2019-2020学年山东省枣庄市峄城区九年级(上)期末数学试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年山东省枣庄市峄城区九年级(上)期末数学试卷
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()
A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND
2.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
3.(3分)一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48B.24C.24或40D.48或80
4.(3分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB 交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()
A.B.C.D.
5.(3分)如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A1B1C1相似的是()
A.B.
C.D.
6.(3分)某个几何体的三视图如图所示,该几何体是()
A.B.
C.D.
7.(3分)点(﹣1,y1),(2,y2),(3,y3)均在函数的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y3<y1C.y1<y2<y3D.y1<y3<y2
8.(3分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()
A.B.C.D.
9.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是l,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()
A.B.C.D.
10.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A与原点O重合,顶点B落在x轴的正半轴上,对角线AC、BD交于点M,点D、M恰好都在反比例函数y=(x>0)的图象上,则的值为()
A.B.C.2D.
11.(3分)把函数y=﹣x2的图象,经过怎样的平移变换以后,可以得到函数y=﹣(x﹣1)2+1的图象()
A.向左平移1个单位,再向下平移1个单位
B.向左平移1个单位,再向上平移1个单位
C.向右平移1个单位,再向上平移1个单位
D.向右平移1个单位,再向下平移1个单位
12.(3分)如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF.其中正确的是()
A.①③B.②④C.①③④D.②③④
二、填空题(本题共6小题,每小题填对得4分,共24分,将答案填在答题纸上)
13.(4分)某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为.
14.(4分)一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为.
15.(4分)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为.
16.(4分)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则=.
17.(4分)某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦“演讲比赛,则恰好选中一男一女的概率是.
18.(4分)二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b,N=a﹣b.则M、N的大小关系为M N.(填“>”、“=”或“<”)
三、解答题(本大题共7小题,共60分.解答应写出文字说明、证明过程或演算步骤.)
19.(8分)已知关于x的方程kx2﹣3x+1=0有实数根.
(1)求k的取值范围;
(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.
20.(8分)为落实立德树人的根本任务,加强思改、历史学科教师的专业化队伍建设.某校计划从前来应聘的思政专业(一名研究生,一名本科生)、历史专业(一名研究生、一名本科生)的高校毕业生中选聘教师,在政治思想审核合格的条件下,假设每位毕业生被录用的机会相等
(1)若从中只录用一人,恰好选到思政专业毕业生的概率是:
(2)若从中录用两人,请用列表或画树状图的方法,求恰好选到的是一名思政研究生和一名历史本科生的概率.
21.(8分)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.
(1)证明:△ADG≌△DCE;
(2)连接BF,证明:AB=FB.
22.(8分)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m.求:
(1)观众区的水平宽度AB;
(2)顶棚的E处离地面的高度EF.(sin18°30′≈0.32,tan l8°30′≈0.33,结果精确到0.1m)
23.(8分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.
(1)求k的值;
(2)过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,求的值.
24.(10分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.
(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.
(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.
25.(10分)已知,如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点,
(1)求抛物线解析式;
(2)当点P运动到什么位置时,△P AB的面积最大?
2019-2020学年山东省枣庄市峄城区九年级(上)期末数学试卷
参考答案与试题解析
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.【解答】证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD
∵对角线BD上的两点M、N满足BM=DN,
∴OB﹣BM=OD﹣DN,即OM=ON,
∴四边形AMCN是平行四边形,
∵OM=AC,
∴MN=AC,
∴四边形AMCN是矩形.
故选:A.
2.【解答】解:原方程可化为:x2﹣2x﹣4=0,
∴a=1,b=﹣2,c=﹣4,
∴△=(﹣2)2﹣4×1×(﹣4)=20>0,
∴方程有两个不相等的实数根.
故选:A.
3.【解答】解:(x﹣5)(x﹣3)=0,
所以x1=5,x2=3,
∵菱形一条对角线长为8,
∴菱形的边长为5,
∴菱形的另一条对角线为2=6,
∴菱形的面积=×6×8=24.
故选:B.
