冀教版2012版七年级数学下册课件9.1三角形的边
冀教版初中数学七年级下册教学课件 第九章 三角形 三角形的角平分线、中线和高
知识小结
1.在三角形中,一个内角的平分线与它的对边相交,这个 角的顶点与交点之间的线段叫做三角形的角平分线.
2.把一条线段分成两条相等线段的点是线段的中点.在三 角形中,连接一个顶点与它对边中点的线段,叫做这个三角 形的中线. 三角形的三条中线交于一点,这点称为三角形的重心.
活动2 三角形的中线
你能画一条线将三角形的面积分成相等的两部分吗? 三角形的中线定义:连接三角形顶点和对边中点的线段 叫做三角形的中线. 任意地画出一个三角形,画出这个三角形的三条中线,
总结:任意三角形的三条中线都交于一点,三角形三条 中线的交点叫做三角形的重心.
[知识拓展]
(1)一个三角形有三条中线,并且都在三角形内部 相交于一点. (2)三角形的中线是一条线段. (3)三角形的一条中线把角形分成面积相等的 两个三角形.
冀 新课标 教
数学
7年级/下
七年级数学·下 新课标[冀教]
第九章 三角形
学习新知
检测反馈
问题思考
学习新知
同学们,你也能利用一支铅笔平整的一端支起一个 三角板吗?你知道这里面的数学知识吗?
活动1 三角形的角平分线
如图所示,已知△ABC,画出∠A的平分线.
D
定义:三角形一个内角的平分线与它的对边相交,这个 角的顶点与交点间的线段叫做三角形的角平分线. 如图所示,在△ABC中,∠BAD=∠CAD,线段AD是 △ABC的一条角平分线.
1 2
×4=2.同理可知
3.如图所示,在△ABC中,AD平分∠BAC且与BC相交于点 D,∠B=40°,∠BAD=30°,则∠C的度数是 ( B ) A.70° B.80° C.100° D.110°
七年级数学下册第九章《三角形》9.1三角形的边三大几何作图问题素材(新版)冀教版
七年级数学下册第九章《三角形》素材:三大几何作图问题三大几何作图问题是:倍立方、化圆为方和三等分任意角.由于限制了只能使用直尺和圆规,使问题变得难以解决并富有理论魁力,刺激了许多学者投身研究.早期对化圆为方作出贡献的有安纳萨戈拉斯(Anaxagoras,约500B.C.~428B.C.),希波克拉底(Hippocrates of chios,前5世纪下半叶)、安蒂丰(Antiphon,约480B.C.~411B.C.)和希比亚斯(Hippias of Elis,400B.C.左右)等人;从事倍立方问题研究的学者也很多,欧托基奥斯(Eutocius,约480~?)曾记载了柏拉图、埃拉托塞尼(Eratosthenes,约276B.C.~195B.C.)、阿波罗尼奥斯(Apollonius,约262B.C.~190B.C.)和帕波斯(Pappus,约300~350)等人共12种作图方法:尼科米迪斯(Nicomedes,约250B.C.左右)、帕波斯等人则给出了三等分角的方法.当然所有这些研究都无法严格遵守尺规作图的限制,但它们却引出了大量的新发现(如圆锥曲线、许多三、四次曲线和某些超越曲线等),对整个希腊几何产生巨大影响.三大作图问题自智人学派提出之时起,历经二千余年,最终被证明不可能只用直尺、圆规求解(1837年旺策尔「P.L.Wantze1」首先证明了倍立方和三等分任意角不可能只用尺规作图;1882年林德曼[C.L.F.Lindemann]证明了π的超越性,从而确立了尺规化圆为方的不可能).