2016年上海中考数学一模试卷和答案含奉贤,浦东,青浦,静安,闸北,嘉定,宝山,虹口,黄浦9区试卷和答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年奉贤区调研测试
九年级数学2016.01
(满分150分,考试时间100分钟)
考生注意:
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.
一、选择题(本大题共6题,每题4分,满分24分)
1.用一个4倍放大镜照△ABC ,下列说法错误的是(▲) A .△ABC 放大后,∠B 是原来的4倍; B .△ABC 放大后,边AB 是原来的4倍; C .△ABC 放大后,周长是原来的4倍; D .△ABC 放大后,面积是原来的16倍
2.抛物线()2
12y x =-+的对称轴是(▲)
A .直线2x =;
B .直线2x =-;
C .直线1x =;
D .直线1x =-.
3.抛物线223y x x =--与x 轴的交点个数是(▲) A . 0个 ; B .1个; C . 2个 ; D . 3个.
4.在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且有1
2
AD AE DB EC ==,BC =18,那么DE 的值为(▲)
A .3 ;
B .6 ;
C .9 ;
D .12. 5.已知△ABC 中,∠C =90°,BC =3,AB =4,那么下列说法正确的是(▲) A .3sin 5B =
; B . 3cos 4B = ; C .4tan 3B =; D .3cot 4B =
6.下列关于圆的说法,正确的是(▲) A .相等的圆心角所对的弦相等;
B .过圆心且平分弦的直线一定垂直于该弦;
C .经过半径的端点且垂直于该半径的直线是圆的切线;
D .相交两圆的连心线一定垂直且平分公共弦.
二.填空题:(本大题共12题,每题4分,满分48分) 7.已知3x =2y ,那么
x
y
=▲; . 8.二次函数342
+=x y 的顶点坐标为▲;
9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比i =▲;
10.如果抛物线k x k y -+=2)2(的开口向下,那么k 的取值范围是▲;
11.从观测点A 处观察到楼顶B 的仰角为35°,那么从楼顶B 观察观测点A 的俯角为▲; 12.在以O 为坐标原点的直角坐标平面内有一点A (-1,3),如果AO 与y 轴正半轴的夹角为α,那么角α的余弦值为▲;
13.如图,△ABC 中,BE 平分∠ABC ,DE//BC ,若DE =2AD ,AE=2,那么EC =▲; 14.线段AB 长10cm ,点P 在线段AB 上,且满足
BP AP
AP AB
=
,那么AP 的长为▲cm ;. 15.⊙O 1的半径11r =,⊙O 2的半径22r =,若此两圆有且仅有一个交点,那么这两圆的圆心距d =▲;
16.已知抛物线(4)y ax x =+,经过点A (5,9)和点B (m,9),那么m =▲;
17.如图,△ABC 中,AB =4,AC =6,点D 在BC 边上,∠DAC =∠B ,且有AD =3,那么BD
的长为▲;
18.如图,已知平行四边形ABCD 中,AB
=AD =6,cotB =
2
1
,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ’(点B ’不与点B 重合),那么 sin ∠CAB ’=▲. 三、解答题(本大题共7题,满分78分) 19.(本题满分10分)
计算:︒+︒
--︒+︒60sin 260tan 2130cos 45sin 422
.
第13题图
B
A D
C E
第17题图
B A
D
C
第
18题图
B
20.(本题满分10分,每小题5分)
如图,已知AB//CD//EF ,AB:CD:EF=2:3:5,=. (1)=BD (用a 来表示);
(2)求作向量AE 在AB 、BF 方向上的分向量. (不要求写作法,但要指出所作图中表示结论的向量)
21.(本题满分10分,每小题5分)
为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB 进行改造,在斜坡中点D 处挖去部分坡体(阴影表示),修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .
(1)若修建的斜坡BE 的坡角为36°,则平台DE 的长约为多少米?
(2)在距离坡角A 点27米远的G 处是商场主楼,小明在D 点测得主楼顶部H 的仰角
为30°,那么主楼GH 高约为多少米?
