中考数学 相似 综合题及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、相似真题与模拟题分类汇编(难题易错题)
1.如图,在四边形ABCD中,AD//BC,,BC=4,DC=3,AD=6.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P、Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设的面积为,直接写出与之间的函数关系式是________(不写取值范围).
(2)当B,P,Q三点为顶点的三角形是等腰三角形时,求出此时的值.
(3)当线段PQ与线段AB相交于点O,且2OA=OB时,直接写出 =________. (4)是否存在时刻,使得若存在,求出的值;若不存在,请说明理由.
【答案】(1)
(2)解:如图1,过点P作PH⊥BC于点H,
∴∠PHB=∠PHQ=90°,
∵∠C=90°,AD∥BC,
∴∠CDP=90°,
∴四边形PHCD是矩形,
∴PH=CD=3,HC=PD=2t,
∵CQ=t,BC=4,
∴HQ=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t,
∴BQ2= ,BP2= ,PQ2= ,
由BQ2=BP2可得:,解得:无解;
由BQ2=PQ2可得:,解得:;
由BP2= PQ2可得:,解得:或,
∵当时,BQ=4-4=0,不符合题意,
∴综上所述,或;
(3)
(4)解:如图3,过点D作DM∥PQ交BC的延长线于点M,
则当∠BDM=90°时,PQ⊥BD,即当BM2=DM2+BD2时,PQ⊥BD,
∵AD∥BC,DM∥PQ,
∴四边形PQMD是平行四边形,
∴QM=PD=2t,
∵QC=t,
∴CM=QM-QC=t,
∵∠BCD=∠MCD=90°,
∴BD2=BC2+DC2=25,DM2=DC2+CM2=9+t2,
∵BM2=(BC+CM)2=(4+t)2,
∴由BM2=BD2+DM2可得:,解得:,
∴当时,∠BDM=90°,
即当时,PQ⊥BD.
【解析】【解答】解:(1)由题意可得BQ=BC-CQ=4-t,点P到BC的距离=CD=3,
∴S△PBQ= BQ×3= ;
( 3 )解:如图2,过点P作PM⊥BC交CB的延长线于点M,
∴∠PMC=∠C=90°,
∵AD∥BC,
∴∠D=90°,△OAP∽△OBQ,
∴四边形PMCD是矩形,,
∴PM=CD=3,CM=PD=2t,
∵AD=6,BC=4,CQ=t,
∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,
∴,解得:,
∴MQ= ,
又∵PM=3,∠PMQ=90°,
∴tan∠BPQ= ;
【分析】(1)点P作PM⊥BC,垂足为M,则四边形PDCM为矩形,根据梯形的面积公式就可以利用t表示,就得到s与t之间的函数关系式。

(2)以B、P、Q三点为顶点的三角形是等腰三角形,可以分PQ=BQ、BP=BQ、PB=PQ三种情况,在Rt△PMQ中根据勾股定理,就得到一个关于t的方程,就可以求出t。