关于三大几何作图问题的起源和古代探讨,在智人学派之后一些希腊学者的著述中留有记载,这些分散片断的记载,成为了解早期希腊数学的珍贵资料.以下选录部分内容,各节作者与出处将随文注明.倍立方A.赛翁论倍立方问题的可能起源于埃拉托塞尼在其题为《柏拉图》的著作中写道:当先知得到神的谕示向提洛岛的人们宣布,为了止息瘟疫,他们必须建造一个祭坛,体积是现有那个祭坛的两倍时,工匠们试图弄清怎样才能造成一个立体,使其体积为另一个立体的两倍,为此他们陷入深深的困惑之中,于是他们就这个问题去请教柏拉图.柏拉图告诉他们,先知发布这个谕示,并不是因为他想得到一个体积加倍的祭坛,而是因为他希望通过派给他们这项工作,来责罚希腊人对于数学的忽视和对几何学的轻视.B.普罗克洛斯论希波克拉底对这一问题的简化.“简化”是将一个问题或定理转化成另一个已知的或已构造出的问题或定理,使得原命题清晰明了.例如,为解决倍立方问题,几何学家们转而探究另一问题,即依赖于找到两个比例中项.从那以后,他们致力于如何找到两条已知线段间连比例中的两个中项的探索.据说最先有效地简化这些困难作图的是希俄斯的希波克拉底民他还化月牙形为方,并作出许多几何学上的其他发现.说到作图,如果曾经有过这方面的天才的话,这个人就是希波克拉底.历史上传说,古代的一位悲剧诗人描述了弥诺斯为格劳科斯修坟,当弥诺斯发现坟墓的每一边都是一百尺时,他说:“你们设计显然这是一个错误.因为如果边长加倍,表面积变成原来的四倍,体积变成八倍.当今的几何学家们也在探索将已知立方体的体积加倍而不改变其形状的途径.这个问题以二倍立方体著称,即已知一个立方体,他们想办法将其变为两倍”.当长期以来所有的探索都徒劳无功时,希俄斯的希波克拉底最先发现,如果能找到一个方法,作出已知的两条线段间连比例中的两个比例中项,其中长线段是短线段的两倍,立方体就变成两倍.这样他的难点被分解成另一个不太复杂的问题.“后来传说,某些提洛岛的人为遵循先知的谕示,想办法将一个祭坛加倍,他们陷入了同样的困境.于是他们派代表去请求学园中柏拉图学派的几何学家帮他们找到解法.这些几何学家们积极地着手解决这个问题,求两条已知线段间顺个比例中项.据说塔林敦的阿尔希塔斯应用半圆柱体得到一种解法,而欧多克索斯用了所谓的“曲线”所有解决这一问题的人在寻找演绎的证明方面是成功的,但除门奈赫莫斯①(尽管他只是很勉强地做到),他们都不能用行之有效的方法证明这个作图小现在我发现了一种简单方法,通过应用一种器具,不仅能得到两线段问的两个比例中项,而且能得到所需要的许多比例中项.应用这一发现,我们能够将任何表面是平行四边形的已知立体化成立方体,或者将其从一种形状变成另一种形状,而且也可以作出一个与已知立体形状相同,但体积大一些的立体,也就是保持相似性.……化圆为方A.安蒂丰化圆为方安蒂丰画了一个圆,并作一个能够内接于它的多边形.我们假设这个内接图形是正方形.然后他将正方形的每边分成两部分,从分点向圆周作垂线,显然这些垂线平分圆周上的相应弧段.接着他从垂线与圆周的交点向正方形边的端点连线,于是得到四个以线段(即正方形的边)为底的三角形,整个内接的图形现在成为八边形.他以同样的方法重复这一过程,得到的内接图形为十六边形.他一再地重复这一过程,随着圆面积的逐渐穷竭,一个多边形将内接于圆,由于其边极微小,将与圆重合.正如我们从《原本》中所知,既然通常我们能够作出一个等于任何已知多边形的正方形,那么注意到与圆重合的多边形与圆相等,事实上我们就作出了等于一个圆的正方形.B.