(结果取整数,参考数据:sin 36°=0.6,cos 36°=
22.(本题满分10分,每小题5分)
如图,在⊙O 中,AB 为直径,点B 为CD 的中点,CD =AE =5. (1)求⊙O 半径r 的值;
(2)点F 在直径AB 上,联结CF ,当∠FCD =∠DOB 时,求AF 的长.
E A
B F
第20题图
C
D
第21题图
F E A
B
O
C
D
23.(本题满分12分,第(1)小题6分,第(2)小题6分) 已知:在梯形ABCD 中,AD //BC ,AB ⊥BC ,∠AEB =∠ADC . (1)求证:△ADE ∽△DBC ;
(2)联结EC
,若2CD AD BC =⋅,求证:∠DCE =∠ADB .
24.(本题满分12分,第(1)小题4
分,第(2)小题8分)
如图,二次函数2y x bx c =++图像经过原点和点A (2,0),直线AB 与抛物线交于点B , 且∠BAO =45°.
(1)求二次函数解析式及其顶点C 的坐标; (2)在直线AB 上是否存在点D ,使得△BCD
为直角三角形.若存在,求出点D 的坐标, 若不存在,说明理由.
25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 已知:如图,Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,垂足为点C ,联结DE ,使得∠EDC =∠A ,联结BE . (1)求证:AC BE BC AD ⋅=⋅;
(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式及x 的取值范围; (3)当ABC BDE S S ∆=4
1
△时,求tan ∠BCE 的值.
E
A B
第20题图
C
D
A
E
第25题备用图
A
2016学年九年级第一学期期末测试参考答案与评分标准 2016.01
一、选择题:(本大题共6题,每题4分,满分24分)
1.A ; 2.C ; 3.C ; 4.B ; 5.B ; 6.D . 二、填空题:(本大题共12题,每题4分,满分48分)
7.
2
3
; 8.(0,3);
9.2k <-; 10.1 11.35°; 12.
10
10
3; 13.4; 14.5; 15.1或3; 16.-9; 17.
7
2
; 18.1010或2.
三、解答题:
(本大题共7题,满分78分)
19.(1)原式
=2
+24222⎛⨯ ⎝⎭
...................................(4分)
=
(13
+244-+(4分) = -1 .......................(2分) 20.解:(1)1
3a …………………………………………………(5分)
(2)向量AE 在AB 、BF 方向上的分向量分别为GE 、AG
.
图形准确……………………………………………(3分) 结论正确……………………………………………(2分)
21.解:(1)由题意得,AB =60米,∠BAC =30°,∠BEF =36°,FM//CG
∵点D 是AB 的中点 ∴BD =AD =
1
2
AB =30................................................(1分) ∵DF//AC 交BC 、HG 分别于点F 、M , ∴∠BDF =∠A=30°,∠BFE =∠C=90° 在Rt △BFD 中,∠BFD =90
°,
cos BDF DF BD ∠=
,
30DF =, 25.5DF =≈............(1分) sin BF BDF BD
∠=
1230BF =
. 15BF =…………………………(1分)
在Rt △BFE 中,∠BFE =90°,
tan BEF BF
EF ∠=
,
0.715EF =
,EF =21.4………(1分) ∴DE=DF-EF =25.5-21.4=4.1≈4(米)
答:平台DE 的长约为4米. ………………………………………………………(1分)
(2)由题意得,∠HDM =30°,AG =27米,过点D 作DN ⊥AC 于点N
在Rt △DNA 中,∠DNA =90°
cos DAC AN AD ∠=
30AN =
AN =(1分)
sin DN DAN AD
∠= 12
30
DN = 15DN =...................(1分)
∴27DM NG AN AG ==+=……………………………………(1分)
在Rt △HMD 中,∠HMD =90° tan HDM HM
DM ∠=
15HM =+453930153915≈+=++=+=MG HM HG 米…(1分)
答:主楼GH 的高约为45米………………………………………………………(1分) 22.解:(1) ∵OB 是半径,点B 是CD 的中点∴OB ⊥CD ,CE=DE =1
2
CD =…(2分)
∴2
22OD
ED OE =+ ∴()(
)
22
2
5-5r r =+ 解得 r =3…………(3分)
