为1时,2464=⨯个,7214⨯=个, 直角边长为2时,248⨯=个,时,4个, ∴总共有24148450+++=.31.从{}1,2,3,4,5中随机选取一个数为a ,从{}2,4,6中随机选取一个数为b ,则b a >的概率是__________. 【答案】见解析【解析】共有5315⨯=种, b a >有共9种, ∴93155P ==.32.已知正方形ABCD .(1)在A ,B ,C ,D 四点中任取两点连线,则余下的两点在此直线异侧的概率是__________.(2)向正方形ABCD 内任投一点P ,则PAB △的面积大于正方形ABCD 面积四分之一的概率是__________. 【答案】见解析【解析】(1)共有24C 6=种, 异侧2种, ∴2163P ==.~(2)在CDFE 内,14ABC PAB D S S >⋅平行四边形△,【注意有文字】而12CEDF ABCD S S =⋅,∴12P =. OF E CB A D33.已知当实数x ,y 满足12121x y x y x y +⎧⎪--⎨⎪-⎩≤≥≤时,1ax by +≤恒成立,给出以下命题:①点(,)P x y 所形成的平面区域的面积等于3. ②22x y +的最大值等于2.③以a ,b 为坐标的点(,)Q a b 所形成的平面区域的面积等于4.5. ④a b +的最大值等于2,最小值等于1-. 其中,所有正确命题的序号是__________. 【答案】见解析 【解析】①13322S ==≠,d =②当1x =-,1y =-时, 222x y +=取最大,②对;③1ax by +≤恒成立, 当且仅当111b a a b ⎧⎪⎨⎪--⎩≤≤≤,~③193322S =⨯⨯=,③对;④1a b ==时,2a b +=最大, 12a b ==-时,1a b +=-最小,④对. 综上②③④.34.设M 为不等式组40400x y x y y +-⎧⎪-+⎨⎪⎩≤≥≥,所表示的平面区域,N 为不等式组04t x t y t -⎧⎨-⎩≤≤≤≤所表示的平面区域,其中[0,4]t ∈,在M 内随机取一点A ,记点A 在N 内的概率为P .(ⅰ)若1t =,则P =__________. (ⅱ)P 的最大值是__________. 【答案】见解析【解析】①不等式组4040x y x y y +-⎧⎪-+⎨⎪⎩≤≥0≥平面区域为M ,184162M S =⨯⨯=,不等式组(04)04t x tt y t -⎧⎨-⎩≤≤≤≤≤≤, 表示的面积为2(4)t t - 22(2)8t =--+. 1t =时,283168P -+==. ②2t =时,081162P +==, 且2(4)t t -最大,P 最大.35.若不等式*1111()1232a n n n n n++++>∈+++N 恒成立,则a 的范围__________.~【答案】见解析 【解析】设11()12f n n n=+++ 111(1)2212(1)f n n n n +=++++++ 111(1)()212(1)1f n f n n n n +-=+-+++ 1102122n n =->++. ∴()f n 是关于n 递增数列(,2)n n ∈N ≥, ∴7()(2)12f n f =≥, ∴712a <.36.当[1,9]x ∈时,不等式22|3|32x x x kx -++≥恒成立,则k 的取值范围是__________. 【答案】见解析【解析】等价为22|3|32x x x k x -++≥, 设22|3|32()x x x f x x-++=,当13x ≤≤,32()3f x x=+,在[1,3]上单减, min 41(3)3f f ==,当39x <≤,32()2323f x x x =+-≥, 当且仅当322x x=,4x =成立, ∴()f x 最小值为13. ∴13k ≤.三、解答题:(本大题共6小题,每题7分,共42分.解答应写出文字说明,证明过程或演算步骤.)37.已知ABC △为锐角三角形,a ,b ,c 分别为角A ,B ,C 2sin c A =. (1)求角C .(2)当c =时,求ABC △面积的最大值. 【答案】见解析 【解析】(1)正弦定理:sin sin a cA c=,∵π02c <<,∴π3c =. (2)余弦定理是:2222cos c a b ab c =+-, ∴2212a b ab =+-, 又∵22a b ab ab +-≥, ∴12ab ≤,1sin 2ABC S ab c ==△≤当仅当a b =时取得∴max S =38.已知函数1()(2)a f x a x x a -⎛⎫=-- ⎪⎝⎭,其中0a ≠.(Ⅰ)若1a =,求()f x 在区间[0,3]上的最大值和最小值. (Ⅱ)解关于x 的不等式()0f x >. 【答案】见解析【解析】(Ⅰ)1a =,2()(2)(1)1f x x x x =-=--,()22f x x '=-, ∴∴min (1)1f f ==-, max max[(3),(0)]f f f =,而(3)3(0)f f =>, ∴max 3f =. (Ⅱ)0a >时, 1(2)0a x x a -⎛⎫--> ⎪⎝⎭,∵1120a a a a-+-=>, ∴12a a-<, 此时()0f x >解集为:[|2x x >或1a x a -⎤<⎥⎦,0a <时,1(2)0a x x a -⎛⎫--< ⎪⎝⎭.①10a -<<,则12a a-<, ()0f x >解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦.②1a =-,无解.③1a <-,解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦. 综上:0a >,[|2x x >或1a x a -⎤<⎥⎦. 10a -<<,1|2a x x a -⎡⎤<<⎢⎥⎣⎦1a =-,∅.1a <-,12a x a -⎡⎤<<⎢⎥⎣⎦.39.在参加某次社会实践的学生中随机选取40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中.a(Ⅰ)求a 的值及成绩在区间[80,90)内的学生人数.(Ⅱ)从成绩小于60分的学生中随机选2名学生,求最多有1名学生成绩在区间[50,60)内的概率. 【答案】见解析【解析】(Ⅰ)10.30.150.10.050.05a =----- 0.035=.(Ⅱ)[40,50)有0.00510402⨯⨯=人, [59,60)有0.0110404⨯⨯=人,两名学生都在[50,60)概率为:2426C 62C 155P ===, ∴23155P =-=求.【注意有文字】40.已知数列{}n a 的前n 项和31n n S =-,其中*n ∈N . (Ⅰ)求数列{}n a 的通项公式.(Ⅱ)若数列{}n b 满足11b =,13(2)n n n b b a n -=+≤. (ⅰ)证明:数列13n n b -⎧⎫⎨⎬⎩⎭为等差数列.(ⅱ)求数列{}n b 的前n 项和n T . 【答案】见解析【解析】(Ⅰ)11(31)(31)n n n n n a S S --=-=--- 123n -⋅,2n ≥,∴123(*)n n a n -=⋅∈N ,即11112323233n n n n n n n b b b b -----=+⋅⇔=+, ∴112233n n n n b b ----=, ∴13n n b -⎧⎫⎨⎬⎩⎭为首项为1,公差为2的等差数列. (Ⅱ)1nn i c T b ==∑,∴112(1)213nn b n n -=+-=-, ∴1(21)3n n b n -=-⋅, ∴11333(21)3n n T n -=⨯︒+⨯++-⋅ 231333(21)3n n T n =⨯+⨯++-⋅ ∴21212(333)(21)3n n n T n -=--++++-⋅(1)31n n T n =-⋅+,*n ∈N .41.某大学调研学生在A ,B 两家餐厅用餐的满意度,从在A ,B 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60),得到A 餐厅分数的频率分布直方图,和B 餐厅分数的频数分布表:A 餐厅分数频率分布直方图频率分数B 餐厅分数频数分布表(Ⅰ)在抽样的100人中,求对A (Ⅱ)从该校在A ,B 两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A 餐厅评价的“满意度指数”比对B 餐厅评价的“满意度指数”高的概率.(Ⅲ)如果从A ,B 两家餐厅中选择一家用餐,你会选择哪一家?说明理由. 【答案】见解析【解析】(Ⅰ)(0.0030.0050.012)100.2P =++⨯=, 1000.220N =⨯=人.(Ⅱ)记A 指数比B 高为事件C ,A 评价指数为1为事件1A ,为2为事件2A ,B 评价指数数为0为事件0B ,为1为事件1B .∴1()(0.020.02)100.4P A =+⨯=, 2()0.4P A =,~0235()0.1100P B ++==, 14015()0.55100P B +==, 102021()()P C P A B A B A B =++,()0.40.10.40.10.40.550.3P C =⨯+⨯+⨯=.(Ⅲ)A :0.4 1.2⨯=, ()00.10.55120.35 1.25E Y =⨯+⨯+⨯=,EX EY <.选B .42.设m ∈R ,不等式2(31)2(1)0mx m x m -+++>的解集记为集合P . (Ⅰ)若{}|12P x x =-<<,求m 的值. (Ⅱ)当0m >时,求集合P .(Ⅲ)若{}|32x x P -<<⊆,求m 的取值范围. 【答案】见解析【解析】(Ⅰ)∵{}|12P x x =-<<,∴1-,2为2(31)2(1)0mx m x m -+++=的两根, 1x =-代入得(31)2(1)0m m m ++++=,∴12m =-.(Ⅱ)(2)[(1)]0x mx m --+>, 当0m >时,112x =,21m x m+=. ①12m m+=时,1m =,2x ≠; ②12m m +>时,01m <<,2x <或1m x m +>; ③12m m +<时,1m >,2x >或1m x m+<.~综上01m <<,1|2,m P x x x m +⎧⎫=<>⎨⎬⎩⎭,1m =,{}|72,2P x x x =∈≠, 1m >,1|,2m P x x x m +⎧⎫=<>⎨⎬⎩⎭. (Ⅲ)(3,2)x ∈-时,2(31)2(1)0mx m x m -+++>恒成立, 0m =时,20x -+>,{}|2P x x =<合题, 0m >时,由(I )得01m <≤合题, 0m <时,1112m m m+=+<, ∴1|2m P x x m +⎧⎫=<<⎨⎬⎩⎭, 此时13m m +-≤,解得104m -<≤, 综上,1,14m ⎡⎤∈-⎢⎥⎣⎦.四、附加题43.已知数列{}n a 是首项为1,公比为q 的等比数列. (Ⅰ)证明:当01q <<时,{}n a 是递减数列.(Ⅱ)若对任意*k ∈N ,都有k a ,2k a +,1k a +成等差数列,求q 的值. 【答案】见解析【解析】(Ⅰ)1n n a q -=, 111(1)n n n n n a a q q q q --+-=-=-,当01q <<时:有10n q ->,10q -<, ∴10n n a a +-<, ∴{}n a 为递减数列.(Ⅱ)∵k a ,2k a +,1k a +成等差数列, ∴112()0k k k q q q +--+=, 12(21)0k q q q -⋅--=,∵0q ≠, ∴2210q q --=, 解得:1q =或12q =-.44.从某校高一年级随机抽取n名学生,获得了他们日平均睡眠时间(单位:小时)的数据,整理得到数据分组及频数分布表:频率(Ⅰ)求n的值.(Ⅱ)若10a=,补全表中数据,并绘制频率分布直方图.(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,若上述数据的平均值为7.84,求a,b的值,并由此估计该校高一学生的日平均睡眠时间不少于8小时的概率.【答案】见解析【解析】(Ⅰ)2500.04n==.(Ⅱ)组号分组频数频率1[5,6)20.042[6,7)100.203[7,8)100.204[8,9)200.405[9,10)80.16(Ⅲ)112 5.5+10 6.5+7.58.589.5784 50210950a ba b⎧⨯⨯⨯+⨯+⨯=-⎪⎨⎪++++=⎩,1515a b =⎧⎨=⎩, ∴158230.465050P +===.频率睡眠时间45.已知关于x 的一元二次方程2220x ax b -+=,其中a ,b ∈R .(Ⅰ)若a 随机选自集合{}0,1,2,3,4,b 随机选自集合{}0,1,2,3,求方程有实根的概率. (Ⅱ)若a 随机选自区间[0,4],b 随机选自区间[0,3],求方程有实根的概率. 【答案】见解析【解析】(Ⅰ)可能发生有4520⨯=个, 有14个符合题意, ∴1472010P ==, 22(2)40a b ∆=-->,∴a b ≥, 此时符合题意.(Ⅱ)[0,4]a ∈,[0,3]b ∈,∴区域{}Ω=()|04,03a b a b ⋅≤≤≤≤, 面积Ω=3412μ⨯=,事件A 为有实根, {}()|04,03,A a b a b a b =⋅≤≤≤≤≥,153433212A μ=⨯-⨯⨯=, ∴1552()Ω128M P A μμ===.46.经统计,某校学生上学路程所需要时间全部介于0与50之间(单位:分钟).现从在校学生中随机抽取100人,按上学所学时间分组如下:第1组(0,10],第2组(10,20],第3组(20,30],第4组(30,40],第5组(40,50],得打如图所示的频率分布直方图.(分钟)(Ⅰ)根据图中数据求a 的值.(Ⅱ)若从第3,4,5组中用分成抽样的方法抽取6人参与交通安全问卷调查,应从这三组中各抽取几人? (Ⅲ)在(Ⅱ)的条件下,若从这6人中随机抽取2人参加交通安全宣传活动,求第4组至少有1人被抽中的概率.【答案】见解析【解析】(Ⅰ)(0.0050.010.030.035)101a ++++⨯=, 0.02a =.(Ⅱ)第3组人数为1000.330⨯=人, 第4组人数为0.210020⨯=人, 第5组人数为0.110010⨯=人, ∴比例为3:2:1,∴第3组,4组,5组各抽3,2,1人. (Ⅲ)记3组人为1A ,2A ,3A ,4组人为1B ,2B ,5组人为1C ,共有28C 15=种, 符合有:11()A B 12()A B 21()A B 22()A B 31()A B 32()A B 12()B B 11(,)B C 21(,)B C 9种,∴93155P ==.47.一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6. (Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率. (Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率. (Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X ,求随机变量X 的分布列.(Ⅳ)若从袋中每次随机抽取1个球,有放回的抽取3次,记球的最大编号为X ,求随机变量X 的分布列.~【答案】见解析【解析】(Ⅰ)共有3666=⨯种, 和为6的共5种, ∴536P =. (Ⅱ)1526C 1C 3P ==为抽2个球,有6的概率,∴2232122C (1)3339P P -=⨯⨯=为所求. (Ⅲ)X 可取3,4,5,6, 3336C 1(3)C 20P x ===,2336C 3(4)C 20P x ===,2436C 63(5)C 2010P x ====,2336C 1(6)C 2P x ===.(Ⅳ)11(1)6216P X ⎛⎫=== ⎪⎝⎭,33321331117(2)C C 666216P X ⎛⎫⎛⎫⎛⎫==+⋅+⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 32221331121219(3)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 32221331131337(4)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 32221331141461(5)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 32221331151591(6)C C 66666216P X ⎛⎫⎛⎫⎛⎫⎛⎫==+⋅-+⋅⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.48.在测试中,客观题难度的计算公式为ii R P N=,其中i P 为第i 题的难度,i R 为答对该题的人数,N 为参加测试的总人数,现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如下表所示:测试后,随机抽取了20(Ⅰ)根据题中数据,估计这240(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X ,求X 的分布列和数学期望.(Ⅲ)试题的预估难度和实测难度之间会有偏差,设i P '为第i 题的实测难度,请用i P 和i P '设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理. 【答案】见解析 【解析】(Ⅰ)55540.220R P N ===, ∴2400.248N =⨯=人. (Ⅱ)X 可取0,1,2,216220C 12(0)C 19PX ===,11164220C C 32(1)C 95P X ⋅===, 24220C 3(2)C 95P X ===.33801219959595EX =⨯+⨯+⨯=. (Ⅲ)定义2121[()()]i i n n S P P P P n=-++-~i P 为第i 题预估难度,且0.05S <,则合理222221[(0.80.9)(0.80.8)(0.70.7)(0.70.6)(0.20.4)]5S =-+-+-+-+-0.012=.∵0.0120.05S =<, ∴合理.49.已知数列{}n a 的通项公式为12(1)(1)n n a n n λ+=+-⋅+,其中λ是常数,*n ∈N . (Ⅰ)当21a =-时,求λ的值.(Ⅱ)数列{}n a 是否可能为等差数列?证明你的结论. (Ⅲ)若对于任意*n ∈N ,都有0n a >,求λ的取值范围. 【答案】见解析【解析】(Ⅰ)2n =时2321a λ=-=-, ∴2λ=.(Ⅱ)13a λ=+,232a λ=-,373a λ=+,474a λ=-, 若存在入使{}n a 为等差数列 有:2132a a a =+, 2(32)(3)(73)λλλ-=+++ ∴12λ=-,21332a a λ-=-=,43172a a λ--=-=, 矛盾,∴不存在入使{}n a 为等差数列. (Ⅲ)∵0n a >,∴12(1)(1)0n n n λ++-⋅+>,即1(1)(1)2n nnλ+--⋅<+,n ∈N .①当n 为正偶数:12nλ<-,随n 增大变大,13222λ<-=.②当n 为正奇数:12nλ<--,随n 变大而变大,2λ-≥. 综上:31,2λ⎡⎫∈-⎪⎢⎣⎭.50.设a ∈R ,*n ∈N ,求和:231n a a a a +++++=__________.【答案】见解析【解析】当0a =时,211n a a a ++++=,当1a =时,11n a a n +++=+,当0a ≠,且1a ≠时1111n na a a a+-++=-,∴11,11,11n n a a a a++=⎧⎪⎨-≠⎪-⎩.51.设数列{}n a 的通项公式为*3()n a n n =∈N ,数列{}n b 定义如下:对任意*m ∈N ,m b 是数列{}n a 中不大于23m 的项的个数,则3b =__________;数列{}m b 的前m 项和m S =__________. 【答案】见解析【解析】633n ≤,∴243n ≤, ∴3243b =, 由233m n ≤, ∴213m n -≤ ∴213m m b -=,3(19)3(91)198m m m S -==--,故243;3(91)8m-.52.已知函数2()(13)4f x mx m x =+--,m ∈R .当0m <时,若存在0(1,)x ∈+∞,使得0()0f x >,则m 的取值范围为__________. 【答案】见解析【解析】0m <,2(1)(13)4f mx m x =+--开口朝下, 13311222n m x m m-=-=->, 若0(1,)x ∃∈+∞使0()0f x >, 则2(13)160m m -+>, 即291010m m ++>, ∴1m <-或109m -<<,综上:1(,1),09⎛⎫-∞-- ⎪⎝⎭.53.设不等式组23034057200x y x y x y -⎧⎪-⎨⎪--⎩≥≥≤,表面的平面区域是W ,则W 中的整点(横、纵坐标均为整数的点)个数是().A .231B .230C .219D .218【答案】见解析【解析】3405720x y x y -⎧⎨--⎩≥,8060x y =-⎧⎨=-⎩,∴(80,60)A -,23057200x y x y -=⎧⎨--=⎩,6040x y =⎧⎨=⎩, (60,40)B ,分别取80x =-,79-,60,求出y 值, 可知总数有231, 选A .2x 3。