(3)根据相似三角形对应边比例可列式求出t,从而根据正切的定义求出值;
(4)首先假设存在,然后根据相似三角形对应边成比例求证。

2.在矩形ABCD中,AB=8,AD=12,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点。

(1)若点N在BC之间时,如图:
①求证:∠NPQ=∠PQN;
②请问是否为定值?若是定值,求出该定值;若不是,请举反例说明;
(2)当△PBN与△NCQ的面积相等时,求AP的值.
【答案】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=∠ADQ=90°,
AB//CD,∴∠APM=∠DQM,∵M是AD边的中点,∴AM=DM,
在△APM和△DQM中,,∴△APM≌△DQM(AAS),∴PM=QM,∵MN⊥PQ,∴MN是线段PQ的垂直平分线,∴PN=QN,∴∠NPQ=∠PQN
② 是定值
理由:如图,过点M作ME⊥BC于点E,
∴∠MEN=∠MEB=∠AME=90°,
∴四边形ABEM是矩形,∠MEN=∠MAP,∴AB=EM,
∵MN⊥PQ,∴∠PMN=90°,∴∠PMN=∠AME,
∴∠PMN-∠PME=∠AME-∠PME,∴∠EMN=∠AMP,∴△AMP∽△EMN,
∴,∴,∵AD=12,M是AD边的中点,∴AM= AD=6,
∵AB=8,∴;
(2)解:分点N在BC之间和点N在BC延长线上两种情况
(ⅰ)当点N在BC之间时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,
∴∠BFS=∠CGT=90°,BS= PN,CT= QN,
∵PN=QN,S△PBN=S△NCQ,∴BF=CG,BS=CT
在Rt△BFS和Rt△CGT中,,∴Rt△BFS≌Rt△CGT(HL),∴∠BSF=∠CTG,∴∠BNP=∠BSF=∠CTG=∠CQN,
在△PBN和△NCQ中,,∴△PBN≌△NCQ(AAS),∴BN=CQ,BP=CN,
∵AP=AB-BP=8-CN,又∵CN=BC-BN=12-CQ,∴AP=CQ-4
又∵CQ=CD+DQ,DQ=AP,∴AP=4+AP(舍去),∴此种情况不成立;
(ⅱ)当点N在BC延长线上时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,
同理可得,△PBN≌△NCQ,∴PB=NC,BN=CQ,
∵AP=DQ,∵AP+8=DQ+CD=CQ=BC+CN=12+BP,
∴AP-BP=4 ①,∵AP+BP=AB=8②,①+②得:2AP=12,∴AP=6.
【解析】【分析】(1)①由矩形的性质用角角边易证△APM≌△DQM,可得PM=QM,已知MN⊥PQ,由线段的垂直平分线的定义可得MN是线段PQ的垂直平分线,再根据线段的垂直平分线的性质可得PN=QN,由等边对等角可得∠NPQ=∠PQN;
②过点M作ME⊥BC于点E,由矩形的性质跟据有两个角对应相等的两个三角形相似易证
△AMP∽△EMN,可得比例式,结合已知条件易求得为定值;
(2)根据MN⊥PQ交射线BC于N点可知分两种情况:①当点N在BC之间时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,通过证Rt△BFS≌Rt△CGT和△PBN≌△NCQ可求解;
②当点N在BC延长线上时,如图,作BF⊥PN于点F,CG⊥QN于点G,再分别作Rt△PBN和Rt△NCQ的中线BS、CT,通过证△PBN≌△NCQ可求解。

3.如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.
(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,求,请证明你的结论;
(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则 =________;
(3)如图3,若 =k,BC=m,AC=n,请直接写出的值.(用k,m,n表示)
【答案】(1)解:如图1中,作PG⊥AC于G,PH⊥BC于H,
∵AC=BC,∠ACB=90°,且D为AB的中点,
∴CD平分∠ACB,
∵PG⊥AC于G,PH⊥BC于H,
∴PG=PH,
∵∠PGC=∠PHC=∠GCH=90°,
∴∠GPH=∠MPN=90°,
∴∠MPH=∠NPG,
∵∠PHM=∠PGN=90°,
∴△PHM∽△PGN,
∴ =1
(2)
(3)解:如图3中,作PG⊥AC于G,PH⊥BC于H,DT⊥AC于T,DK⊥BC于K,
易证△PMH∽△PGN,
∴,
∵,
∴,
∵DT∥PG,DK∥PH,
∴,
∴,

【解析】【解答】解:(2)如图2中,作PG⊥AC于G,PH⊥BC于H,
∵∠PGC=∠PHC=∠GCH=90°,
∴∠GPH=∠MPN=90°,
∴∠MPH=∠NPG,
∵∠PHM=∠PGN=90°,
∴△PHM∽△PGN,
∴,
∵△PHC∽△ACB,PG=HC,
∴,
故答案为:;
【分析】(1)作PG⊥AC于G,PH⊥BC于H,根据已知条件可证△PHM和△PGN的两角对应相等,进而可得△PHM∽△PGN,由相似三角形的对应边成比例即可求出。

(2)作PG⊥AC于G,PH⊥BC于H,由两角对应相等,可得△PHM∽△PGN,由相似三角形的对应
边成比例可得 = ,由两角对应相等,可得△PHC∽△ACB,又PG=HC,相似三角形的对应边成比例及等量代换即可求出。

(3)作PG⊥AC于G,PH⊥BC于H,DT⊥AC于T,DK⊥BC于K,由两角对应相等,△PHM∽△PGN,由相似三角形的对应边成比例可得
= ,由△ A C D 和△ B C D的面积比及已知条件可得,再由垂直于同一条直线的两
条直线平行可得DT∥PG,DK∥PH,根据平行线分线段成比例定理可得= = ,再根据比例的基本性质即可求出的值。