(2) ∵OB ⊥CD ∴∠OEC=∠OED =90°……………………………………………(1分) 又∵∠FCE=∠DOE ∴△FCE ∽△DOE ∴
EF CE
ED OE
=
…………………………(2分)
= 得5
2EF =……………………………………………………(1分)
∴ 5
2
AF AE EF =-=
……………………………………………………………(1分) 23.(1)证明:∵AD ∥BC ∴∠ADB =∠DBC ………………………………………(2分) ∵ ∠ADC+∠C=180° ∠AEB+∠AED=180°
又∵∠AEB =∠ADC ∴∠C =∠AED …………………………………………(2分) ∴△ADE ∽△DBC ……………………………………………………………(2分) (2) ∵△ADE ∽△DBC
∴AD DB
DE BC =
∴AD BC DB DE ⋅=⋅…………………………………………(1分) ∵2CD AD BC =⋅ ∴2CD DB DE =⋅
∴CD DE
DB CD =
………………………………………………………………………(1分) ∵∠CDB =∠CDE
∴△CDE ∽△BDC ………………………………………………………………(2分) ∴ ∠DCE =∠DBC ………………………………………………………………(1分) ∵∠ADB =∠DBC
∴∠DCE =∠ADB ………………………………………………………………(1分)
24.解:(1)将原点(0,0)和点A (2,0)代入2y x bx c =++中
0042c
b c
=⎧⎨
=++⎩ 解得20b c =-⎧⎨=⎩ 22y x x =-………………………(3分)∴顶点C 的坐标为(1,﹣1(2)过点B 作BG ⊥x 轴,垂足为点G ∵∠BGA =90°,∠A =45° ∴∠GBA=45° 设点A (x ,2
2x x -) 则2
2x x -=2-x ∴点B (-1,3设直线AB : 0y kx b k =+≠() 将点A (2,0)、B (-1,3)代入
20
3k b k b +=⎧⎨
-+=⎩
解得12k b =-⎧⎨=⎩ 直线AB :y =
设点D (x ,2x -+)
则BC =
CD =BD 若△BCD 为直角三角形
①∠BCD =90° ∴
2
2
2
BC CD BD +
= 即
(
2
2
2
+= 解得
7
3x =
∴7133D ⎛⎫
⎪⎝⎭点,-……………………………………………(2分)
② ∠BDC =90°
∴2
2
2
BD
CD BC += 即
(2
2
2
+=
解得 1221x x ==-,(舍去) ∴点D (2,0)…………………(2分)
综上所述:()
7
12,033D ⎛⎫ ⎪⎝⎭点,-或
25.解:(1)∵CE ⊥CD ∴∠DCE =∠BCA =90︒
∵∠EDC =∠A ∴△EDC ∽△BAC ∴
EC BC
DC AC
=……………(2分) ∵∠DCE =∠BCA ∴∠DCE -∠BCD =∠BCA -∠BCD 即∠BCE=∠DCA ……(1分)
∵EC
BC
DC AC = ∴△BCE ∽△ACD ………………………………(1分)
∴BC
AC
BE
AD
= 即AC BE BC AD ⋅=⋅………………………………………(1分) (2)∵△BCE ∽△ACD ∴∠CBE =∠A ∵∠BCA=90° ∴4AC ,∠
ABC+∠A=90°∴∠CBE+∠ABC=90°即∠DBE=90°……………………(1分)
∴DE =
=
∵
BC AC BE AD =,34BE x = ∴ 3=4BE x ()2
113153==52248
BDE x x S BD BE x x ∆-⋅-⋅=……………………………………(1分) ∵ △CDE ∽△CAB ∴2
212
1165
CDE ABC S DE x x S AB ∆∆⎛⎫==-+ ⎪⎝⎭ ∵11
==43=6
22
ABC S BC AC ∆⋅⨯⨯ ∴2312=685CDE S x x ∆-+……………………(1分) 即()21
=S 60540BDE CDE S S x x ∆∆+=-<<……………………………(2分) (3)11==43=622ABC S BC AC ∆⋅⨯⨯ 由14ABC S S ∆=得 21531
6
84
x x -=⨯ ∴
2540
x x -+=
1214
x x ==,…………………………(1分)
过点D 作DF ⊥AC 于点F ∴∠DFA=∠BCA =90°∴ DF ∥BC ∴DF AD AF
BC AB AC == 当x =1时,3455
DF AF ==,,165CF AC AF =-=………………………………(1分) 在Rt △DFC 中,∠DFC =90° t a n 3DF DCF ==∠
∵∠BCE=∠DCA ∴3an 16
t BCE =∠当x =4时,得1216
55
DF AF =
=, CF =3tan DCF DF
CF
∠=
=,即tan ∠∴
综上所述:6an 331t BCE =∠或.