4.【解答】解:∵∠C=90°,AB=5,BC=4,
∴AC==3,
∵PQ∥AB,
∴∠ABD=∠BDQ,又∠ABD=∠QBD,
∴∠QBD=∠BDQ,
∴QB=QD,
∴QP=2QB,
∵PQ∥AB,
∴△CPQ∽△CAB,
∴==,即==,
解得,CP=,
∴AP=CA﹣CP=,
故选:B.
5.【解答】解:因为△A1B1C1中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
故选:B.
6.【解答】解:由三视图可知:该几何体为圆锥.
故选:D.
7.【解答】解:∵函数中k=6>0,
∴此函数的图象在一、三象限,且在每一象限内y随x的增大而减小,
∵﹣1<0,
∴点(﹣1,y1)在第三象限,
∴y1<0,
∵0<2<3,
∴(2,y2),(3,y3)在第一象限,
∴y2>y3>0,
∴y2>y3>y1.
故选:D.
8.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.
在Rt△ACD中,CD=CA•cos C=1,
∴AD==;
在Rt△ABD中,BD=CB﹣CD=3,AD=,
∴AB==2,
∴sin B==.
故选:D.
9.【解答】解:过点C作CD⊥AB于点D,∵AD=3,CD=4,
∴由勾股定理可知:AC=5,
∴cos∠BAC==,
故选:C.
10.【解答】解:设D(m,),B(t,0),∵M点为菱形对角线的交点,
∴BD⊥AC,AM=CM,BM=DM,
∴M(,),
把M(,)代入y=得•=k,∴t=3m,
∵四边形ABCD为菱形,
∴OD=AB=t,
∴m2+()2=(3m)2,解得k=2m2,
∴M(2m,m),
在Rt△ABM中,tan∠MAB===,
∴=.
故选:A.
11.【解答】解:抛物线y=﹣x2的顶点坐标是(0,0),抛物线线y=﹣(x﹣1)2+1的顶点坐标是(1,1),
所以将顶点(0,0)向右平移1个单位,再向上平移1个单位得到顶点(1,1),
即将函数y=﹣x2的图象向右平移1个单位,再向上平移1个单位得到函数y=﹣(x﹣1)2+1的图象.故选:C.
12.【解答】解:①四边形ABCD是正方形,
∴AB═AD,∠B=∠D=90°.
在Rt△ABE和Rt△ADF中,

∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF
∵BC=CD,
∴BC﹣BE=CD﹣DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故①正确).
②设BC=a,CE=y,
∴BE+DF=2(a﹣y)
EF=,
∴BE+DF与EF关系不确定,只有当y=()a时成立,(故②错误).
③当∠DAF=15°时,
∵Rt△ABE≌Rt△ADF,
∴∠DAF=∠BAE=15°,
∴∠EAF=90°﹣2×15°=60°,
又∵AE=AF
∴△AEF为等边三角形.(故③正确).
④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:
∴x2=2y(x+y)
∵S△CEF=x2,S△ABE=,
∴S△ABE=S△CEF.(故④正确).
综上所述,正确的有①③④,
故选:C.
二、填空题(本题共6小题,每小题填对得4分,共24分,将答案填在答题纸上)13.【解答】解:设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,
解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).
答:这两年中投入资金的平均年增长率约是20%.
故答案是:20%.
14.【解答】解:由三视图可得,这个圆柱的体积为:π×22×6=24π.故答案为:24π.
15.【解答】解:∵四边形ABCD是矩形
∴AO=CO=BO=DO,
∵AE平分∠BAO
∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,
∴△ABE≌△AOE(ASA)
∴AO=AB,且AO=OB
∴AO=AB=BO=DO,
∴BD=2AB,
∵AD2+AB2=BD2,
∴64+AB2=4AB2,
∴AB=
故答案为:.
16.【解答】解:∵四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,∴=,
则==.
故答案为:.
17.【解答】解:画树状图为:
共20种等可能的结果数,其中选中一男一女的结果数为12,
∴恰好选中一男一女的概率是=,
故答案为:.