[精品]2019学年高一数学下学期期末结业考试试题 理(含解析) 人教新目标版

[精品]2019学年高一数学下学期期末结业考试试题 理(含解析) 人教新目标版

2019学年高一数学下学期期末结业考试试题理(含解析)第I卷选择题(每题5分,共60分)一、本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的1. 已知全集,则集合()A. B. C. D.【答案】D【解析】试题分析:因为,,所以,,故选D.考点:1、集合的表示;2、集合的并集及集合的补集.2. 下列函数中,既是偶函数又在区间内单调递减的是()A. B. C. D.【答案】B【解析】和为非奇非偶函数,而在内递增,故选.3. 若,则()A. B. C. D.【答案】D【解析】【分析】由两边同时平方,从而利用可以实现角α的弦切互化,从而求得答案.【详解】由两边同时平方,可得,,解得..故选:D.【点睛】在三角函数式的求值与化简中,要注意寻找式子中的角,函数式子的特点和联系,可以切化弦,约分或抵消,减少函数种类,对式子进行化简.4. 已知向量,且,则()A. B. C. D.【解析】,,则故答案为:A.5. 在等差数列中,,且,则的值()A. 3B. 6C. 9D. 12【答案】B【解析】【分析】由已知结合等差数列的性质可得,则答案可求.【详解】在等差数列中,,且,得,即,.故选:B.【点睛】本题考查等差数列的性质,是基础的计算题,等差数列性质灵活使用,可以大大减少运算量.6. 设是不同的直线,是不同的平面,下列命题中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】C【解析】试题分析:此题只要举出反例即可,A,B中由可得,则,可以为任意角度的两平面,A,B均错误.C,D中由可得,则有,故C正确,D错误.考点:线,面位置关系.7. 已知,,,则、、的大小关系是()A. B. C. D.【答案】D∵<=,=,>1,∴c>b>a.故选:D.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.8. 已知函数的部分图象如图所示,将函数的图象向左平移个单位长度后,所得图象与函数的图象重合,则()A. B.C. D.【答案】A【解析】根据函数的部分图像可得,则.∵∴,则.∵∴,即函数.∵将函数的图像向左平移个单位长度后,所得图像与函数的图像重合∴故选A.点睛:本题主要通过已知三角函数的图象求解析式考查三角函数的性质与变换,属于中档题.利用最值求出 ,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点, 用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点) 时;“第二点”(即图象的“峰点”) 时;“第三点”(即图象下降时与轴的交点) 时;“第四点”(即图象的“谷点”) 时;“第五点”时.9. 已知动点满足:,则的最小值为( )A. B. C. -1 D. -2【答案】D 【解析】 【分析】根据指数函数的性质,由可得,即,从而作出不等式组表示的平面区域,设,进一步得到,从而根据平面区域求以为圆心的圆的半径的最小值即得到的最小值.【详解】根据指数函数的性质,由可得,即,动点满足:,该不等式组表示的平面区域如图:设,,表示以为圆心的圆的半径,由图形可以看出,当圆与直线相切时半径最小,则,,解得,即的最小值为.故选:D.【点睛】(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.(3)本题错误率较高.出错原因是,很多学生无从入手,缺乏数形结合的应用意识,不知道从其几何意义入手解题.10. 惠安石雕是中国传统雕刻技艺之一,历经一千多年的繁衍发展,仍然保留着非常纯粹的中国艺术传统,左下图粗实虚线画出的是某石雕构件的三视图,该石雕构件镂空部分最中间的一块正是魏晋期间伟大数学家刘徽创造的一个独特的几何体——牟合方盖(如下右图),牟合方盖的体积(其中为最大截面圆的直径).若三视图中网格纸上小正方形的边长为1,则该石雕构件的体积为()A. B. C. D.【答案】C【解析】由三视图可知,该几何体是由正方体中去除两个圆柱体,其中,正方体的棱长为,圆柱体的直径为,高为两个圆柱体中间重合部分为牟合方盖该石雕构件的体积为故选11. 在平面直角坐标系中,以为圆心的圆与轴和轴分别相切于两点,点分别在线段上,若与圆相切,则的最小值为()A. 1B.C.D.【答案】B【解析】试题分析:因为为圆心的圆与轴和轴分别相切于两点, 点分别在线段上, 若,与圆相切,设切点为,所以,设,则,,故选D.考点:1、圆的几何性质;2、数形结合思想及三角函数求最值.【方法点睛】本题主要考查圆的几何性质、数形结合思想及三角函数求最值,属于难题.求最值的常见方法有① 配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;② 三角函数法:将问题转化为三角函数,利用三角函数的有界性求最值;③ 不等式法:借助于基本不等式求函数的值域,用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”;④ 单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图像法:画出函数图像,根据图像的最高和最低点求最值,本题主要应用方法②求的最小值的.12. 形如的函数因其函数图象类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数且有最小值,则当时的“囧函数”与函数的图象交点个数为()A. 1 B. 2 C. 4 D. 6【答案】C【解析】当时,,而有最小值,故.令,,其图像如图所示:共4个不同的交点,选C.点睛:考虑函数图像的交点的个数,关键在于函数图像的正确刻画,注意利用函数的奇偶性来简化图像的刻画过程.第II卷非选择题(共90分)二、填空题(每题5分,共20分)13. 当时,的最小值为,则实数的值为_________.【答案】4【解析】因为当时,,的最小值为,所以可得,故答案为.14. 在中,已知,则的面积为____.【答案】【解析】【分析】由已知利用三角形面积公式求解即可得答案.【详解】,.故答案为:.【点睛】本题主要考查了三角形面积公式的应用,属于基础题.15. 已知三棱锥的顶点都在球的球面上,是边长为2的正三角形,为球的直径,且,则此三棱锥的体积为________.【答案】【解析】【分析】根据题意,利用截面圆的性质即可求出点O到平面ABC的距离,进而求出点S到平面ABC的距离,即可计算出三棱锥的体积.【详解】是边长为2的正三角形,外接圆的半径,点O到平面ABC的距离,SC为球O的直径,点S到平面ABC的距离为,此三棱锥的体积为.故答案为:.【点睛】本题考查三棱锥的体积,考查学生的计算能力,求出点O到平面ABC的距离,进而求出点S到平面ABC的距离是关键.16. 若函数的图象上存在不同的两点,,其中使得的最大值为0,则称函数是“柯西函数”.给出下列函数:①;②;③;④.其中是“柯西函数”的为________________.(填上所有..正确答案的序号)【答案】①④【解析】设,由向量的数量积的可得,当且仅当向量共线(三点共线)时等号成立.故的最大值为0时,当且仅当三点共线时成立.所以函数是“柯西函数”等价于函数的图象上存在不同的两点,使得三点共线.对于①,函数图象上不存在满足题意的点;对于②,函数图象上存在满足题意的点;对于③,函数图象上存在满足题意的点;对于④,函数图象不存在满足题意的点.故函数① ④是“柯西函数”.答案:① ④点睛:(1)本题属于新定义问题,读懂题意是解题的关键,因此在解题时得到“柯西函数”即为图象上存在两点A,B,使得O,A,B三点共线是至关重要的,也是解题的突破口.(2)数形结合是解答本题的工具,借助于图形可使得解答过程变得直观形象.三、解答题(共6题,共70分)17. 已知的内角满足.(1)求角;(2)若的外接圆半径为1,求的面积的最大值.【答案】(1);(2).【解析】试题分析:(1)根据题意,根据正弦定理角化边得,再借助余弦定理即得角A的值;(2)先根据正弦定理,而面积=,求出bc的最大值即可,可利用基本不等式来求最值解析:(1)设内角所对的边分别为.根据可得,所以,又因为,所以.(2),所以,所以(时取等号).点睛:三角函数问题在求解时要注意结合正弦定理的边角互化关系快速转换求解,涉及面积最值时明确面积公式结合基本不等式求解是借此题第二问的关键.18. 等比数列的各项均为正数,且(1) 求数列的通项公式;(2)设求数列的前项和.【答案】(1);(2).【解析】试题分析:(Ⅰ)设出等比数列的公比q,由,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q的值,然后再根据等比数列的通项公式化简,把求出的q 的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{a n}的通项公式代入设bn=log3a1+log3a2+…+log3a n,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到b n的通项公式,求出倒数即为的通项公式,利用裂项求和即可.试题解析:(Ⅰ)设数列的公比为q,因为,则,即.又q>0,则.因为,则,即,所以.(Ⅱ)由题设,.则. (10分)所以.19. 如图,在四棱锥中,平面,.(1)求证:;(2)求点到平面的距离.【答案】(1)证明见解析;(2).【解析】试题分析:(1)首先由线面垂直可得线线垂直,并结合已知条件进而得出线面垂直,最后得出所证明的结论;(2)首先作出辅助线连接,然后根据已知的线线关系、线面关系分别求出、三棱锥的体积,最后利用公式即可得出所求的结果.试题解析:(1)证明:因为,,所以,,得,又,所以,因为,故.(2)等体积法:连接.设点到平面的距离为.因为,所以.从而,,得△的面积为1.三棱锥的体积因为,,所以.又,所以.由得,得故点A到平面PBC的距离等于.考点:1.线线垂直的判定定理;2、线面垂直的性质定理;3、等体积法.【方法点睛】本题主要考查了线线垂直的判定定理、线面垂直的性质定理和等体积法在求点到平面距离中的应用,考查学生综合应用知识的能力和空间想象能力,属中档题.对于第一问证明线线垂直问题,其关键是正确地寻找线面垂直的关系;对于第二问求点到平面的距离问题,其解题的关键是正确地运用等体积公式对其进行求解.20. 已知圆,直线.(1)若直线与圆交于不同的两点,当时,求的值;(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点?若过定点则求出该定点,若不存在则说明理由;(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.【答案】(1);(2);(3).【解析】【分析】(1)利用点到直线的距离公式,结合点O到的距离,可求的值;(2)由题意可知,O,P,C,D四点共圆且在以OP为直径的圆上,C、D在圆O:上可得直线CD的方程,即可求得直线是否过定点;(3)设圆心O到直线EF、GH的距离分别为,则,表示四边形EGFH的面积,利用基本不等式,可求四边形EGFH的面积最大值.【详解】(1)∵,∴点O到l的距离,∴.(2)由题意可知:O,P,C,D四点共圆且在以OP为直径的圆上,设.其方程为:,即,又C、D在圆O:x2+y2=2上,∴,即,由,得∴直线CD过定点.(3)设圆心O到直线EF、GH的距离分别为d1,d2.则,,当且仅当,即时,取“=”∴四边形EGFH的面积的最大值为.【点睛】本题考查直线与圆的位置关系,考查直线恒过定点,考查四边形面积的计算,考查基本不等式的运用,属于中档题.21. 关于函数的对称性有如下结论:对于给定的函数,如果对于任意的都有成立为常数),则函数关于点对称.(1)用题设中的结论证明:函数关于点;(2)若函数既关于点对称,又关于点对称,且当时,,求:①的值;②当时,的表达式.【答案】(1)证明见解析;(2)①;②.【解析】【分析】(1)根据题设中的结论证明即可;(2)由题意可得,①代值计算即可;②由,然后代值计算即可.【详解】(1)f(x)=的定义域为{x|x≠3},对任意x≠3有f(3﹣x)+f(3﹣x)=(﹣2﹣)+(﹣2﹣)=﹣4,∴函数f(x)=关于点(3,﹣2)对称;(2)函数f(x)关于点(2,0)对称,∴f(2+x)+f(2﹣x)=0,即f(x)+f(4﹣x)=0,又关于点(﹣2,1)对称,∴f(﹣2+x)+f(﹣2﹣x)=2,即f(x)+f(﹣4﹣x)=2,∴f(﹣4﹣x)=2+f(4﹣x),即f(x+8)=f(x)﹣2,①f(﹣5)=f(3)+2=23+3×3+2=19,②x∈(8k﹣2,8k+2),x﹣8k∈(﹣2,2),4﹣(x﹣8k)∈(2,6),∴f(x)=f(x﹣8)﹣2=f(x﹣8×2)﹣2×2=f(x﹣8×3)﹣2×3=…=f(x﹣8k)﹣2k,又由f(t)=﹣f(4﹣t),∴f(x)=f(x﹣8k)﹣2k=﹣f[4﹣(x﹣8k)]﹣2k=﹣[24﹣(x﹣8k)+3(4﹣(x﹣8k))]﹣2k,∴即当x∈(8k﹣2,8k+2),k∈Z时,f(x)=﹣24﹣x+8k+3x﹣26k﹣12.【点睛】本题考查了抽象函数和新定义的应用,关键是掌握新定义的用法,属于中档题.22. 已知函数,角的终边经过点.若是的图象上任意两点,且当时,的最小值为.(1)求或的值;(2)求函数在上的单调递减区间;(3)当时,不等式恒成立,求的最大值.【答案】(1);(2)和;(3).【解析】【分析】(1)由任意角的三角函数的定义求得,故可以取,再根据函数的图象的相邻的2条对称轴间的距离等于,故函数的周期为,由此求得的值;(2)令,即可得到函数的单调减区间;(3)因为,所以,不等式可得,由此可得,从而得到答案.【详解】(1)角的终边经过点.角的终边在第四象限,且,可以取,点是的图象上任意两点,且当时,的最小值为.则函数的图象的相邻的2条对称轴间的距离等于,故函数的周期为,故,解得.(2),,解得,函数的单调递减区间是,又,取,得减区间和.(3),则,由不等式可得,则有,解得,的最大值为.【点睛】本题主要考查了正弦函数的图象和性质,任意角的三角函数的定义,由函数的部分图象求解析式,考查了正弦函数的定义域和值域,函数的恒成立问题,属于中档题.。