2016浦东一模
一. 选择题
1. 如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( ) A. 1:2; B. 1:4; C. 1:8; D. 1:16;
2. 在Rt △ABC 中,90C ︒
∠=,若5AB =,4BC =,则sin A 的值为( )
A.
34; B. 35; C. 45; D. 43
; 3. 如图,点D 、E 分别在AB 、AC 上,以下能推得DE ∥BC 的条件是( ) A. ::AD AB DE BC =; B. ::AD DB DE BC =; C. ::AD DB AE EC =; D. ::AE AC AD DB =;
4. 已知二次函数2y ax bx c =++的图像如图所示,那么a 、b 、c 的符号为( ) A. 0a <,0b <,0c >; B. 0a <,0b <,0c <; C. 0a >,0b >,0c >; D. 0a >,0b >,0c <;
5. 如图,Rt △ABC 中,90ACB ︒
∠=,CD AB ⊥于点D ,下列结论中错误的是( )
A. 2AC AD AB =⋅;
B. 2
CD CA CB =⋅; C. 2
CD AD DB =⋅; D. 2
BC BD BA =⋅; 6. 下列命题是真命题的是( )
A. 有一个角相等的两个等腰三角形相似;
B. 两边对应成比例且有一个角相等的两个三角形相似;
C. 四个内角都对应相等的两个四边形相似;
D. 斜边和一条直角边对应成比例的两个直角三角形相似;
二. 填空题
7. 已知
13x y =,那么x x y =+ ; 8. 计算:123()3
a a
b -+=
;
9. 上海与杭州的实际距离约200千米,在比例尺为1:5000000的地图上,上海与杭州的图 上距离约 厘米;
10. 某滑雪运动员沿着坡比为100米,则运动员下降的垂直高度为 米;
11. 将抛物线2(1)y x =+向下平移2个单位,得到新抛物线的函数解析式是 ; 12. 二次函数2y ax bx c =++的图像如图所示,对称轴为直线2x =,若此抛物线与x 轴的 一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是 ;
13. 如图,已知AD 是△ABC 的中线,点G 是△ABC 的重心,AD a = ,那么用向量a
表
示向量AG
为 ;
14. 如图,△ABC 中,6AC =,9BC =,D 是△ABC 的边BC 上的点,且CAD B ∠=∠, 那么CD 的长是 ;
15. 如图,直线1AA ∥1BB ∥1CC ,如果1
3
AB BC =,12AA =,16CC =,那么线段1BB 的 长是 ;
16. 如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,在地面点P 处 水平放置一平面镜,一束激光从点A 射出经平面镜上的点P 反射后刚好射到建筑物CD 的 顶端C 处;已知AB BD ⊥,CD BD ⊥,且测得15AB =米,20BP =米,32PD =米,
B 、P 、D 在一条直线上,那么建筑物CD 的高度是 米;
17. 若抛物线2
y ax c =+与x 轴交于点(,0)A m 、(,0)B n ,与y 轴交于点(0,)C c ,则称 △ABC 为“抛物三角形”;特别地,当0mnc <时,称△ABC 为“正抛物三角形”;当0mnc > 时,称△ABC 为“倒抛物三角形”;那么,当△ABC 为“倒抛物三角形”时,a 、c 应分 别满足条件 ;
18. 在△ABC 中,5AB =,4AC =,3BC =,D 是边AB 上的一点,E 是边AC 上的 一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE = ;
三. 解答题
19. 456tan302cos30︒
︒
︒
+-;
20. 二次函数2y ax bx c =++的变量x 与变量y 的部分对应值如下表:
(1)求此二次函数的解析式; (2)写出抛物线顶点坐标和对称轴;
21. 如图,梯形ABCD 中,AD ∥BC ,点E 是边AD 的中点,联结BE 并延长交CD 的延 长线于点F ,交AC 于点G ;
(1)若2FD =,
1
3
ED BC =,求线段DC 的长; (2)求证:EF GB BF GE ⋅=⋅;
22. 如图,l 为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上 由西向东匀速行驶,依次经过点A 、B 、C ,P 是一个观测点,PC l ⊥,PC =60米,
4tan 3
APC ∠=
,45BPC ︒
∠=,测得该车从点A 行驶到点B 所用时间为1秒; (1)求A 、B 两点间的距离;
(2)试说明该车是否超过限速;
23. 如图,在△ABC 中,D 是BC 边的中点,DE BC ⊥交AB 于点E ,AD AC =,EC 交AD 于点F ;
(1)求证:△ABC ∽△FCD ; (2)求证:3FC EF =;
24. 如图,抛物线22y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧), 与y 轴交于点(0,3)C -,抛物线的顶点为M ;
(1)求a 、c 的值; (2)求tan MAC ∠的值;
(3)若点P 是线段AC 上一个动点,联结OP ; 问是否存在点P ,使得以点O 、C 、P 为顶点的 三角形与△ABC 相似?若存在,求出P 点坐标; 若不存在,请说明理由;
25. 如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D 不重
合),45EBM ︒