4.已知如图1,抛物线y=﹣ x2﹣ x+3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,点D的坐标是(0,﹣1),连接BC、AC
(1)求出直线AD的解析式;
(2)如图2,若在直线AC上方的抛物线上有一点F,当△ADF的面积最大时,有一线段MN= (点M在点N的左侧)在直线BD上移动,首尾顺次连接点A、M、N、F构成四边形AMNF,请求出四边形AMNF的周长最小时点N的横坐标;
(3)如图3,将△DBC绕点D逆时针旋转α°(0<α°<180°),记旋转中的△DBC为△DB′C′,若直线B′C′与直线AC交于点P,直线B′C′与直线DC交于点Q,当△CPQ是等腰三角形时,求CP的值.
【答案】(1)解:∵抛物线y=﹣ x2﹣ x+3与x轴交于A和B两点,
∴0=﹣ x2﹣ x+3,
∴x=2或x=﹣4,
∴A(﹣4,0),B(2,0),
∵D(0,﹣1),
∴直线AD解析式为y=﹣ x﹣1
(2)解:如图1,
过点F作FH⊥x轴,交AD于H,
设F(m,﹣ m2﹣ m+3),H(m,﹣ m﹣1),
∴FH=﹣ m2﹣ m+3﹣(﹣ m﹣1)=﹣ m2﹣ m+4,
∴S△ADF=S△AFH+S△DFH= FH×|x D﹣x A|=2FH=2(﹣ m2﹣ m+4)=﹣m2﹣m+8=﹣(m+ )2+ ,
当m=﹣时,S△ADF最大,
∴F(﹣,)
如图2,作点A关于直线BD的对称点A1,把A1沿平行直线BD方向平移到A2,且A1A2= ,
连接A2F,交直线BD于点N,把点N沿直线BD向左平移得点M,此时四边形AMNF 的周长最小..
∵OB=2,OD=1,
∴tan∠OBD= ,
∵AB=6,
∴AK= ,
∴AA1=2AK= ,
在Rt△ABK中,AH= ,A1H= ,
∴OH=OA﹣AH= ,
∴A1(﹣,﹣),
过A2作A2P⊥A2H,
∴∠A1A2P=∠ABK,
∵A1A2= ,
∴A2P=2,A1P=1,
∴A2(﹣,﹣)
∵F(﹣,)
∴A2F的解析式为y=﹣ x﹣①,
∵B(2,0),D(0,﹣1),
∴直线BD解析式为y=﹣ x﹣1②,
联立①②得,x=﹣,
∴N点的横坐标为:﹣
(3)解:∵C(0,3),B(2,0),D(0,﹣1)∴CD=4,BC= ,OB=2,
BC边上的高为DH,
根据等面积法得, BC×DH= CD×OB,
∴DH= = ,
∵A(﹣4,0),C(0,3),
∴OA=4,OC=3,
∴tan∠ACD= ,
①当PC=PQ时,简图如图1,
过点P作PG⊥CD,过点D作DH⊥PQ,
∵tan∠ACD=
∴设CG=3a,则QG=3a,PG=4a,PQ=PC=5a,∴DQ=CD﹣CQ=4﹣6a
∵△PGQ∽△DHQ,
∴,
∴,
∴a= ,
∴PC=5a= ;
②当PC=CQ时,简图如图2,
过点P作PG⊥CD,
∵tan∠ACD=
∴设CG=3a,则PG=4a,
∴CQ=PC=5a,
∴QG=CQ﹣CG=2a,
∴PQ=2 a,
∴DQ=CD﹣CQ=4﹣5a
∵△PGQ∽△DHQ,
同①的方法得出,PC=4﹣,设CG=3a,则PG=4a,从而得出CQ,QG,PQ,DQ的长,由△PGQ∽△DHQ,同①的方法得出,PC的长;
③当QC=PQ时,简图如图1
过点Q作QG⊥PC,过点C作CN⊥PQ,
设CG=3a,则QG=4a,PQ=CQ=5a,
∴PG=3a,
∴PC=6a
∴DQ=CD﹣CQ=4﹣5a,
利用等面积法得,CN×PQ=PC×QG,
∴CN= a,
∵△CQN∽△DQH
同①的方法得出PC=
④当PC=CQ时,简图如图4,
过点P作PG⊥CD,过H作HD⊥PQ,
设CG=3a,则PG=4a,CQ=PC=5a,
∴QD=4+5a,PQ=4 ,
∵△QPG∽△QDH,
同①方法得出.CP=
综上所述,PC的值为:;4﹣,,=
【解析】【分析】(1)根据抛物线与x轴交点的坐标特点,把y=0代入抛物线的解析式,得出一个关于x的一元二次方程,求解得出x的值,进而得出A,B两点的坐标;然后由A,D 两点的坐标利用待定系数法求出直线AD的解析式;
(2)过点F作FH⊥x轴,交AD于H,根据函数图像上点的坐标特点,及平行于y轴的直线上的点的坐标特点,设出F,H的坐标,从而得出FH的长度,S△ADF=S△AFH+S△DFH= FH×|x D
﹣x A|=2FH,列出关于m的函数解析式,再根据二次函数的性质,由顶点式得出当m=﹣时,S△ADF最大,从而得出F点的坐标;如图2,作点A关于直线BD的对称点A1,把A1沿平行直线BD方向平移到A2,且A1A2= ,连接A2F,交直线BD于点N,把点N沿直线BD向左平移得点M,此时四边形AMNF的周长最小,进而求出点A1,A2坐标,即可确定出A2F的解析式和直线BD解析式联立方程组即可确定出N点的横坐标;
(3)根据C,B,D三点的坐标,得出CD,BC,OB的长,BC边上的高为DH,根据等面积法得
BC×DH= CD×OB,从而得出DH的长,根据A,C两点的坐标,得出OA,OC的长,根据正切函数的定义得出tan∠ACD= 4∶ 3 ;然后分四种情况讨论:①当PC=PQ时,过点P作PG⊥CD,过点D作DH⊥PQ,由tan∠ACD= 4∶ 3 ,设CG=3a,则QG=3a,PG=4a,PQ=PC=5a,从而由DQ=CD﹣CQ得出DQ的长,根据△PGQ∽△DHQ,得出PG∶DH=PQ∶DQ,从而求出a的值,进而求出PC的值;②当PC=CQ时,简图如图2,过点P作PG⊥CD,tan∠ACD= 4∶3,设CG=3a,则PG=4a,从而得出CQ,QG,PQ,DQ的长,由△PGQ∽△DHQ,同①的方法得出,PC的长;③当QC=PQ时,过点Q作QG⊥PC,过点C作CN⊥PQ,设CG=3a,则QG=4a,PQ=CQ=5a,从而得出PG,PC,DQ的长,利用等面积法得,CN×PQ=PC×QG,从而得出CN,由△CQN∽△DQH同①的方法得出PC的长;④当PC=CQ时,
过点P作PG⊥CD,过H作HD⊥PQ,设CG=3a,则PG=4a,CQ=PC=5a,从而得出QD,PQ 的长,由△QPG∽△QDH,同①方法得出.CP的长。