[精品]2019学年高一数学下学期期末考试试题 文(含解析) 人教_新目标版

[精品]2019学年高一数学下学期期末考试试题 文(含解析) 人教_新目标版

2019学年高一数学下学期期末考试试题文(含解析)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,且,则x=( )A. 5B. 4C. -4D. -5【答案】C【解析】【分析】由向量平行,坐标对应成比例可求得x.【详解】由题意可知,因为,所以,所以x=-4,选C.【点睛】本题考查空间向量平行的坐标关系,两向量平行,坐标对应成比例。

2. 已知△ABC中,a=1,b=,B=45°,则A等于( )A. 150°B. 90°C. 60°D. 30°【答案】D【解析】【分析】因为己知两边及一对角,所以由正弦定理解三角形可得。

【详解】由正弦定理可知,即,所以,因为,所以,所以,解得。

选D.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化第三步:求结果,判定是否符合条件,或有多解情况。

3. 命题“存在一个无理数,它的平方是有理数”的否定是()A. 任意一个有理数,它的平方是有理数B. 任意一个无理数,它的平方不是有理数C. 存在一个有理数,它的平方是有理数D. 存在一个无理数,它的平方不是有理数【解析】试题分析:由命题的否定的定义知,“存在一个无理数,它的平方是有理数”的否定是任意一个无理数,它的平方不是有理数.考点:命题的否定.视频4. 若a,b,c∈R,且a>b,则下列不等式一定成立的是( )A. a+c>b-cB. (a-b)c2>0C. a3>b3D. a2>b2【答案】C【解析】【分析】由不等式性质及举反例逐个分析各个选项可判断正误。

2019学年高一数学下学期期末考试试题(含解析) 人教新版

2019学年高一数学下学期期末考试试题(含解析) 人教新版

2019学年第二学期高一期末考试数学试卷一、单项选择(每题5分,共60分)1. 已知,且, 则的值为()A. 2B. 1C. 3D. 6【答案】D【解析】【分析】由题得2x-12=0,解方程即得解.【详解】因为,所以2x-12=0,所以x=6.故答案为:D【点睛】(1)本题主要考查向量垂直的坐标表示,意在考查学生对该知识的掌握水平.(2) 设=,=,则.2. 正弦函数图象的一条对称轴是()A. B. C. D.【答案】C【解析】【分析】先求正弦函数的对称轴方程,再给k赋值得解.【详解】由题得正弦函数图象的对称轴方程是,令k=0得.故答案为:C【点睛】(1)本题主要考查正弦函数的对称轴方程,意在考查学生对该知识的掌握水平.(2)正弦函数的对称轴方程为.3. ()A. B. C. D.【答案】B【解析】故选B4. 已知向量满足,则()A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 在中,为边上的中线,为的中点,则( )A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.6. 若在是减函数,则的最大值是()A. B. C. D.【答案】C【解析】【分析】先化简函数f(x),再求函数的减区间,给k赋值即得a的最大值.【详解】由题得,令,所以函数f(x)的减区间为令k=0得函数f(x)的减区间为,所以的最大值是.故答案为:【点睛】(1)本题主要考查三角恒等变换,考查三角函数的单调区间的求法,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 一般利用复合函数的单调性原理求函数的单调性,首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.7. 已知,则()A. B. C. D.【答案】A【解析】由题意可得:,则:,利用二倍角公式有:.本题选择A选项.8. 若是圆上任一点,则点到直线距离的最大值()A. 4B. 6C.D.【答案】B【解析】【分析】先求圆心到点(0,-1)的值d,则点P到直线距离的最大值为d+r.【详解】由题得直线过定点(0,-1),所以圆心(-3,3)到定点的距离为,所以点P到直线距离的最大值为5+1=6.故答案为:B【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的掌握水平和数形结合分析推理能力.9. 已知函数的最小正周期为,将其图象向右平移个单位后得函数的图象,则函数的图象()A. 关于直线对称B. 关于直线对称C. 关于点对称D. 关于点对称【答案】D【解析】由题意得,故,∴,∴,∴,∴.∵,,∴选项A,B不正确.又,,∴选项C,不正确,选项D正确.选D.10. 已知是定义为的奇函数,满足,若,则()A. -50B. 0C. 2D. 50【答案】C【解析】分析:首先根据函数为奇函数得到,再由得到函数的对称轴为,故函数是周期为的周期函数,且,根据周期性可求得结果.详解:因为函数是奇函数,故且.因为,所以函数的对称轴为,所以函数是周期为的周期函数.因为,,,所以,根据函数的周期为可得所求式子的值.故选C.点睛:本题主要考查函数的奇偶性,考查函数的周期性,考查函数的对称性,是一个综合性较强的中档题.11. 若, ,则 ( )A. B. C. D.【答案】A【解析】由题目条件得,而点睛:三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.12. 已知为与中较小者,其中,若的值域为,则的值()A. 0B.C.D.【答案】C【解析】【分析】先求函数的解析式,再通过观察函数的图像得到a,b的值,即得a+b的值.【详解】由题得,观察函数的图像可得.故答案为:C【点睛】本题主要考查正弦函数余弦函数的图像和性质,意在考查学生对这些知识的掌握水平和数形结合的分析推理能力.二、填空题(每题5分,共20分)13. 已知向量,若,则________.【答案】【解析】分析:由两向量共线的坐标关系计算即可。

2019学年高一数学下学期期末结业考试试题(实验班) 文 新目标A版

2019学年高一数学下学期期末结业考试试题(实验班) 文 新目标A版

2019年上期高一年级文科实验班结业考试试卷数学(试题卷)注意事项:1.本卷为衡阳八中高一年级文科实验班结业考试试卷,分两卷。

其中共22题,满分150分,考试时间为120分钟。

2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。

开考15分钟后,考生禁止入场,监考老师处理余卷。

3.请考生将答案填写在答题卡上,选择题部分请用2B 铅笔填涂,非选择题部分请用黑色0.5mm 签字笔书写。

考试结束后,试题卷与答题卡一并交回。

★预祝考生考试顺利★第I 卷 选择题(每题5分,共60分)本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。

1.已知集合2{40}A x x x =-<,{}B x x a =<,若A B ⊆,则实数a 的取值范围( ) A .(0,4] B .(8,4)- C .[4,)+∞ D .(4,)+∞ 2.下列函数中,既是奇函数又在区间(0,+∞)上为增函数的是( )A . y =x 3B . y =ln xC . y =x 2D . y =sin x3.已知3cos()25πα+=-,且(,)2παπ∈,则tan()πα-+=( ) A. 43 B. 34- C 43- D. 34±4.已知向量2(,2),(3,1),(1,3)a x x b c =+=--=,若//a b ,则a 与c 夹角为( )A.6π B .3π C .23π D .56π 5.若实数x ,y 满足约束条件20,360,0,x y x y x y +-≥⎧⎪--≤⎨⎪-≥⎩则2z x y =+的取值范围是( )A .[3,4]B .[3,12]C .[3,9]D .[4,9]6.已知两个不同的平面,αβ和两个不重合的直线,m n ,有下列四个命题: ①若m ∥n ,m α⊥,则n α⊥; ②若,,m m αβ⊥⊥则α∥β;③若,m α⊥m ∥n ,n β⊂,则αβ⊥; ④若m ∥,,n ααβ=则m ∥n .其中正确命题的个数是( )A .0B .1C .2D .37.已知直线y=kx+2k+1与直线y=﹣x+2的交点位于第一象限,则实数k 的取值范围是( ) A.﹣B .k或kC .﹣6<k <2D .k8.已知等差数列{}n a 、{}n b 的前n 项和分别为n S 、n T ,若21n n S n T n +=+,则67ab 的值是( )A .1314 B .1312 C .1415 D .11149.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727 B. 59 C.1027D.1310.已知直线:l y m =+与圆22:(3)6C x y +-=相交于A ,B 两点,若120ACB ∠=︒,则实数m 的值为( )A.3+3.3+或3- C.9或-3 D .8或-211.已知函数f (x )=x 2+bx 的图象过点(1,2),记a n=.若数列{a n }的前n 项和为S n ,则S n 等于( ) A.B.C.D.12.设函数266,0()34,0x x x f x x x ⎧-+=⎨+<⎩≥,若互不相等的实数1x ,2x ,3x 满足123()()()f x f x f x ==,则123x x x ++的取值范围是( ).A .11,63⎛⎤ ⎥⎝⎦B .2026,33⎛⎫ ⎪⎝⎭C .2026,33⎛⎤ ⎥⎝⎦D .11,63⎛⎫⎪⎝⎭第II 卷 非选择题(共90分)二.填空题(每题5分,共20分)13.在平面直角坐标系xOy 中,将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移ϕ(02πϕ<<)个单位长度,若平移后得到的图象经过坐标原点,则ϕ的值为 .14.在ABC △中,点M 为边AB 的中点,若OP OM ∥,且(0)OP xOA yOB x =+≠,则yx=__________. 15.已知长方体ABCD ﹣A 1B 1C 1D 1内接于球O ,底面ABCD 是边长为2的正方形,E 为AA 1的中点,OA ⊥平面BDE ,则球O 的表面积为 .16.对于函数()f x ,若在定义域内存在..实数x ,满足()()f x f x -=-,称()f x 为“局部奇函数”,若()12423xx f x m m +=-+-为定义域R 上的“局部奇函数”,则实数m 的取值范围是______三.解答题(共6题,共70分) 17.(本题满分10分)已知ABC ∆的内角,,A B C 的对边分别为,,a b c,且)tan cos cos c C a B b A =+ (1)求角C ;(2)若c =,求ABC ∆面积的最大值.18.(本题满分12分)已知数列{}n a 的前n 项和n S 满足*231()n n S a n N =-∈.(1)求数列{}n a 的通项公式; (2)求数列21{}nn a -的前n 项和n T .19.(本题满分12分)如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点。

2019年高一第二学期数学期末试题解析

2019年高一第二学期数学期末试题解析

2019年高一第二学期数学期末试题解析
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢
xxxx年高一第二学期数学期末试题答案解析
[编辑推荐]为了帮助考生们了解高中学习信息,中国()分享了xxxx年高一第二学期数学期末试题答案解析,供您参考!
试卷答案
一、选择题
二、填空题
12.
13.
14.
15.③
三、解答题
/4
17.解:A={x∣2
={x∣x4
18.解:
原式=
=
19.

