人教版八年级下册数学第十七章《勾股定理》单元检测试题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022年八年级下册数学《勾股定理》单元试题 姓名: 学号: 分数:
一、选择题(每小题3分,共30分)
1.下列长度的三条线段能组成直角三角形的是( )
A .2,3,4
B .3,2,7
C .6,22,10
D .3,5,8 2.在平面直角坐标系中,点P(3,4)到原点的距离是( )
A .3
B . 4
C .5
D .±5
3.如图所示,数轴上点A 所表示的数为a ,则a 的值是( )
A .5+1
B .-5+1
C .5-1
D . 5
4.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有( )
A .1个
B .2个
C .3个
D .4个
5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )
A.600米
B.800米
C.1000米
D.不能确定
6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( )
A.L 1
B.L 2
C.L 3
D.L 4
7.如图,一根垂直于地面的旗杆在离地面5m 的B 处撕裂折断,旗杆顶部落在离旗杆底部12m 的A 处,则旗杆折断部分AB 的高度是( )
5m B
C
A
D
图1
A.5m B.12m C.13m D.18m
7题图 8题图
8.如图,P为等腰△ABC内一点,过点P分别作三条边BC、CA、AB的垂线,垂足分别为D、E、F,已知AB=AC=10,BC=12,且PD︰PE︰PF=1︰3︰3,则AP的长为()
A.4
3
B.
20
3
C.7 D.8
9.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,M,N在AB上且AM=AC,BN=BC,则MN的长为( )[来源:]
A.6 B.7 C.8 D.9
10.一架 2.5米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为0.7米.如果梯子的顶端下滑0.4米,那么梯足将向外移()
A.0.6米B.0.7米C.0.8米D.0.9米
二、填空题(每小题4分,共24分)
11.如图,等腰△ABC的底边BC长为16,底边上的高AD长为6,则腰AB的长为____________.
第11题图第12题图第13题图12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200 m,结果他在水中实际游了520 m,则该河流的宽度为____________ m.
13.如图,三个正方形的面积分别为S
1=3,S
2
=2,S
3
=1,则分别以它们的一边
为边围成的三角形中,∠1+∠2=____________度.
14.一个直角三角形的两边长分别为5 cm,12 cm,则这个直角三角形的第三边
长为____________.
15.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为____________.
第15题图第16题图
16.如图,一个三级台阶,它的每一级的长、宽和高分别为20,3,2,A和B 是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是____________.
17.如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm 的木棍________放入(填“能”或“不能”).
第17题图第18题图
18.如图,已知OB=1,以OB为直角边作等腰直角三角形A1BO,再以OA1为直角边作等腰直角三角形A2A1O……如此下去,则线段OA n的长度为________.
三、解答题(共66分)
19.如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC的长.20.如图,在边长为1的正方形组成的网格图中,△ABC的三个顶点均在格点上,
请按要求完成下列问题:
(1)求△ABC的周长;
(2)试判断△ABC的形状.
21.如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC=5,BD=2. (1)求证:△BCD是直角三角形;
(2)求△ABC的面积.
22.甲、乙两位探险者今年到沙漠进行探险,没有了水,需要寻找水源,为了不至于走散,他们用两部对话机联系,已知对话机的有效距离为12千米.如图,早晨8:00甲先出发,他以4千米/时的速度向东行走,1小时后乙出发,他以6千米/时的速度向北行进.上午10:00,甲步行到A,乙步行到B,问甲、乙二人相距多远?还能保持联系吗?
23.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?
24.如图,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.
参考答案
一.选择题:
题号 1 2 3 4 5 6 7 8 9 10 答案 B C C C C B C B C C
二.填空题:
11.10 12.480 13.90 14.13 cm或119 cm
15.9
2
16.25 17.能 18.(2)n
三.解答题:
19. 6.
20.(1)5+3 5.(2)△ABC是直角三角形.
21.(1)证明:∵CD=1,BC=5,BD=2,∴CD2+BD2=BC2.∴△BDC是直角三角形.(2)设AB=AC=x,在Rt△ADB中,∵AB2=AD2+BD2,∴x2=(x-1)2
+22.解得x=5
2
.∴AC=
5
2
.∴S
△ABC
=
1
2
AC·BD=
1
2
×
5
2
×2=
5
2
.
22.解:∵早晨8:00甲先出发,他以4千米/时的速度向东行走,1小时后乙出发,他以6千米/时的速度向北行进,∴上午10:00时,OA=8千米,OB=6千米,(3分)∴AB=82+62=10(千米)<12千米,(6分)∴甲、乙二人相距10千米,还能保持联系.(8分)
23.解:如图,连接BD.(1分)∵∠A=90°,AB=3m,AD=4m,∴在Rt△ABD 中,由勾股定理得BD2=AB2+AD2=32+42=52,即BD=5m.在△CBD中,CD2=132,BC2=122,BD2=52,∵122+52=132,即BC2+BD2=CD2,∴∠DBC=90°.(5分)故
S
四边形ABCD =S△BAD+S△DBC=
1
2
·AD·AB+
1
2
DB·BC=
1
2
×4×3+
1
2
×5×12=36(m2).(7
分)∴学校需投入的资金为36×200=7200(元).(9分)
答:学校需要投入7200元购买草皮.(10分)
24.解:由折叠的性质可知∠DEA=∠COA=90°,EA=OA=10,OD=DE.∵四边形OABC是长方形,∴AB=OC=8,BC=OA=10.(2分)在Rt△ABE中,由勾股定理得BE=AE2-AB2=102-82=6,∴CE=BC-BE=4,∴点E的坐标为(4,8).(6分)在Rt△DCE中,由勾股定理得CD2+CE2=DE2,又∵DE=OD,∴CD=CO-DO=8-DO,即(8-OD)2+42=OD2,∴OD=5,∴点D的坐标为(0,5).(10分)。