5.如图,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P 是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.
(1)填空:抛物线的解析式为________,点C的坐标________;
(2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标.
【答案】(1)y=﹣x2+3x+4;(-1,0)
(2)解:∵点A的坐标为(0,4),点C的坐标为(-1,0),∴.
∵点P的横坐标为m,∴P(m,﹣m2+3m+4).
①当点P在直线AQ下方时,QP=4-(﹣m2+3m+4)= m2-3m,
由△AQP∽△AOC得:,即:,
∴(舍去)或.
当时,﹣m2+3m+4=,此时点P的坐标为();
②当点P在直线AQ上方时,PQ=﹣m2+3m+4-4=﹣m2+3m,
由△AQP∽△AOC得:,即:,
∴=0(舍去)或=,此时P点坐标为().
综上所述:点P的坐标为()或().
【解析】【解答】解:(1)∵抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),
∴,解得:,∴抛物线的解析式为:y=﹣x2+3x+4.
令y=0,得:﹣x2+3x+4=0,解得:x=4或x=-1,∴点C的坐标为(-1,0).
【分析】(1)根据题意,将A,B两点的坐标代入到解析式中,分别求出b,c,可以求出抛物线的解析式;
(2)C为x轴上的交点,令y=0,通过解一元二次方程,解得C点坐标。