20.解:易知,函数f的定义域为;
)函数f=x-是奇函数,理由如下:
定义域关于原点对称,f+f=-x++x-=0,
所以,函数f是奇函数;
函数f=x-在上是增函数,证明如下:
任取,且,则
∵,∴,
∵,∴
∴,即
∴函数f=x-在上是增函数.
21.解:由图像可知,,解得,,
所以.…………6分
①由,
,10分
②由①可知,,其图像开口向下,对称轴为,
所以当时,.
即该公司可获得的最大毛利润为62500元,此时相应的销售单价为750元/件…………13分
以上就是中国()的编辑为您准备的xxxx年高一第二学期数学期末试题答案解析
同类热门:
高一数学期末复习练习:变量间的相关关系
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。

【2019最新】高一数学下学期期末试题(含解析)

【2019最新】高一数学下学期期末试题(含解析)

【2019最新】高一数学下学期期末试题(含解析)数学试题一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】由题意,所以,故选B.【答案】A【解析】分析:利用诱导公式和特殊角的三角函数化简求值即可.详解:故选A.点睛:本题考查利用诱导公式和特殊角的三角函数化简求值,属基础题.3.A. -3B. 0C. 1D. -1【答案】C4. 设单位向量,则的值为A. B. C. D.【答案】A【解析】分析:根据向量的模长公式计算出,再利用二倍角公式计故选:A.点睛:本题考查了平面向量的模长公式,二倍角公式,属于基础题.5. 设,,且,,则A. B. C. D.【答案】B..................6. 设是两条不同的直线,是两个不同的平面,下列命题中正确的命题【答案】D【解析】A:m⊥α,n?β,m⊥n时,α、β可能平行,也可能相交,不一定垂直,故A不正确C:α⊥β,m⊥α,n∥β时,m与n可能平行、相交或异面,不一定垂直,故C错误D:α∥β,m⊥α,n∥β时,m与n一定垂直,故D正确故选D.7. 已知,A. -4B. -2C. 2D. 4【答案】D【解析】分析:首先根据向量垂直,得到其数量积等于零,即,从而求得,之后应用向量的投影的定义求得结果所以在方向上的投影为,故选点睛:该题考查的是向量在另一向量方向上的投影问题,涉及到的知识点有向量垂直的条件是向量的数量积等于零,再者就是向量在另一向量方向上的投影的公式要正确使用.8. 设,,,则的大小关系是【答案】B【解析】因为.所以故选B.9. 已知正实数满足,则的最大值为【答案】C【解析】,当且仅当m=n时取等号。

本题选择C选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误10.A. 若,则B.C. 若,则D. 若,则【答案】C【解析】A.:若,,时,不一定有,故A错误B:可得在上的投影为或,故BC:由,可得从而有,故CD:由不一定成立,故D错误故选C11. 在△ABC中,,P是BN上的一点,若,则实数m的值为A. 3B. 1C.D.【答案】C【解析】分析:根据向量的加减运算法则,通过,把用和表示出来,详解:如图:∵,,则又三点共线,故得.故选C..点睛:本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用.12. 已知.【答案】D【解析】分析:先利用基本不等式求得的最小值,然后根据恒成立,求得进而求得的范围.详解:当且仅当时等号成立,若恒成立,则使恒成立,∴,求得故选:D.点睛:本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力,属于基础题.二.填空题:本大题共4小题;每小题5分,共20分.13. __________【答案】4【解析】试题分析:先用对数的运算法则将原始化简为,然后用对数的换底公式将不同底化为同底数即可通过约分求出值,对对数式求值问题,常先用对数运算进行化简,若底数不同用换底公式化为同底在运算.原式考点:1.对数运算法则;2.对数换底公式.14. 若变量满足约束条件,则的最小值为__________.【解析】画出不等式组表示的区域如图,结合图形可知当动直线经过点时,动直线在轴上的截距最大,,应填答案。

高中2019年高一下学期数学期末考试试题解析

高中2019年高一下学期数学期末考试试题解析

高中2019年高一下学期数学期末考试试题解析
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢
本文导航1、首页2、高一下学期数学期末考试试题答案-2
高中xxxx年高一下学期数学期末考试试题答案解析
[编辑推荐]为了帮助考生们了解高中学习信息,中国()分享了高中xxxx 年高一下学期数学期末考试试题答案解析,供您参考!
一选择题
二填空题
13.-1,14。

,,16.
三解答题
17.最小值为。

a>-3.
18.⑴由

19,证明。

直线AB的方程为,即bx+ay-ab=0
因为直线AB与圆c:相切,所以。

所以ab-4b-4a+8=0,即=8
设线段AB的中点m的坐标为,则a=2x,b=2y,所以=8,即=2.
=+2y-6=0.
21.解:设生产吨甲种产品,吨乙种产品,总利润为Z,
则约束条件为,
目标函数为,
可行域为下图中的阴影部分:本文导航1、首页2、高一下学期数学期末考试试题答案-2
6分
化目标函数为斜截式方程:
当目标函数直线经过图中的点m 时,有最大值,
联立方程组,
解得,所以,10分
将代入目标函数得.
答:公司每天生产甲、乙两种产品
都是吨时,公司可获得最大利润,最大利润为万元.
22.,当n=1时,。

当n时,。

∴数列是以为首项,以为公比的等比数列,

解:由题意可得:,
错位相减得
以上就是中国()的编辑为各位学生带来的高中xxxx年高一下学期数学期末考试试题答案解析,希望给各位考生带来帮助。

各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。

【2019最新】高一数学下学期期末考试试题文(含解析)

【2019最新】高一数学下学期期末考试试题文(含解析)

【2019最新】高一数学下学期期末考试试题文(含解析)说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

考试时间120分钟,分值150分。

注意事项:1、答题前,考生必须将自己的姓名、考号填写清楚,并将条形码粘贴到指定区域。

2、选择题必须用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。

3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草纸、试题卷上答题无效。

4、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一、选择题(共12小题,每题5分,在每小题给出的四个选项中,只有一项符合题目要求)1. 点到直线的距离是( )A. B. C. D.【答案】A【解析】点到直线的距离是故选A2. 过点且与直线平行的直线方程是( )A. B. C. D.【答案】B【解析】:∵直线x-2y-2=0的斜率k= ,∴所求直线斜率,故过点(1,-3)且与已知直线平行的直线为y+3=(x-1),即x-2y-7=0.故选:B.3. 在数列……中,等于( )A. 22B. 28C. 35D. 29【答案】D【解析】数列的前几项为……故答案为294. 已知下列说法正确的是(A. B.C. D.【答案】C【解析】对于A.或,故A错;对于B.不一定垂直,故B错;对于C.,根据,可得,又,所以,故C对;对于D.故D错故答案为C..................5. 在等差数列中,已知,则()A. 64B. 79C. 88D. 96【答案】D【解析】在等差数列中,已知,因为,所以故选D6. 等比数列中, 则的前项和为()A. 45B. 64C. 34D. 52【答案】A【解析】等比数列中, ,,故选A7. 正六棱锥底面边长为2,体积为,则侧棱与底面所成的角为( )A. 30°B. 45°C. 60°D. 75°【答案】B【解析】∵正六棱锥的底面边长为2,所以底面积S= ,因为体积为,则棱锥的高,底面顶点到底面中心的距离为2,所以侧棱与底面所成的角为45°故选B8. 若一个球的体积为,则这个球的表面积是()A. B. C. D.【答案】C【解析】,故选C9. 圆A :与圆B : 的位置关系是( )A. 相交B. 内切C. 外切D. 内含【答案】C【解析】圆A :,即,圆心A(2,1),半径为2;圆B :即,圆心B(-1,-3)半径为3圆心距AB=5,等于半径之和,所以两圆外切故选C点睛:设两个圆的半径为R和r,圆心距为d,则⑴d>R+r两圆外离;⑵d=R+r 两圆外切;⑶R-r<d<R+r (R>r) 两圆相交;⑷d=R-r (R>r)两圆内切;⑸d<R-r (R>r)两圆内含.10. 设则下列命题为真命题的是( )A. B. C. D.【答案】C【解析】,若c=0,则,故A错;,若b<0,则,故B错;则,C对;,若a,b都小于0,则故D错;故选C11. 不等式的解集是( )A. B. C. R D.【答案】B【解析】,则,即故选B12. 在中,三个内角A,B,C的对边分别是则b等于( )A. 4B.C. 6D.【答案】A【解析】,即sinB=,根据正弦定理得即所以b=4故选A二、填空题(本大题共4小题,每小题5分,共20分)13. 在等比数列中, 若是方程的两根,则=______.【答案】【解析】是方程的两根,所以,在等比数列中,=故答案为点睛:本题是一元二次方程中韦达定理及等比数列中通项的性质的考查,在等比数列中,若则.14. 若,则变量的最小值是________【答案】【解析】,根据对勾函数的单调性可知函数在上递减,在上递增,所以最小值为故答案为点睛:对勾函数y=x+ (a>0):1.定义域: 2.值域:(-∞,- ]U[,+∞)在正数部分仅当x= 取最小值,在负数部分仅当x=-取最大值-;3.奇偶性:奇函数,关于原点对称,4.单调区间:(-∞,- ] 单调递增[-,0)] 单调递减(0, ] 单调递减[,+∞)单调递增.15. 已知四棱锥的三视图如图所示,正视图是斜边长为4的等腰直角三角形,侧视图是直角边长为2的等腰直角三角形,则四棱锥四个侧面中,面积最大的值是_______________【答案】【解析】此四棱锥中,面SCD垂直于面ABCD,即顶点S在面ABCD上的投影落在CD的中点o处,底面矩形AB=CD=4,AD=BC=2,锥体的高h=,所以计算各面面积,所以四棱锥四个侧面中,面积最大的值.故答案为16. 已知变量满足约束条件,则的最大值为______________【答案】14【解析】作出不等式组对应的平面区域如图:由z=4x+y得y=−4x+z,平移直线y=−4x+z,由图象可知当直线经过点B 时,直线的截距最大,此时z最大,解得B(3,2)代入得最大值为14故答案为14三、解答题(本大题共6小题,解答应写出文字说明、证明过程或演算过程)17. 已知的三个顶点,(1)求边上的高所在直线方程;(2)求边的垂直平分线所在直线方程。

高一第二学期数学期末试题答案解析

高一第二学期数学期末试题答案解析

2019年高一第二学期数学期末试题答案解析2019年高一第二学期数学期末试题答案解析【】为了帮助考生们了解高中学习信息,查字典数学网分享了2019年高一第二学期数学期末试题答案解析,供您参考! 试卷答案一、选择题1.D2.D3.C4.C5.A6.C7.D8.A9.C 10.B二、填空题11.312.13.14.15.③三、解答题16.(1)3 (2)7/417.解:(1)A={x∣2(2) ={ x∣x3或x7}={ x∣1(3)a418.解:(1)(2)原式=19.(1)(2)略20.解:(Ⅰ)易知,函数f(x)的定义域为;(Ⅱ))函数f(x)=x- 是奇函数,理由如下:定义域关于原点对称,f(-x)+f(x)=-x+ + x- =0,所以,函数f(x)是奇函数;(Ⅲ) 函数f(x)=x- 在上是增函数,证明如下:任取,且,则,即函数f(x)=x- 在上是增函数.21.解:(1)由图像可知,,解得,,所以. 6分(2)①由(1),,10分②由①可知,,其图像开口向下,对称轴为,其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