∠=,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点M ;
(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出
DE
CG
的值; (2)联结EG ,如图2,设AE x =,EG y =,求y 关于x 的函数解析式,并写出定义域; (3)当M 为边DC 的三等分点时,求EGF S 的面积;
21、
22、
23、
24、
25、
2016青浦、静安一模
一. 选择题 1.
的相反数是( )
A.
B. C.
2; D. 2
-; 2. 下列方程中,有实数解的是( )
A. 2
10x x -+=; B. 1x =-;
C.
210x x x -=-; D. 2
11x
x x
-=-; 3. 化简11(1)x ---的结果是( ) A.
1x x -; B. 1
x
x -; C. 1x -; D. 1x -; 4. 如果点(2,)A m 在抛物线2
y x =上,将此抛物线向右平移3个单位后,点A 同时平移到 点A ',那么A '坐标为( )
A. (2,1);
B. (2,7);
C. (5,4);
D. (1,4)-;
5. 在Rt △ABC 中,90C ∠=︒,CD 是高,如果AD m =,A α∠=,那么BC 的长为( )
A. tan cos m αα⋅⋅;
B. cot cos m αα⋅⋅;
C.
tan cos m αα⋅; D. tan sin m α
α
⋅;
6. 如图,在△ABC 与△ADE 中,BAC D ∠=∠,要使△ABC 与△ADE 相似,还需满 足下列条件中的( )
A. AC AB AD AE =;
B. AC BC AD DE =;
C. AC AB AD DE =;
D. AC BC
AD AE
=;
二. 填空题
7. 计算:23
(2)a -= ; 8. 函数3
()2
x f x x -=
+的定义域为 ;
9. 1x =-的根为 ;
10. 如果函数(3)1y m x m =-+-的图像经过第二、三、四象限,那么常数m 的取值范围
为 ;
11. 二次函数261y x x =-+的图像的顶点坐标是 ;
12. 如果抛物线225y ax ax =-+与y 轴交于点A ,那么点A 关于此抛物线对称轴的对称
点坐标是 ;
13. 如图,已知D 、E 分别是△ABC 的边AB 和AC 上的点,DE ∥BC ,BE 与CD 相
交于点F ,如果1AE =,2CE =,那么:EF BF 等于 ;
14. 在Rt △ABC 中,90C ∠=︒,点G 是重心,如果1
sin 3
A =
,2BC =,那么GC 的长 等于 ;
15. 已知在梯形ABCD 中,AD ∥BC ,2BC AD =,设AB a = ,BC b = ,那么CD =
(用向量a 、b
的式子表示);
16. 在△ABC 中,点D 、E 分别在边AB 、AC 上,AED B ∠=∠,6AB =,5BC =,
4AC =,如果四边形DBCE 的周长为10,那么AD 的长等于 ;
17. 如图,在平行四边形ABCD 中,AE BC ⊥,垂足为E ,如果5AB =,8BC =,
4
sin 5
B =
,那么tan CDE ∠= ; 18. 将平行四边形ABCD (如图)绕点A 旋转后,点D 落在边AB 上的点D ',点C 落到C ',
且点C '、B 、C 在一直线上,如果13AB =,3AD =,那么A ∠的余弦值为 ;
三. 解答题
19. 化简:222
2669
42x x x x x x x
---++--,并求当1
23x =时的值;
20. 用配方法解方程:2
2330x x --=;
21. 如图,直线4
3
y x =与反比例函数的图像交于点(3,)A a ,第一象限内的点B 在这个反比 例函数图像上,OB 与x 轴正半轴的夹角为α,且1
tan 3
α=:
(1)求点B 的坐标;
(2)求OAB ∆的面积;
22. 如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是26.6°,向 前走30米到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是45°和33.7°,求该电 线杆PQ 的高度(结果精确到1米);
(备用数据:sin 26.60.45︒=,cos 26.60.89︒=,tan 26.60.50︒=,cot 26.6 2.00︒=,
sin 33.70.55︒=,cos33.70.83︒=,tan 33.70.67︒=,cot 33.7 1.50︒=)
23. 已知,如图,在△ABC 中,点D 、E 分别在边BC 、AB 上,BD AD AC ==,AD 与CE 相交于点F ,2
AE EF EC =⋅; (1)求证:ADC DCE EAF ∠=∠+∠;
(2)求证:AF AD AB EF ⋅=⋅;
21
24. 如图,直线1
12y x =
+与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相 交于点C ,与直线1
12
y x =+相交于点A 、D ,CD ∥x 轴,CDA OCA ∠=∠;
(1)求点C 的坐标;
(2)求这个二次函数的解析式;
25. 已知:在梯形ABCD 中,AD ∥BC ,10AC BC ==,4
cos 5
ACB ∠=
,点E 在对角 线AC 上,且CE AD =,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G ,设
AD x =,△AEF 的面积为y ;
(1)求证:DCA EBC ∠=∠;