6.如图,抛物线经过A(-3,0),C(5,0)两点,点B为抛物线顶点,抛物线的对称轴与x轴交于点D.
(1)求抛物线的解析式;
(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为t,过点P作PM⊥BD,交BC于点M,以PM为正方形的一边,向上作正方形PMNQ,边QN交BC于点R,延长NM交AC于点E.
①当t为何值时,点N落在抛物线上;
②在点P运动过程中,是否存在某一时刻,使得四边形ECRQ为平行四边形?若存在,求出此时刻的t值;若不存在,请说明理由.
【答案】(1)解:∵y=ax2+bx+ 经过A(﹣3,0),C(5,0)两点,
∴,
解得:,
∴抛物线的解析式为
(2)解:∵ =﹣(x2﹣2x+1)+ =﹣(x﹣1)2+8,
∴点B的坐标为(1,8).
设直线BC的解析式为y=kx+m,
则,
解得:,
所以直线BC的解析式为y=﹣2x+10.
∵抛物线的对称轴与x轴交于点D,
∴BD=8,CD=5﹣1=4.
∵PM⊥BD,
∴PM∥CD,
∴△BPM∽△BDC,
∴,
即,
解得:PM= t,
∴OE=1+ t.
∴ME=-2(1+ t)+10=8-t..
∵四边形PMNQ为正方形,
∴NE=NM+ME=8﹣t+ t=8﹣ t.
①点N的坐标为(1+ t,8﹣ t),
若点N在抛物线上,
则﹣(1+ t﹣1)2+8=8﹣ t,
整理得,t(t﹣4)=0,
解得t1=0(舍去),t2=4,
所以,当t=4秒时,点N落在抛物线上;
②存在.理由如下:
∵PM= t,四边形PMNQ为正方形,
∴QD=NE=8﹣ t.
∵直线BC的解析式为y=﹣2x+10,
∴﹣2x+10=8﹣ t,
解得:x= t+1,
∴QR= t+1﹣1= t.
又∵EC=CD﹣DE=4﹣ t,
根据平行四边形的对边平行且相等可得QR=EC,
即 t=4﹣ t,
解得:t= ,
此时点P在BD上
所以,当t= 时,四边形ECRQ为平行四边形
【解析】【分析】(1)用待定系数法,将A,C两点的坐标分别代入y=ax2+bx+ ,得出一个关于a,b的二元一次方程组,求解得出a,b的值,从而得出抛物线的解析式;
(2)首先求出抛物线的顶点B的坐标,然后用待定系数法求出直线BC的解析式为y=﹣2x+10.根据点到坐标轴的距离得出BD,CD的长度,根据垂直于同一直线的两条直线互相平行得出PM∥CD,根据平行于三角形一边的直线,截,其它两边,所截的三角形与原三角形相似得出△BPM∽△BDC,根据相似三角形对应边成比例得出B P ∶B D = P M ∶C D ,进而得出关于t的方程,求解得出PM,进而得出OE,ME,根据正方形的性质由NE=NM+ME得出NE的长,进而表示出N点的坐标,若点N在抛物线上,根据抛物线上的点的特点,得出关于t的方程,求解得出t的值,所以,当t=4秒时,点N落在抛物线上;②存在.理由如下:根据PM的长及正方形的性质从而表示出QD=NE的长度,进而得出方程,求出x的值,进而表示出QR根据线段的和差及平行四边形的对边平行且相等可得QR=EC,从而得出关于t的方程,求解得出答案。

7.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q
(1)【探究一】在旋转过程中,
①如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.________
②如图3,当时E P与EQ满足怎样的数量关系?,并说明理由.________
③根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式
为________,其中的取值范围是________(直接写出结论,不必证明)
(2)【探究二】若且AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:
①S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.
②随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.
【答案】(1)解:当时,PE=QE.即E为AC中点,理由如下:
连接BE,
∵△ABC是等腰直角三角形,
∴BE=CE,
∠PBE=∠C=45°,
又∵∠PEB+∠BEQ=90°,∠CEQ+∠BEQ=90°,
∴∠PEB=∠CEQ,
在△PEB和△QEC中,
∵ ,
∴△PEB≌△QEC(ASA),
∴PE=QE.
;EP:EQ=EA:EC=1:2;理由如下:
作EM⊥AB,EN⊥BC,
∴∠EMP=∠ENQ=90°,
又∵∠PEN+∠MEP=∠PEN+∠NEQ=90°,
∴∠MEP=∠NEQ,
∴△MEP∽△NEQ,
∴EP:EQ=ME:NE,
又∵∠EMA=∠ENC=90°,∠A=∠C,
∴△MEA∽△NEC,
∴ME:NE=EA:EC,
∵ ,
∴EP:EQ=EA:EC=1:2.
;EP:EQ=1:m;0<m≤2+
(2)解:①存在.
由【探究一】中(2)知当时,EP:EQ=EA:EC=1:2;设EQ=x,则EP= x,
∴S= ·EP·EQ= ·x· x= x2,
当EQ⊥BC时,EQ与EN重合时,面积取最小,
∵AC=30,△ABC是等腰直角三角形,
∴AB=BC=15 ,
∵,AC=30,
∴AE=10,CE=20,
在等腰Rt△CNE中,
∴NE=10 ,
∴当x=10 时,S min=50(cm2);
当EQ=EF时,S取得最大,
∵AC=DE=30,∠DEF=90°,∠EDF=30°,
在Rt△DEF中,
∴tan30°= ,
∴EF=30× =10 ,此时△EPQ面积最大,
∴S max=75(cm2);
②由(1)知CN=NE=5 ,BC=15 ,
∴BN=10 ,
在Rt△BNE中,
∴BE=5 ,
∴当x=BE=5 时,S=62.5cm2,
∴当50<S≤62.5时,这样的三角形有2个;
当S=50或62.5<S≤75时,这样的三角形有1个.
【解析】【解答】(1)③作EM⊥AB,EN⊥BC,
∵∠B=∠PEQ=90°,
∴∠EPB+∠EQB=180°,
又∵∠EPB+∠EPM=180°,
∴∠EQB=∠EPM,
∴△MEP∽△NEQ,
∴EP:EQ=ME:NE,
又∵∠EMA=∠ENC=90°,∠A=∠C,
∴△MEA∽△NEC,
∴ME:NE=EA:EC,
∵ ,
∴EP:EQ=EA:EC=1:m,
∴EP与EQ满足的数量关系式为EP:EQ=1:m,
∴0<m≤2+ (当m>2+ 时,EF与BC不会相交).
【分析】【探究一】①根据已知条件得E为AC中点,连接BE,根据等腰直角三角形的性质可BE=CE,∠PBE=∠C=45°,由同角的余角相等得∠PEB=∠CEQ,由全等三角形的判定ASA可得△PEB≌△QEC,再由全等三角形的性质得PE=QE.
②作EM⊥AB,EN⊥BC,由相似三角形的判定分别证△MEP∽△NEQ,△MEA∽△NEC,再由相似三角形的性质得EP:EQ=ME:NE=EA:EC,从而求得答案.
③作EM⊥AB,EN⊥BC,由相似三角形的判定分别证△MEP∽△NEQ,△MEA∽△NEC,再由相似三角形的性质得EP:EQ=ME:NE=EA:EC,从而求得答案.
【探究二】①设EQ=x,根据【探究一】(2)中的结论可知则EP= x,根据三角形面积公式得出S的函数关系式,再根据当EQ⊥BC时,EQ与EN重合时,面积取最小;当EQ=EF 时,S取得最大;代入数值计算即可得出答案.
②根据(1)中数据求得当EQ与BE重合时,△EPQ的面积,再来分情况讨论即可.
8.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.
(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)(2)在(1)的条件下,①证明:AE⊥DE;
②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。