所以当时,.语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

2019高一下学期期末数学试卷含解析

2019高一下学期期末数学试卷含解析

2021-2021含解析年高一下学期期末数学试卷12560.每题四个选项中,只有一项正个小题,每题分分,共一、选择题:本大题共.确1ABCa=4b=3C=60ABCS=°〕,,的面积.在△,那么△中,〔DC3B6 A ....a=2b= ABCA=30B=452°°〕,,那么.在△,中,〔DB C2A4 ....c=Ca=4b=3 3ABC 〕,,的度数为〔.在△中,,那么角A30 B45 C60D120 °°°°....x12=2x 4= 〕,假设〕的值为〔,∥〔,那么实数,.向量〔〕,A1 B2 C3 D4....=3=2=5 〕的夹角为〔 || ,,那么向量 || . ||与,A30B60 C45 D90°°°°....* a= =nN6aa=1a〕〔∈.在数列{ } ,〔〕,,那么5nn+11CAD B....7aa=6a=10S=〕,〔,那么.等差数列{ },7n35A60 B56 C40 D36.... n m S=328an〕×.等比数列{ ,那么其公比是〔} ,前 +项和nn A1 B2 C3 D4.... 9 〕.某几何体的三视图以以下图,它的表面积为〔A32 B48 C33 D24 ππππ.... 10 βα〕∥ .以下条件能判断平面的是〔mmmmγγβ②αβ③④ααβγβ①αγ⊥⊥∥∥⊥且∥且且⊥且∥ABCD ③④②④①③①②....11 〕.将一个正方体金属块铸造成一球体,不计耗费,那么其先后表面积之比值为〔 C D1AB .... 12rRh ,假设其侧面积等于两底面面积之和,那么下、,高为.一个圆台上、下底面半径分别为〕列关系正确的选项是〔. D =B= ==AC +...++.+..4520 把答案填在答题卡的指定地址个小题,每题分二、填空题:本大题共分,共26x5=0aa_______13aaax..在等差数列{+}中,假设+和是方程的两根,那么的值是﹣658n3=_______22=12 14= .〕,,那么〕 +,| 〔 | .向量,〔 15ABCDABCDBDAC_______..在正方体中,异面直线﹣所成角的度数为与11111PC=AB=4PA=PB=BC=AC=5PABC16,那么其的外接球的表面积为﹣,中,假设.在三棱锥_______.670 分,解同意写出必要的文字说明,证明过程或演算三、解答题:本大题共个小题,共.步骤17ABCABCabc成等比数列..△,的三角成等差数列,三边,,,1B的度数.〔〕求角S=b2ABC 的长.,求边〔的面积〕假设△量〔,求实数⊥2x 23=22=3x18〕〔,〔﹣〕,,.向量x 1 的值;〕假设向的值.﹣与〕假设向量〔+共线,求实数19a10aaa 成等比数列.,公差不为,是首项为的等差数列,且.数列{ , } 4n21 a的通项公式;〔Ⅰ〕求数列{}n=SbnbS1.〔Ⅱ〕假设} 的前<,项和,求证:是数列{ nnnn* a=2bnN=a1 =3a20aa2 +∈, +,.数列{ , } 满足nnnn1n+1 1b 为等比数列. } 〕证明数列 { 〔n2aanS .〕求数列 { 与其前 } 的通项公式项和〔 nnn21PABCDPAABCDEPD的中点;⊥底面的底面是菱形,.如图,四棱锥是﹣,PBACE;∥平面〔Ⅰ〕求证:BDPC.〔Ⅱ〕求证:⊥22ABCABC2DCC的中点.是所有的棱长均为﹣,.正三棱柱面体﹣〔1112CCABD所成角的大小.〔与平面〕求直线13ABDB11111ABDABC的体积.〕求多的余弦值.〔〕﹣〔理科〕求二面角﹣ 1.2021-2021 学年吉林省长春外国语学校高一〔下〕期末数学试卷参照答案与试题解析12560.每题四个选项中,只有一项正一、选择题:本大题共分,共个小题,每题分1ABCa=4b=3C=60ABCS=°〕中,的面积,,〔,那么△.在△D3.确B6 AC ....正弦定理.【考点】利用三角形面积计算公式即可得出.【解析】=3absinC=S=.【解答】解:C.应选:a=2b= ABCA=30B=452°°〕,〔,.在△中,点】由利用正弦定理即可直接计算求值得解.,那么【解析】C2 DA4 B....正弦定理.【考a=2 ABCA=30B=45 °°,中,∵,【解答】解:在△,==4b= .∴利用正弦定理可得:A.应选:c=Cb=3 3ABCa=4 〕.在△,那么角中,,的度数为〔, B 45 C60 D120A30°°°°....余弦定理.【考点】利用余弦定理即可得出.【解析】°°C0cosC=180= ,∈〔,【解答】解:∵,〕 C=60 °.∴ C .应选:x x=142=2 〕的值为〔,〕,那么实数,假设.向量〔,〕∥,〔43 2 CDBA1....平面向量共线〔平行〕的坐标表示.【考点】直接利用向量共线的充要条件,列出方程求解即可.【解析】2x=2=1 ,∥ 【解答】解:向量〔,〕,〔,〕, x=4 .可得.D .应选:=5=3=2 〕,,那么向量 || . || 与,的夹角为〔 || B60C45 D90A30 °°°°....数量积表示两个向量的夹角;向量的模.【考点】【解析】要求向量的夹角,写出向量夹角的公式,需要先求出两个向量的数量积,依照所给的两个向量差的模长两边平方,获取数量积,代入向量夹角的公式,获取结果.= ,|| 【解答】解:∵=7 ,∴=3,∴=cos== θ,∴°°0180θ, ] ∈ [ ,∵° =60θ∴ B .应选* 6Nnaaa=1a==〕},〔∈,〔〕,那么{.在数列5n+1n1DCAB....数列递推式.【考点】 1 以为公差的等差数列,为首项,【解析】由数列递推式获取数列求出其{}是以 a 的值.通项公式后可得5a=,解:由,得【解答】n+1a=1,又∵1 1 为公差的等差数列,为首项,以} 是以∴数列 {,那么.∴.∴ A .应选:7aa=6a=10S= 〕 } ,,,那么〔 { .等差数列735n A60 B56 C40 D36....n 项和.【考点】等差数列的前利用等差数列的性质与求和公式即可得出.【解析】aaa=aa=610=16 .+【解答】解:∵等差数列 {+} ,+7n135==78=56 S .那么×7B.应选:n m2 =38anS〕},前+项和×,那么其公比是〔.等比数列{ nn A1 B2 C3 D4 .... n项和.等比数列的前【考点】利用递推关系、等比数列的通项公式及其定义即可得出.【解析】 m2 nS=3a ,n项和× } ,前 +解:等比数列【解答】 { nnnn1n1﹣﹣ =3232=3n2a=SS2mm ,×〕×﹣〔∴+≥ +时,×﹣1nnn﹣==2,∴ B.应选:9 〕.某几何体的三视图以以下图,它的表面积为〔A32 B48 C33 D24ππππ....由三视图求面积、体积.【考点】 6.下部为【解析】由几何体的三视图可知,该几何体是一组合体,上部为半球体,直径为 5 的圆锥,分别求面积,再相加即可.母线长为6.下【解答】解:由几何体的三视图可知,该几何体是一组合体,上部为半球体,直径为 5 的圆锥.部为母线长为2=183 2ππ×半球表面积为35=15ππ××圆锥的侧面积为 15=33πππ +所以所求的表面积为 C 应选10 βα〕.以下条件能判断平面的是〔∥mm mmγ③αβαββγβγ①αγ④α②⊥⊥且∥∥且∥且∥⊥且⊥ABCD③④①③②④①②....空间中直线与平面之间的地址关系.【考点】.依照空间线面地址关系的性质与判判断理进行判断或举反例说明.【解析】 lll βαββγ①α①αγαγ可得出∥,于是,那么⊥【解答】解:对于⊥,设,故⊥,,∵∥∥,β;∥ βαβ②②““α;,由,故垂直于同一条直线的两个平面平行对于∥可得可得出∥=nmnmmmm βα∩β③αββαα③不能够判对于,那么,设,显然,∥∥订交,故,, ?,,∥ ?βα ;断∥ βγα④αβ.,当两两垂直时,显然不能够得出对于,∥,C .应选11 〕.将一个正方体金属块铸造成一球体,不计耗费,那么其先后表面积之比值为〔CBA1D ....球内接多面体.【考点】利用正方体、球的体积、表面积公式,即可得出结论.【解析】Ra,,球的半径为【解答】解:设正方体的棱长为,那么= ,∴=4 6aR22π:.∴先后表面积之比值为 D .应选:12rRh ,假设其侧面积等于两底面面积之和,那么下、.一个圆台上、下底面半径分别为,高为〕列关系正确的选项是〔CD =A ==B= ++...+.+ .旋转体〔圆柱、圆锥、圆台〕【考点】【解析】依照圆的面积公式分别求出圆台的上、下底面面积,再由侧面面积等于两底面面积之和,利用圆的侧面积公式加以计算,可得出圆台的母线长,即可得出结论. 2r=lSπ,圆台的下底,依照题意可得圆台的上底面面积为【解答】解:设圆台的母线长为上2 RS=π,面面积为下∵圆台的侧面面积等于两底面面积之和,22l= r=rS=RRlππ,解之得∴侧面积 +〔〕〕 +〔侧l= ∵=,∴222 rR=h〕﹣〕∴〔 +〔=. +∴ A .应选:..4520 把答案填在答题卡的指定地址个小题,每题二、填空题:本大题共分分,共 26x5=0aaaaax6 13. } 中,假设和的两根,那么是方程+的值是﹣ +.在等差数列 { 6n583等差数列的通项公式.【考点】利用等差数列通项公式及韦达定理求解.【解析】 6x5=0x aaa 的两根, +【解答】解:∵在等差2数列 {} 中,是方程和﹣aa=aa=6. ++∴ 6 .故答案为:8n38563=5 =2142=12 .,| 〔| .向量,〔 +,〕〕,那么平面向量的坐标运算.【考点】直接利用向量的坐标运算,求解向量的模即可.【解析】=324=12 =2 ,解:向量〕〔〔,,那么〕〕,〔 +,,【解答】==5 .|| 那么+5.故答案为:15ABCDABCDBDAC90°..在正方体中,异面直线﹣与所成角的度数为11111 异面直线及其所成的角.【考点】 BDACOACDDBDB ?⊥面【解析】连接,依照线面垂直的判判断理可知交与点,而 DDBACDBBDAC 所成角的度数.面,从而可求出异面直线,那么与⊥111解:如图【解答】11BDACODDABCDACABCD面与点⊥面交,∵ ?连接,1DDACACBDDDBD=D∩,⊥⊥∴,而11ACDDB⊥面∴ 1DBDDB面又∵ ?ACDBBDAC90°.