(2)如图,当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积;
22
静安区2015学年第一学期期末教学质量调研 九年级数学试卷
参考答案及评分说明2016.1
一、选择题:
1.D ; 2.D ; 3.A ; 4.C ; 5.C ; 6.C . 二、填空题:
7.68a -; 8.2-≠x ; 9.4=x ; 10.31<<m ; 11.(3, -8); 12.(2, 5); 13.
31; 14.2; 15.b a 2
1--; 16.2; 17.21; 18.135
. 三、解答题:
19.解:原式= )
2()3()2)(2()3)(2(2
--÷
-+-+x x x x x x x ············································································ (4分) =
)
3()
2()2)(2()3)(2(--⋅-+-+x x x x x x x ··············································································· (1分) =
3
-x x
. ········································································································ (2分) 当332
1==x
时,原式=
2
3
13
113
33+-
=-=
-. ································· (3分) 20.解:023
232=--
x x , ·
···································································································· (1分) 23
232=-x x , ·
··········································································································· (1分) 169
23)43(2322+=+-x x , ·
······················································································ (2分) 1633
)43(2=
-x , ·········································································································· (2分) 43343±=-x , ········································································································· (2分)
433231+=x ,4
33232-=x . ·············································································· (2分)
23
21.解:(1)∵直线x y 3
4
=
与反比例函数的图像交于点A (3,a )
, ∴33
4
⨯=
a =4,∴点的坐标A (3,4)
. ······························································ (1分) 设反比例函数解析式为x
k
y =, ············································································· (1分)
∴12,34==k k ,∴反比例函数解析式为x
y 12=. ··········································· (1分)
过点B 作BH ⊥x 轴,垂足为H , 由3
1
tan ==OB BH α,设BH =m ,则OB =m 3,∴B (m 3,m ) ·
······················· (1分) ∴m
m 312
=
,2±=m (负值舍去), ······································································ (1分) ∴点B 的坐标为(6,2). ······················································································ (1分)
(1) ····································· 过
点A 作AE ⊥x 轴,垂足为E ,
OBH AEHB OAE OAB S S S S ∆∆∆-+=梯形
············································································ (1分) =BH OH EH BH AE OE AE ⋅-⋅++⋅21
)(2121 ·
·············································· (1分) ==⨯⨯-⨯++⨯⨯262
1
3)24(2143219. ······················································ (2分)
22.解:延长PQ 交直线AB 于点H ,由题意得.