【答案】(1)
(2)①证明:在AD上取一点F使DF=DC,连接EF,
∵DE平分∠ADC,
∴∠FDE=∠CDE,
在△FED和△CDE中,
DF=DC,∠FDE=∠CDE,DE=DE
∴△FED≌△CDE(SAS),
∴∠DFE=∠DCE=90°,∠AFE=180°-∠DFE=90°
∴∠DEF=∠DEC,
∵AD=AB+CD,DF=DC,
∴AF=AB,
在Rt△AFE≌Rt△ABE(HL)
∴∠AEB=∠AEF,
∴∠AED=∠AEF+∠DEF= ∠CEF+ ∠BEF= (∠CEF+∠BEF)=90°。

∴AE⊥DE
②解:过点D作DP⊥AB于点P,
∵由①可知,B,F关于AE对称,BM=FM,
∴BM+MN=FM+MN,
当F,M,N三点共线且FN⊥AB时,有最小值,
∵DP⊥AB,AD=AB+CD=6,
∴∠DPB=∠ABC=∠C=90°,
∴四边形DPBC是矩形,
∴BP=DC=2,AP=AB-BP=2,
在Rt△APD中,DP= = ,
∵FN⊥AB,由①可知AF=AB=4,
∴FN∥DP,
∴△AFN∽△ADP
∴,
即,
解得FN= ,
∴BM+MN的最小值为
【解析】【分析】(1)根据角平分的做法即可画出图.(2)①在AD上取一点F使DF=DC,连接EF;角平分线定义得∠FDE=∠CDE;根据全等三角形判定SAS得△FED≌△CDE,再由全等三角形性质和补角定义得∠DFE=∠DCE=∠AFE=90°,
∠DEF=∠DEC;再由直角三角形全等的判定HL得Rt△AFE≌Rt△ABE,由全等三角形性质得∠AEB=∠AEF,再由补角定义可得AE⊥DE.
②过点D作DP⊥AB于点P;由①可知,B,F关于AE对称,根据对称性质知BM=FM,当F,M,N三点共线且FN⊥AB时,有最小值,即BM+MN=FM+MN=FN;在Rt△APD中,根据勾股定理得DP= = ;由相似三角形判定得△AFN∽△ADP,再由相似三
角形性质得,从而求得FN,即BM+MN的最小值.
9.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0)。

动点M,N 同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动时间记为t秒。

连接MN。

(1)求直线BC的解析式;
(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;
(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式。