布里松化圆为方他作一个正方形外切于圆,作另一个正方形内接于圆,在这两个正方形之间作第三个正方形.然后他说这两个正方形(即内接和外切正方形)之间的圆及中间的正方形都小于外部的正方形且大于内部的正方形,他认为分别比相同的量大和小的两个量相等.因此他说圆被化成正方形.三等分角帕波斯论三等分一个角的方法当早期的几何学家们用平面方法探究上述关于角的问题时他们无法解决它,因为这个问题从性质来看是一个立体问题,由于他们还不熟悉圆锥曲线,因此陷于困惑.但是他们后来借助于圆锥曲线用以下描述的斜伸法将角三等分.用斜伸法解已知一个直角平行四边形ABΓΔ,延长BΓ,使之满足作出AE,使得线段EZ等于已知线段.假设已经作出这些,并作ΔH,HZ平行于EZ,EΔ.由于ZE已知且等于ΔH,所以ΔH 也已知.Δ已知,所以H位于在适当位置给定的圆周上.由于BΓ,ΓΔ包含的矩形已知且等于BZ,EΔ包含的矩形已知,即BZ,ZH包含的矩形已知,故H位于一双曲线上.但它也位于在适当位置给定的圆周上,所以H已知.证明了这一点后,用下述方法三等分已知直线角.首先设ABΓ是一个锐角,从直线AB上任一点作垂线AΓ,并作平行四边形ΓZ,延长ZA至E,由于Γz是一个直角的平行四边形,在EA,AΓ间作线段EΔ,使之趋于B且等于AB的两倍——上面已经证明这是可能的,我认为EBΓ是已知角ABΓ的三分之一.因为设EΔ被H平分,连接AH,则三条线段ΔH,HA,HE相等,所以ΔE是AH的两倍.但它也是AB的两倍,所以BA等于AH,角ABΔ等于角AHΔ.由于AHΔ等于AEΔ,即ΓBΔ的两倍,所以ABΔ等于ΔBΓ的两倍.如果我们平分角ABΔ,那么就三等分了角ABΓ.用圆锥曲线的直接解法这种立体轨迹提供了另一种三分已知弧的方法,不必用到斜线.设过A,Γ的直线在适当的位置给定,从已知点A,Γ作折线ABΓ,使得角AΓB是角ΓAB的2倍,我认为B位于一双曲线上.因为设BΔ垂直于AΓ并且截取ΔE等于ΓΔ,当连接BE时,它将与AE相等.设EZ等于ΔE,所以ΓZ=3ΓΔ.现在置ΓH等于AF/3,所以点H将给定,剩下部分AZ等于3*HΔ.由于BE*BE-EZ*EZ=BΔ*BΔ,且BE*BE一EZ*EZ=ΔA*AZ,所以ΔA*AZ=BΔ*BΔ,即3*A Δ*ΔH=BΔ*BΔ,所以B位于以AH为横轴,AH为共轭轴的双曲线上.显然Γ点在圆锥曲线顶点H截取的线段ΓH是横轴AH的二分之一.综合也是清晰的.因为要求分割AΓ使得AH是HΓ的2倍,就要过H以AH为轴画共轭轴为AH的双曲线,并且证明它将使我们作出上面提到的具有2倍之比的角度.如果A,Γ两点是弧的端点,那么以这种方法画的双曲线截得已知圆上的一段弧的三分之一就易于理解了.。
七年级下册第九章三角形9、1三角形的边习题新版冀教版
14 已知a,b,c是△ABC的三边长. (1)若a,b,c满足|a-b|+(b-c)2=0,试判断△ABC的 形状; 解:∵|a-b|+(b-c)2=0, ∴a-b=0且b-c=0. ∴a=b=c. ∴△ABC为等边三角形.
(2)若a,b,c满足(a-b)(b-c)=0,试判断△ABC的形状; 解:∵(a-b)(b-c)=0, ∴a-b=0或b-c=0. ∴a=b或b=c. ∴△ABC为等腰三角形.
(3)化简:|a-b-c|+|b-c-a|+|c-a-b|. 解:∵a,b,c是△ABC的三边长, ∴a-b-c<0,b-c-a<0,c-a-b<0. ∴原式=-a+b+c-b+c+a-c+a+b=a+b+c.