⊥与,即异面直线∴所成角为90 °.故答案为:1111PC=AB=4PA=PB=BC=AC=5PABC16 ,那么其的外接球的表面﹣中,假设,.在三棱锥41 π.积为球的体积和表面积.【考点】455,那么长方体的对角线长等【解析】构造长方体,使得面上的对角线长分别为,,PABCPABC外接球的表面积.﹣外接球的直径,即可求出三棱锥﹣于三棱锥.PC=AB=4PA=PB=BC=AC=5 PABC ,【解答】解:∵三棱锥中,﹣,554,,,∴构造长方体,使得面上的对角线长分别为ABCP 外接球的直径.﹣那么长方体的对角线长等于三棱锥222222zz=25xxyzxy=32=25y ,,那么 ++设长方体的棱长分别为,,,, +222=41xzy +∴+ABC P 外接球的直径为∴三棱锥﹣4=41PABC π.﹣∴三棱锥外接球的表面积为 41 π.故答案为:670 分,解同意写出必要的文字说明,证明过程或演算三、解答题:本大题共个小题,共 .步骤17ABCABCabc 成等比数列.成等差数列,三边.△,的三角,,, 1B的度数.〕求角〔S=bABC 2 的长.的面积〕假设△,求边〔正弦定理;余弦定理.【考点】1ABCABC2B=ACABC=180 °,即可得,,又,的三角 +成等差数列,【解析】〔 +〕由△ + 出.2=accb2ab,利用余弦定理可得:〔成等比数列.可得〕由三边,,=cos60a=c °.再利用等边三角形的面积计算公式即可得,可得出.1ABCABC2B=ACABC=180°,成等差数列,∴ +,【解答】解:〔 +〕∵△ +的三角,又,B=60 °.∴2=acb abc 2 ,,成等比数列.∴〕∵三边,〔=cos60=°,,∴由余弦定理可得:a=c.化为 ABC 是等边三角形.∴△2=ABCbS=b=2 .×∴△的面积,解得=2218 =3x 〕,.向量〕〔,,〔﹣x1 的值;⊥〕假设向量,求实数〔2x 32 的值.〕假设向量共线,求实数〔﹣与 + 【考点】平面向量的坐标运算;平面向量共线〔平行〕的坐标表示;平面向量数量积的运算.=0x 1 ?即可得出.⊥,可得〕【解析】〔,解得 2 〕利用向量坐标运算性质、向量共线定理即可得出.〔=612x=0x=3?.〕∵﹣⊥,解得【解答】解:〔,∴ +2=73x22=52x3.〕+﹣〔﹣〔,〔﹣,〕,〕+272x53x32=0,+与∵﹣〕+共线,∴〔﹣〕+〔 x=3 .﹣解得.19a10aaa 成等比数列. } 是首项为,,公差不为,的等差数列,且.数列 { 4n12a 的通项公式; }〔Ⅰ〕求数列 { n=SbnS1b .和,求:是数列{ 〔Ⅱ〕假设 } 的前<,nnnn 数列的求和;数列推式.【考点】=aaaaaIad0,,【解析】〔成等比数列.可得〕等差数列{,由 } 的公差,≠ 4n24112 =113dd1d即可得出.〕×〔即〔,解得 ++〕===IIb 〞“与数列〔,利用〕裂求和n 的性即可得出.Iad0aaa成等比数列.,∵ 【解答】〔≠〕解:等差数列 { ,} 的公差,4n122=113dd=1a1d =a.,∴〔×〔+〕〕+,解得∴ 41a=1n11=n.+〔∴〕×n=b== II ,〔〕明: nb 和∴数列 { 的前 }nn=1S= ⋯ ++n1 .<*a=2bN=a1 20aa=3a2n +,.数列 {} 足,,+∈nn1nn+1n 1b 等比数列.〕明数列 {〔 } n2aanS .{ 与其前 } 的通公式〔和〕求数列nnn数列的求和;等比数列的通公式.【考点】1〕利用构造法将函数行化,合等比数列的定行明.【解析】〔 2b=a1aan 和公式的通公式的关系即可求出数列〔{〕依照,利用等比数列的前+} nnnn以及分法行求解即可.1a=3a2 ,+〕∵【解答】明:〔 nn+11a=3a21=3a1的等比数列.即 } ,数列 { 是公比,〔 ++〕++∴nnn+1a=2b=a1 +∵,n1n b=3b ,∴nn+1=3bq=3 n2bq=3b=a1=21=3,〕∵数列{+}是公比的等比数列,首+〔1n1n1n ﹣=a3b=31=3?, +nnn1 =3a.n21PABCDPAABCDEPD的中点;⊥底面的底面是菱形,n1n 3n==S.〕〔n.如,四棱是,PBACE;∥平面〔Ⅰ〕求:BDPC.〔Ⅱ〕求:⊥直与平面平行的判断;直与平面垂直的性.【考点】 ACBDOEOEOPBD的中位和面与,利用的交点三角形,【解析】〔Ⅰ〕取PBACE;∥平面平行的判判断理即可得BDPACBDPC .,利用直与平面垂直的性即可得〔Ⅱ〕易⊥⊥平面ABCDACBDOEPD 的中点,是〔Ⅰ〕∵底面【解答】明:是菱形,取与的交点,又EO ,EOPB ,那么 EOACEPBACE ,,平面又 ??平面 PBACE ;∴∥平面 PAABCDBDABCD ,,〔Ⅱ〕 ∵底面⊥底面 ?PABD ①;⊥∴ ABCD 是菱形,又底面 ACBD ②;⊥∴ PAAC=A∩,BDPACPCPAC ,⊥平面 ?,平面∴ BDPC .∴⊥22ABCABC2DCC 的中点.,.正三棱柱所有的棱长均为﹣是11111ABDABC的体积. ﹣〕 求多面体〔2CCABD 所成角的大小.与平面〔〕求直线13ABDB的余弦值.〔理科〕求二面角111〔〕﹣﹣ 1二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面所成的角.【考点】 1ABDABC的体积 【解析】〔﹣〕多面体111V= ,由此能求出结果. 2AABCAACxACyAAz 轴,建〔的垂线为〕以轴,为原点,在平面轴,内过为作为1CCABD所成角.与平面立空间直角坐标系,利用向量法能求出直线 13ABDBDBABD﹣〕求出平面的法向量,利用向量法能求出二面角的法向量和平面﹣ 〔 1B 的余弦值. 11ABCABC2DCC 的中点,〕∵正三棱柱所有的棱长均为﹣【解答】解:〔是, 1111=CD=1 ,∴,CABABD 的体积:∴多面体﹣ 111 V= =SAA ?﹣ ABC △1== . 2AABCAACxACyAAz 轴,的垂线为轴,作〔轴, 〕以为为原点,在平面内过为1建立空间直角坐标系, D0B2122A0000 C020C〕,〕〔,,,,那么〕〔,,,〔〕,〔,,〔,,〕 1=022=1 =00 ,〕,,〕〔〕,〔,,〔, zABD=xy ,,的法向量〕 ,设平面〔=x= ,得那么,取 ,〔〕 CCABD θ,与平面所成角为设直线1===sincos = θ,| < | > =60 °θ,∴ CCABD60 °.与平面∴直线所成角为1=00123 =1 ,〕〔,〔,〕〕,〔﹣,, BDBa=b c 的法向量为,设平面〔,,〕1=a=那么,取,得〔,〕cos=== <,﹣>ABDB 的平面角为钝角,﹣由图知二面角﹣1BBDA .的余弦值为﹣∴二面角﹣﹣1892021 日月年.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年上期高一年级文科实验班结业考试试卷数学(试题卷)第I卷选择题(每题5分,共60分)一、本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的1. 已知集合,,若,则实数的取值范围()A. B. C. D.【答案】C【解析】,解得,又,故实数的取值范围故选2. 下列函数中,既是奇函数又在区间上为增函数的是( )A. B. C. D.【答案】A【解析】A,D为奇函数,B非奇非偶,C为偶函数,排除B,C;易知在上单调递增,在上单调递减,不满足题意,A. 在区间上为增函数.故选A.3. 已知,且,则()A. B. C. D.【答案】B【解析】因为cos=-,所以-sinα=-,sinα=,又α∈,,∴=.4. 已知向量,若,则与夹角为()A. B. C. D.【答案】A【解析】【详解】分析:先判断出方向相反,求出的夹角,与的夹角为,从而可得结果.详解:由,,因为,,所以方向相反,设的夹角为,则与夹角为,由可得,,所以与夹角为,故选A.点睛:本题主要考查平行向量的性质,平面向量夹角余弦公式的应用,属于中档题. 本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).5. 若实数,满足约束条件则的取值范围是()A. B. C. D.【答案】C【解析】画出表示的可行域,由,得,由,得,平移直线,当直线经过时分别取得最小值,最大值,故的取值范围是,故选C.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6. 已知两个不同的平面和两个不重合的直线,有下列四个命题:①若∥,,则;②若则∥;③若∥,,则;④若∥则∥.其中正确命题的个数是()A. 0B. 1C. 2D. 3【答案】D【解析】试题分析:由线面垂直的第二判定定理我们易得①正确;由面面平行的判定方法,我们易得到②为真命题;∵,∴,又由,则,即③也为真命题.若,,则与可能平行也可相交,也可能异面,故④为假命题,故选D.考点:平面与平面之间的位置关系;空间中直线与直线的位置关系;直线与平面的位置关系.7. 已知直线与直线的交点位于第一象限,则实数的取值范围是()A. B. 或C. D.【答案】A【解析】【详解】分析:联立,可解得交点坐标,利用即可得结果.详解:联立,解得,直线与直线的交点位于第一象限,,解得,故选A.点睛:本题考查了直线的交点,分式不等式的解法,意在考查综合利用所学知识解决问题的能力,属于中档题.8. 已知等差数列、的前项和分别为、,若,则的值是()A. B. C. D.【答案】A【解析】设等差数列、的公差分别为和∵∴,即∴,即①∴,即②由①②解得,∴故选A9. 如图,网格纸上正方形小格的边长为1(表示),图中粗线画出的是某零件的三视图,该零件由一个底面半径为,高为的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A. B. C. D.【答案】C【解析】因为加工前的零件半径为3,高为6,所以体积,又因为加工后的零件,左半部为小圆柱,半径为2,高4,右半部为大圆柱,半径为3,高为2,所以体积,所以削掉部分的体积与原体积之比为,故选C.考点:本小题主要考查立体几何中的三视图,考查同学们的空间想象能力.视频10. 已知直线与圆相交于,两点,若,则实数的值为()A. 或B. 或C. 9或-3D. 8或-2【答案】A【解析】由题意可得,圆心(0,3)到直线的距离为,所以,选A。