18.【解答】解:当x=﹣1时,y=a﹣b+c>0,
当x=2时,y=4a+2b+c<0,
M﹣N=4a+2b﹣(a﹣b)
=4a+2b+c﹣(a﹣b+c)<0,
即M<N,
故答案为:<
三、解答题(本大题共7小题,共60分.解答应写出文字说明、证明过程或演算步骤.)19.【解答】解:(1)当k=0时,原方程为﹣3x+1=0,
解得:x=,
∴k=0符合题意;
当k≠0时,原方程为一元二次方程,
∵该一元二次方程有实数根,
∴△=(﹣3)2﹣4×k×1≥0,
解得:k≤.
综上所述,k的取值范围为k≤.
(2)∵x1和x2是方程kx2﹣3x+1=0的两个根,
∴x1+x2=,x1x2=.
∵x1+x2+x1x2=4,
∴+=4,
解得:k=1,
经检验,k=1是分式方程的解,且符合题意.
∴k的值为1.
20.【解答】解:(1)若从中只录用一人,恰好选到思政专业毕业生的概率是=;
故答案为:;
(2)设思政专业的一名研究生为A、一名本科生为B,历史专业的一名研究生为C、一名本科生为D,画树状图如图:
共有12个等可能的结果,恰好选到的是一名思政研究生和一名历史本科生的结果有2个,
∴恰好选到的是一名思政研究生和一名历史本科生的概率为=.
21.【解答】解:(1)∵四边形ABCD是正方形,
∴∠ADG=∠C=90°,AD=DC,
又∵AG⊥DE,
∴∠DAG+∠ADF=90°=∠CDE+∠ADF,
∴∠DAG=∠CDE,
∴△ADG≌△DCE(ASA);
(2)如图所示,延长DE交AB的延长线于H,
∵E是BC的中点,
∴BE=CE,
又∵∠C=∠HBE=90°,∠DEC=∠HEB,
∴△DCE≌△HBE(ASA),
∴BH=DC=AB,
即B是AH的中点,
又∵∠AFH=90°,
∴Rt△AFH中,BF=AH=AB.
22.【解答】解:(1)∵观众区AC的坡度i为1:2,顶端C离水平地面AB的高度为10m,∴AB=2BC=20(m),
答:观众区的水平宽度AB为20m;
(2)作CM⊥EF于M,DN⊥EF于N,
则四边形MFBC、MCDN为矩形,
∴MF=BC=10,MN=CD=4,DN=MC=BF=23,
在Rt△END中,tan∠EDN=,
则EN=DN•tan∠EDN≈7.59,
∴EF=EN+MN+MF=7.59+4+10≈21.6(m),
答:顶棚的E处离地面的高度EF约为21.6m.
23.【解答】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,
∴OH=BH=OB=2,
∴AH==6,
∴点A的坐标为(2,6).
∵A为反比例函数y=图象上的一点,
∴k=2×6=12.
(2)∵BC⊥x轴,OB=4,点C在反比例函数y=上,
∴BC==3.
∵AH∥BC,OH=BH,
∴MH=BC=,
∴AM=AH﹣MH=.
∵AM∥BC,
∴△ADM∽△BDC,
∴==.
24.【解答】解:(1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);
(2)设每天扣除捐赠后可获得利润为w元.
w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,且0<a≤6,则30a≤38,
则当x=35+a时,w取得最大值,
∴(35+a﹣20﹣a)[﹣10(35+a)+500]=1960
∴a1=2,a2=58(不合题意舍去),
∴a=2.
25.【解答】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0),,解这个方程组,得,
∴抛物线解析式为y=﹣x2﹣2x+3.
(2)过点P作PH⊥x轴于点H,交AB于点F.
∵x=0时,y=﹣x2﹣2x+3=3,
∴A(0,3).
∴直线AB解析式为y=x+3.
∵点P在线段AB上方抛物线上,
∴设P(t,﹣t2﹣2t+3)(﹣3<t<0).
∴F(t,1+3).
∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t.
∴S△P AB=S△P AF+S△PBF===,∴点P运动到坐标为,△P AB面积最大.。

相关文档
最新文档