15 如图,第1个图形是一个三角形,分别连接这个三角形 三条边的中点得到第2个图形,再分别连接第2个图形 中间的小三角形三条边的中点得到第3个图形……按此 方法继续下去,请你根据每个图形中三角形的个数的 规律,完成下列问题:
2 下面各项都是由三条线段组成的图形,其中是三角形 的是( C )
【点拨】 选项A,B,C,D都是由三条线段组成的图形,
但A,B,D不是首尾顺次相接,只有C符合三角形的 定义.
3 如图,图中三角形的个数是( D ) A.3个 B.4个 C.5个 D.6个
4 如图,以CD为边的三角形是_△__C_D__F_,__△__B__C_D_;∠EFB 是_△__B__E_F__的内角;在△BCE中,BE所对的角是 _∠__B_C__E__,∠CBE所对的边是___C__E___;以∠A为内角 的三角形有__△__A_B_D__,__△__A_C__E_,__△__A_B__C___.
【点拨】 ∵m-2+(n-4)2=0,∴m-2=0,n-4=0,解
三角形的角平分线、中线和高课件冀教版七年级数学下册
E
B
D
C
五、当堂检测
3.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,
∠C=60°,求∠DAE和∠BOA的度数.
Aபைடு நூலகம்
解:∵∠CAB=50°,∠C=60°,
∴∠ABC=180°-50°-60°=70°, 又∵AD是高,∴∠ADC=90°,∠DAC=180°-90°-∠C=30°, F
∵AD是△ABC的中线
∴BD=CD
1
1
又∵S△ABD= 2 BD×AE , S△ACD= 2 CD×AE
∴S△ABD=S△ACD
E
三角形的中线将三角形分成 面积相等的两部分.
四、合作探究
探究二 运用三角形的角平分线和高计算角度
问题提出:如图,在△ABC中,AD是△ABC的高,AE是△ABC的角平
分线,已知∠BAC=82°,∠C=40°,求∠DAE的大小.
∵AE是△ABC的角平分线,且∠BAC=82°, ∴∠CAE= ∠BAC=41°,
∴∠DAE=∠DAC-∠CAE=50°-41°= 9°.
四、合作探究
练一练
3.如图,在△ABC中,∠ABC=62°,BD是角平分线,CE是高,BD与CE交于点O,
求∠BOC的大小. A
解: ∵ CE是△ABC的高,
∴∠BEC=90°, ∵BD是△ABC的角平分线,且∠ABC=62°,
E
O
D
∴∠ABD=∠OBC= ∠ABC=31°,
B
C
∴∠BOC=∠BEC+∠ABD=121°.
五、当堂检测
1.在ΔABC中,CD是中线,已知BC-AC=5cm,ΔDBC的周长为25cm,则ΔADC的
初中数学冀教版七年级下册第九章 三角形9.1 三角形的边-章节测试习题(8)
章节测试题1.【答题】三角形两边长分别为3和5,若第三边的长为偶数,则这个三角形的周长可能是()A. 10或12B. 10或14C. 12或14D. 14或16【答案】C【分析】根据三角形的三边关系进行判断.【解答】解:设三角形第三边的长为a,∵三角形的两边长分别为3和5,∴5﹣3<a<5+3,即2<a<8,∵a为偶数,∴a=4或a=6,当a=4时,这个三角形的周长=3+4+5=12;当a=6时,这个三角形的周长=3+5+6=14.综上所述,这个三角形的周长可能是12或14.选C.方法总结:本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,两边之差小于第三边.2.【答题】已知三角形两边长分别为7、11,那么第三边的长可以是()A. 2B. 3C. 4D. 5【答案】D【分析】根据三角形的三边关系进行判断.【解答】设第三边长为x,由题意得:11﹣7<x<11+7,解得:4<x<18,选D.3.【答题】以下列各组数据为边长,能构成三角形的是()A. 4,4,8B. 2,4,7C. 4,8,8D. 2,2,7【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:∵4+4=8,故以4,4,8为边长,不能构成三角形;∵2+4<7,故以2,4,7为边长,不能构成三角形;∵4,8,8中,任意两边之和大于第三边,故以4,8,8为边长,能构成三角形;∵2+2<7,故以2,2,7为边长,不能构成三角形;选C.方法总结:在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.