由题意,得PH ⊥AB ,AB =30,∠PAH =26 .6°,∠PBH =45°,∠Q BH =33.7°, 在Rt △QBH 中,50.1cot ==
∠QH
BH
QBH ,设QH =x ,BH =x 5.1, ···················· (2分) 在Rt △PBH 中,∵∠PBH =45°,∴PH = BH =x 5.1,··············································· (2分) 在Rt △PAH 中,00.2cot ==
∠PH
AH
PAH ,AH =2PH =x 3, ·
·································· (2分) ∵AH –BH =AB ,∴305.13=-x x ,20=x . ························································· (2分) ∴PQ =PH –QH =105.05.1==-x x x . ····································································· (1分) 答:该电线杆PQ 的高度为10米. ················································································· (1分)
24
23.证明:(1)∵EC EF AE ⋅=2,∴
AE
EC
EF AE =
. ·························································· (1分) 又∵∠AEF =∠CEA ,∴△AEF ∽△CEA . ······················································· (2分) ∴∠EAF =∠ECA , ··························································································· (1分) ∵AD =AC ,∴∠ADC =∠ACD , ······································································· (1分) ∵∠ACD =∠DCE +∠ECA =∠DCE +∠EAF . ····················································· (1分)
(2)∵△AEF ∽△CEA ,∴∠AEC =∠ACB . ······························································· (1分)
∵DA =DB ,∴∠EAF =∠B . ················································································ (1分) ∴△EAF ∽△CBA . ····························································································· (1分)
∴
AC
EF
BA AF =
. ··································································································· (1分) ∵AC =AD ,∴AD
EF
BA AF =
. ················································································ (1分) ∴EF AB AD AF ⋅=⋅. ···················································································· (1分)
24.解:(1)∵直线12
1
+=
x y 与x 轴、y 轴分别相交于点A 、B , ∴A (–2,0)、B (0,1).∴OA =2,OB =1. ······················································ (2分) ∵CD //x 轴,∴∠OAB =∠CDA ,∵∠CDA =∠OCA ,∴∠OAB =∠OCA . ············· (1分) ∴tan ∠OAB =tan ∠OCA , ························································································· (1分) ∴
OC
OA OA OB =
,∴OC 2
21=, ·················································································· (1分) ∴4=OC ,∴点C 的坐标为(0,4). ································································ (1分) (2)∵CD //x 轴,∴
BO
BC
AO CD =
. ················································································· (1分) ∵BC =OC –OB=4–1=3,∴1
3
2=CD ,∴CD =6,∴点D (6,4)
. ························ (1分) 设二次函数的解析式为42++=bx ax y , ···························································· (1分)
⎩⎨⎧++=+-=,46364,4240b a b a ………………(1分) ⎪⎩
⎪⎨⎧
=-=.
23,41b a ········································· (1分) ∴这个二次函数的解析式是42
3
41
2++
-=x x y . ·
················································ (1分)
25.解:(1)∵AD ∥BC ,∴∠DAC =∠ECB . ········································································ (1分)
又∵AD =CE ,AC =CB ,∴△DAC ≌△ECB . ······························································ (2分) ∴∠DCA =∠EBC . ··································································································· (1分) (2)过点E 作EH ⊥BC ,垂足为H .AE =AC –CE =x -10.。