【点睛】直线与圆相交圆心角大小均是转化为圆心到直线的距离,用点到直线的距离公式解决。

11. 已知函数的图象过点,记.若数列的前项和为,则等于()A. B. C. D.【答案】D【解析】【详解】分析:由函数的图象过点,求出,从而可得的通项公式,由裂项相消法可得结果. 详解:因为函数的图象过点,所以,可得,,故选D.点睛:本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误. 12. 设函数,若互不相等的实数满足,则的取值范围是()A. B. C. D.【答案】D【解析】函数的图象,如图,不妨设,则,关于直线对称,故,且满足;则的取值范围是:,即.故选.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.第II卷非选择题(共90分)二、填空题(每题5分,共20分)13. 在平面直角坐标系中,将函数的图象向右平移个单位长度,若平移后得到的图象经过坐标原点,则的值为_______ . 【答案】 【解析】函数的图像向右平移个单位得,因为过坐标原点,所以点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言. 函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数. 14. 在中,点为边的中点,若,且,则_______.【答案】1 【解析】 ∵是的中点,∴,又∵,∴,, ∴.15. 已知长方体内接于球,底面是边长为2的正方形,为的中点,平面,则球的表面积为__. 【答案】【解析】 试题分析:取的中点为,连接,则四边形为矩形.因为平面,所以,所以四边形为正方形,所以球的半径,所以球的表面积为.考点:1、长方体的内接球;2、球的表面积. 16. 对于函数,若在定义域内存在..实数,满足,称为“局部奇函数”,若为定义域上的“局部奇函数”,则实数的取值范围是______. 【答案】【解析】∵“局部奇函数”,∴存在实数满足,即,令,则,即在上有解,再令,则在上有解,函数的对称轴为,分类讨论:①当时,,∴,解得;②当时,,,解得.综合①②,可知.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

