比赛场次 (导学案)-六年级上册数学北师大版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比赛场次(导学案)-六年级上册数学北师大版
一、教学目标
1.理解比赛场次的含义
2.掌握求解比赛场次的方法
3.能够运用比赛场次的知识解决实际问题
二、教学重难点
1.比赛场次的概念及含义
2.如何确定比赛参赛人数和比赛人数的关系
三、教学内容
1. 比赛场次的概念
比赛场次就是指比赛的次数,通常在体育比赛、棋类竞赛等方面会用到。

比赛场次的计算通常与参赛人数和比赛的要求有关。

2. 比赛场次的求解方法
在不同的情况下,计算比赛场次的方法也不同,下面是两个常见的情况:
情况一:每个人只能参加一次比赛
在这种情况下,如果已知参赛人数,那么比赛场次就等于参赛人数除以比赛的要求数。

其中:
参赛人数÷ 比赛的要求数 = 比赛场次
举例说明:
某学校举办了一场田径比赛,共有 120 名学生参加比赛,每个学生只能参加一个项目。

如果要求每个项目至少有 6 人参赛,那么这次比赛的场次是多少?
解答:
参赛人数÷ 比赛的要求数 = 比赛场次
120 ÷ 6 = 20
因此,这次比赛的场次是 20 场。

情况二:每个人可以参加多次比赛
在这种情况下,每个人可以参加多场比赛,且比赛的组合不一定相同。

这种情况下比赛场次的计算较为复杂,通常采用组合数学的方法求解。

例如:
某学校组织某科目的比赛,有 6 名选手,要求每个选手参赛 4 场,比赛的场次是多少?
解答:
假设 6 名选手分别为 A、B、C、D、E 和 F。

则在第一场比赛中,任意一位选手都可以参赛,比赛场次为 6;在第二场比赛中,因为已经有一位选手参赛了,所以只有 5 名选手可以参赛,比赛场次为 5;以此类推,在第三场比赛中,只有 4 名选手可以参赛,比赛场次为 4;在第四场比赛中,只有 3 名选手可以参赛,比赛场次为 3。

因此,
比赛场次= 6 × 5 × 4 × 3 = 360
因此,这个科目的比赛场次是 360 场。

四、实例练习
1.某校田径比赛,共有 200 名学生参赛,从 100 米、200 米、400 米、4 × 100 米接力 4 个项目中至少参赛 1 个项目,并且每个项目至少有 5 人参赛,那么这次比赛的场次是多少?
2.某校学生会组织学校内的演讲比赛,共有 10 名选手参赛,要求每个选手必须进行 3 场演讲,那么这次比赛的场次是多少?
五、课后作业
1.完成实例练习中的两道题目。

2.设计一个与比赛场次有关的问题,并提供解答。

六、小结
通过本次课的学习,我们了解了什么是比赛场次,以及如何计算比赛场次。

在今后的应用中,我们应该灵活运用比赛场次的知识解决实际问题。

相关文档
最新文档