【答案】(1)解:设直线BC解析式为:y=kx+b,
∵B(0,4),C(-3,0),
∴,
解得:
∴直线BC解析式为:y= x+4.
(2)解:依题可得:AM=AN=t,
∵△AMN沿直线MN翻折,点A与点点D重合,
∴四边形AMDN为菱形,
作NF⊥x轴,连接AD交MN于O′,
∵A(3,0),B(0,4),
∴OA=3,OB=4,
∴AB=5,
∴M(3-t,0),
又∵△ANF∽△ABO,
∴ = = ,
∴ = = ,
∴AF= t,NF= t,
∴N(3- t, t),
∴O′(3- t, t),
设D(x,y),
∴ =3- t, = t,
∴x=3- t,y= t,
∴D(3- t, t),
又∵D在直线BC上,
∴ ×(3- t)+4= t,
∴t= ,
∴D(- ,).
(3)①当0<t≤5时(如图2),
△ABC在直线MN右侧部分为△AMN,
∴S= = ·AM·DF= ×t× t= t ,
②当5<t≤6时,△ABC在直线MN右侧部分为四边形ABNM,如图3
∵AM=AN=t,AB=BC=5,
∴BN=t-5,CN=-5-(t-5)=10-t,
又∵△CNF∽△CBO,
∴ = ,
∴ = ,
∴NF= (10-t),
∴S= - = ·AC·OB- ·CM·NF,
= ×6×4- ×(6-t)× (10-t),
=- t + t-12.
【解析】【分析】(1)设直线BC解析式为:y=kx+b,将B、C两点坐标代入即可得出二元一次方程组,解之即可得出直线BC解析式.(2)依题可得:AM=AN=t,根据翻折性质得四边形AMDN为菱形,作NF⊥x轴,连接AD交MN于O′,结合已知条件得M(3-t,0),
又△ANF∽△ABO,根据相似三角形性质得 = = ,
代入数值即可得AF= t,NF= t,从而得N(3- t, t),根据中点坐标公式得O′(3- t,
t),
设D(x,y),再由中点坐标公式得D(3- t, t),又由D在直线BC上,代入即可得D点坐标.(3)①当0<t≤5时(如图2),△ABC在直线MN右侧部分为△AMN,根据三角形面积公式即可得出S表达式.
②当5<t≤6时,△ABC在直线MN右侧部分为四边形ABNM,由△CNF∽△CBO,根据相似三角形性质得 = ,代入数值得NF= (10-t),最后由S= - = ·AC·OB- ·CM·NF,代入数值即可得表达式.
10.如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.
(1)当∠BAC=30º时,求△ABC的面积;
(2)当DE=8时,求线段EF的长;
(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标;若不存在,请说明理由.
【答案】(1)解:∵AB是⊙O的直径,
∴∠ACB=90°,
在Rt△ABC中,AB=10,∠BAC=30°,
∴BC= AB=5,
∴AC= ,
∴S△ABC= AC⋅BC=
(2)解:连接AD,
∵∠ACB=90°,CD=BC,
∴AD=AB=10,
∵DE⊥AB,
∴AE= =6,
∴BE=AB−AE=4,
∴DE=2BE,
∵∠AFE+∠FAE=90°,∠DBE+∠FAE=90°,
∴∠AFE=∠DBE,
∵∠AEF=∠DEB=90°,
∴△AEF∽△DEB,
∴ =2,
∴EF= AE= ×6=3
(3)解:连接EC,设E(x,0),
当的度数为60°时,点E恰好与原点O重合;
①0°< 的度数<60°时,点E在O、B之间,∠EOF>∠BAC=∠D,
又∵∠OEF=∠ACB=90°,由相似知∠EOF=∠EBD,此时有△EOF∽△EBD,
∴,
∵EC是Rt△BDE斜边的中线,
∴CE=CB,
∴∠CEB=∠CBE,
∴∠EOF=∠CEB,
∴OF∥CE,
∴△AOF∽△AEC
∴,
∴,即,
解得x= ,因为x>0,
∴x= ;
②60°< 的度数<90°时,点E在O点的左侧,
若∠EOF=∠B,则OF∥BD,
∴OF= BC= BD,
∴即解得x= ,
若∠EOF=∠BAC,则x=− ,
综上点E的坐标为( ,0) ;(,0);(−,0).
【解析】【分析】(1)根据圆周角定理求得∠ACB=90°,根据30°的直角三角形的性质求
得BC,进而根据勾股定理求得AC,然后根据三角形面积公式即可求得;(2)连接AD,由垂直平分线的性质得AD=AB=10,又DE=8,在Rt△ODE中,由勾股定理求AE,依题意证明△AEF∽△DEB,利用相似比求EF;(3)当以点E、O、F为顶点的三角形与△ABC相似时,分为两种情况:①当交点E在O,B之间时;②当点E在O点的左侧时;分别求E点坐标.
11.如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.
(1)当t=________时,PQ∥AB
(2)当t为何值时,△PCQ的面积等于5cm2?
(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB 能否垂直?若能,求出相应的t值;若不能,请说明理由.
能垂直,理由如下:
延长QE交AC于点D,
∵将△PQC翻折,得到△EPQ,
∴△QCP≌△QEP,
∴∠C=∠QEP=90°,
若PE⊥AB,则QD∥AB,
∴△CQD∽△CBA,
∴,
∴,
∴QD=2.5t,
∵QC=QE=2t
∴DE=0.5t
∵∠A=∠EDP,∠C=∠DEP=90°,
∴△ABC∽△DPE,