对于此题中的新概念,对阅读理解能力有一定的要求。

但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝。

三、解答题(共6题,共70分)17. 已知的内角的对边分别为,且.(1)求角;(2)若,求面积的最大值.【答案】(1);(2).【解析】试题分析:(1)利用正弦定理与和差公式即可得出.(2)利用余弦定理、基本不等式的性质、三角形面积计算公式即可得出.试题解析:(1),由正弦定理得,,,,,.(2)由余弦定理得:,.当且仅当时,面积取最大值.18. 已知数列的前项和满足.(1)求数列的通项公式;(2)求数列的前项和.【答案】(1);(2).【解析】【试题分析】(1)利用求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和.【试题解析】(1)当时,,所以;当时,,则,即.又因为,所以数列是以1为首项,3为公比的等比数列,所以.(2)由(1)得,所以,①,②②①,得,所以.【点睛】本小题主要考查数列通项公式的求法,考查错位相减法求数列的前项和.对于已知求的题目,首先要求出的值,然后利用可求得数列的通项公式,最后要验证当时是否成立.若一个数列是由一个等差数列乘以一个等比数列所得,那么可以利用错位相减法求其前项和.19. 如图,在三棱锥中,,为线段的中点,为线段上一点.(1)求证:;(2)求证:平面平面;(3)当平面时,求三棱锥的体积.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】【详解】分析:(1)因为所以平面,又因为平面,所以;(2)由等腰三角形的性质可得,由(1)知,,所以平面,从而平面平面;(3)先证明,结合(1)可得平面,从而可得三棱锥的体积为,进而可得结果.详解:(1)因为PA⊥AB,PA⊥BC,所以PA⊥平面ABC.又因为BD平面ABC,所以PA⊥BD.(2)因为AB=BC,D为AC中点,所以BD⊥AC.由(1)知,PA⊥BD,所以BD⊥平面PAC,所以平面BDE⊥平面PAC.(3)因为PA∥平面BDE,平面PAC平面BDE=DE,所以PA∥DE.因为D为AC的中点,所以DE=PA=l,BD=DC=.由(1)知,PA⊥平面ABC,所以DE⊥平面ABC,所以三棱锥E-BCD的体积V=BD·DC·DE=.点睛:本题主要考查线面垂直的判定定理及面面垂直的判定定理,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20. 已知函数.(1)设.①若,求函数的零点;②若函数存在零点,求的取值范围.(2)设,若对任意恒成立,试求的取值范围.【答案】(1)1,;(2).【解析】【详解】分析:(1)①将代入解析式,分类讨论解方程即可得结果;②讨论的符号,同一坐标系中作出两个函数的图象,利用数形结合可得结果;(2)对任意恒成立,等价于的最大值与最小值的差不大于,分三种情况讨论函数的单调性,分别求出最大值与最小值,综合三种情况可得结果.详解:(1)F(x)=f(x)﹣g(x)=x﹣a﹣a|x|,①若a=,则由F(x)=x﹣|x|﹣=0得: |x|=x﹣,当x≥0时,解得:x=1;当x<0时,解得:x=(舍去);综上可知,a=时,函数y=F(x)的零点为1;②若函数y=F(x)存在零点,则x﹣a=a|x|,当a>0时,作图如下:由图可知,当0<a<1时,折线y=a|x|与直线y=x﹣a有交点,即函数y=F(x)存在零点;同理可得,当﹣1<a<0时,求数y=F(x)存在零点;又当a=0时,y=x与y=0有交点(0,0),函数y=F(x)存在零点;综上所述,a的取值范围为(﹣1,1).(2)∵h(x)=f(x)+g(x)=x﹣a+a|x|,x∈[﹣2,2],∴当﹣2≤x<0时,h(x)=(1﹣a)x﹣a;当0≤x≤2时,h(x)=(1+a)x﹣a;又对任意x1,x2∈[﹣2,2],|h(x1)﹣h(x2)|≤6恒成立,则h(x1)max﹣h(x2)min≤6,①当a≤﹣1时,1﹣a>0,1+a≤0,h(x)=(1﹣a)x﹣a在区间[﹣2,0)上单调递增;h(x)=(1+a)x﹣a在区间[0,2]上单调递减(当a=﹣1时,h(x)=﹣a);∴h(x)max=h(0)=﹣a,又h(﹣2)=a﹣2,h(2)=2+a,∴h(x2)min=h(﹣2)=a﹣2,∴﹣a﹣(a﹣2)=2﹣2a≤6,解得a≥﹣2,综上,﹣2≤a≤﹣1;②当﹣1<a<1时,1﹣a>0,1﹣a>0,∴h(x)=(1﹣a)x﹣a在区间[﹣2,0)上单调递增,且h(x)=(1+a)x﹣a在区间[0,2]上也单调递增,∴h(x)max=h(2)=2+a,h(x2)min=h(﹣2)=a﹣2,由a+2﹣(a﹣2)=4≤6恒成立,即﹣1<a<1适合题意;③当a≥1时,1﹣a≤0,1+a>0,h(x)=(1﹣a)x﹣a在区间[﹣2,0)上单调递减(当a=1时,h(x)=﹣a),h(x)=(1+a)x﹣a在区间[0,2]上单调递增;∴h(x)min=h(0)=﹣a;又h(2)=2+a>a﹣2=h(﹣2),∴h(x)max=h(2)=2+a,∴2+a﹣(﹣a)=2+2a≤6,解得a≤2,又a≥1,∴1≤a≤2;综上所述,﹣2≤a≤2.点睛:本题主要考查函数的图象和性质函数的零点、分类讨论思想,属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.21. 已知圆:与轴负半轴相交于点,与轴正半轴相交于点 .(1)若过点的直线被圆截得的弦长为,求直线的方程;(2)若在以为圆心半径为的圆上存在点,使得(为坐标原点),求的取值范围;(3)设,是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线、与轴分别交于和,问是否为定值?若是求出该定值;若不是,请说明理由.【答案】(1)或;(2);(3)1.【解析】试题分析:(1)由题意分类讨论直线的斜率是否存在,根据垂径定理,弦心距,弦长及半径的勾股关系解得k即可求得直线方程;(2) 设点的坐标为,由题得点的坐标为,点的坐标为由可得,化简可得又点在圆上,所以转化为点p轨迹与圆B有交点即可得解(3),则,直线的方程为,令,则,同理可得利用是圆上的两个动点即可得定值.试题解析:(1)若直线的斜率不存在,则的方程为:,符合题意.若直线的斜率存在,设的方程为:,即∴点到直线的距离∵直线被圆截得的弦长为,∴∴,此时的方程为:∴所求直线的方程为或(2)设点的坐标为,由题得点的坐标为,点的坐标为由可得,化简可得∵点在圆上,∴,∴∴所求的取值范围是.(3)∵,则∴直线的方程为令,则同理可得∴∴为定值1.22. 已知函数.(1)当时,求的值域;(2)当时,函数的图象关于对称,求函数的对称轴.(3)若图象上有一个最低点,如果图象上每点纵坐标不变,横坐标缩短到原来的倍,然后向左平移1个单位可得的图象,又知的所有正根从小到大依次为,且,求的解析式.【答案】(1);(2);(3).【解析】【详解】分析:(1)时,值域为,时,利用三角函数的有界性可得结果;(2)由时,函数的图象关于对称,利用辅助角公式可得关于的方程从而可求出的值,进而确定函数的解析式,由两角和的正弦公式将其化为一个角的三角函数,利用正弦函数的对称性求解即可;(3)根据图象上有一个最低点,结合辅助角公式可求得,从而得,由,分类讨论,排除不合题意的,从而可得结果.详解:(1)当b=0时,函数g(x)=asinx+c.当a=0时,值域为:{c}.当a≠0时,值域为:[c﹣|a|,c+|a|].((2)当a=1,c=0时,∵g(x)=sinx+bcosx 且图象关于x=对称,∴||=,∴b=﹣.∴函数 y=bsinx+acosx 即:y=﹣sinx+cosx= cos(x+).由 x+=kπ,k∈z,可得函数的对称轴为:x=kπ﹣,k∈z.(3)由g(x)=asinx+bcosx+c= sin(x+∅)+c,其中,sin∅=,cos∅=.由g(x)图象上有一个最低点(,1),所以,∴,∴g(x)=(c﹣1)sin(x﹣)+c.又图象上每点纵坐标不变,横坐标缩短到原来的倍,然后向左平移1个单位可得y=f(x)的图象,则f(x)=(c﹣1)sin x+c.又∵f(x)=3的所有正根从小到大依次为 x1、x2、x3…x n、…,且 x n﹣x n﹣1=3 (n≥2 ),所以y=f(x)与直线y=3的相邻交点间的距离相等,根据三角函数的图象与性质,直线y=3要么过f(x)的最高点或最低点,要么是y=,即:2c﹣1=3或 1﹣c+c=3(矛盾)或=3,解得c=2 或 c=3.当c=2时,函数的 f(x)=sin+2,T=6.直线 y=3和 f(x)=sin+2相交,且 x n﹣x n﹣1=3 (n≥2 ),周期为3(矛盾).当c=3时,函数 f(x)=2sin+3,T=6.直线直线 y=3和 f(x)=2sin+3相交,且 x n﹣x n﹣1=3 (n≥2 ),周期为6(满足条件).综上:f(x)=2sin+2.点睛:本题主要考查公式三角函数的图象和性质以及辅助角公式的应用,属于难题.利用该公式() 可以求出:①的周期;②单调区间(利用正弦函数的单调区间可通过解不等式求得);③值域();④对称轴及对称中心(由可得对称轴方程,由可得对称中心横坐标.。

相关文档
最新文档