∴,
解得:,
综上可知:当t= 时,PE⊥AB
【答案】(1)2.4
(2)解:∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB 向B点以2厘米/秒的速度匀速移动,
∴PC=AC-AP=6-t,CQ=2t,
∴S△CPQ= CP•CQ= =5,
∴t2-6t+5=0
解得t1=1,t2=5(不合题意,舍去)
∴当t=1秒时,△PCQ的面积等于5cm2
(3)解:
【解析】【解答】解:(1) ∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q 从C出发沿CB向B点以2厘米/秒的速度匀速移动,
∴PC=AC-AP=6-t,CQ=2t,
当PQ∥AB时,∴△PQC∽△ABC,
∴PC:AC=CQ:BC,
∴(6-t):6=2t:8
∴t=2.4
∴当t=2.4时,PQ∥AB
【分析】(1)根据题意可得PC=AC-AP=6-t,CQ=2t,根据平行线可得△PQC∽△ABC,利用相似三角形对应边成比例可得PC:AC=CQ:BC,即得(6-t):6=2t:8,求出t值即可;
(2)由S△CPQ=CP•CQ =5,据此建立方程,求出t值即可;
(3)延长QE交AC于点D,根据折叠可得△QCP≌△QEP,若PE⊥AB,则QD∥AB,可得△CQD∽△CBA,利用相似三角形的对应边成比例,求出DE=0.5t,根据
两角分别相等可证△ABC∽△DPE,利用相似三角形对应边成比例,据此求出t 值即可.
12.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
(1)已知△ABC是比例三角形,AB=2,BC=3.请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形;
(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值。

【答案】(1)或或 .
(2)证明:∵AD∥BC,
∴∠ACB =∠CAD,
又∵∠BAC=∠ADC,
∴△ABC∽△DCA,
∴ = ,
即CA2=BC·AD,
又∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AB=AD,
∴CA2=BC·AB,
∴△ABC是比例三角形.
(3)解:如图,过点A作AH⊥BD于点H,
∵AB=AD,
∴BH= BD,
∴AD∥BC,∠ADC=90°,
∴∠BHA=∠BCD=90°,
又∵∠ABH=∠DBC,
∴△ABH∽△DBC,
∴ = ,
∴AB·BC=DB·BH,
∴AB·BC= BD2,
又∵AB·BC=AC2,
∴ BD2=AC2,
∴ = .
【解析】【解答】解:(1)∵已知△ABC是比例三角形,依题可得:①当AB2=BC·AC时,
∵AB=2,BC=3.
∴4=3AC,
∴AC= ;
②CB2=AB·AC,
∵AB=2,BC=3.
∴9=2AC,
∴AC= ;
③AC2=BC·AB,
∵AB=2,BC=3.
∴AC2=2×3,
∴AC= .
综上所述:AC的长为:或或 .
【分析】(1)由比例三角形的定义分三种情况讨论:①当AB2=BC·AC时,②CB2=AB·AC,③AC2=BC·AB,代入CB、AB的数值分别求得AC长.
(2)根据平行线的性质和相似三角形的判定得△ABC∽△DCA,由相似三角形的性质得CA2=BC·AD;根据平行线的性质和角平分线的定义得∠ADB=∠ABD,根据等腰三角形等角对等边得AB=AD,将此代入上式即可得证.
(3)如图,过点A作AH⊥BD于点H,根据等腰三角形三线合一的性质可知BH= BD,由相
似三角形的判定和性质得AB·BC=DB·BH,即AB·BC= BD2,联立(1)中的结论即可得出答案.。

相关文档
最新文档