【答题】有3cm,3cm,6cm,6cm,12cm,12cm的六条线段,任选其中的三条线段组成一个等腰三角形,则最多能组成等腰三角形的个数为()A. 1B. 2C. 3D. 4【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据等腰三角形的性质和三边关系可得:3,6,6,和3,12,12,和6,12,12,三组可以构成等腰直角三角形,选C.5.【答题】已知是△ABC的三条边长,化简的结果为()A.B.C. 0D.【答案】C【分析】根据三角形的三边关系进行判断化简即可.【解答】∵a、b、c为△ABC的三条边长,∴a+b−c>0,c−a−b<0,∴原式=a+b−c+(c−a−b)=a+b−c+c−a−b=0.选C.6.【答题】已知三角形两边长分别为4和6,则该三角形第三边的长可能是()A. 2B. 9C. 10D. 12【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边的长为x,∵三角形两边的长分别是4和6,∴6−4<x<6+4,即2<x<10.选B.7.【答题】下列各组数中,不可能成为一个三角形三边长的是().A. ,,B. ,,C. ,,D. ,,【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形任意两边的和大于第三边,可知A. 2+3=5>4,能组成三角形;B. 5+7>7,能组成三角形;C. 5+6=11<12,不能够组成三角形;D. 6+8=14>10,能组成三角形.选A.8.【答题】若一个三角形的两边长分别为3和7,且第三边长为整数,则这样的三角形共有()A. 2个B. 3个C. 4个D. 5个【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边为a,根据三角形的三边关系,得:7-3<a<3+7,即4<a<10,因为a为整数,所以a可取5、6、7、8、9,即符合条件的三角形关于5个,选D.9.【答题】一个等腰三角形的一边长为4cm,另一边长为8cm,则该等腰三角形的周长是()A. 16cmB. 20cmC. 16cm或20cmD. 不能确定【答案】B【分析】根据三角形的三边关系进行判断.【解答】解:∵4+4=8,0<4<8+8=16,∴腰长不能为4,只能为8,∴等腰三角形的周长=4+8+8=20cm.选B.10.【答题】以下列各组线段的长为边,能组成三角形的是()A. 2cm,4cm,10cmB. 2cm,2cm,4cmC. 2cm,3cm,4cmD. 1cm,2cm,3cm【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解: A.∵2+4<10,故2cm,4cm,10cm不能构成三角形;B.∵2+2=4,故2cm,2cm,4cm不能构成三角形;C.∵2+3>4,故2cm,3cm,4cm能构成三角形;D.∵1+2=3,故1cm,2cm,3cm不能构成三角形;选C.11.【答题】下列长度的三条线段首尾连接不能组成三角形的是()A. 2,3,5B. 5,5,5C. 6,6,8D. 7,8,9【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解: A.3+2=5,不能组成三角形;B.5+5>5,能组成三角形;C.6+6>8,能够组成三角形;D.7+8>9,能组成三角形.选A.方法总结:本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.12.【答题】下列长度的三条线段能组成三角形的是()A. 1,2,3B. 4,5,10C. 8,15,20D. 5,8,15【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:由1,2,3可得,1+2=3,故不能组成三角形;由4,5,10可得,4+5<10,故不能组成三角形;由8,15,20可得,8+15>20,故能组成三角形;由5,8,15可得,5+8<15,故不能组成三角形;选C.方法总结:本题主要考查了三角形的三边关系,解题时注意:三角形两边之和大于第三边.13.【答题】长为10,7,5,3的四根木条,选其中三根首尾顺次相连接组成三角形,选法有()A. 1种B. 2种C. 3种D. 4种【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】4个数里选出三个不同的数共有4种选法(①10,7,3;②10,7,5;③10,5,3;④7,5,3),其中10、7、3和10、5、3不能构成三角形,所以只有3、5、7和5、7、10两种选法能够构成三角形,选B.14.【答题】下列长度的三条线段能首尾顺次相接构成三角形的是()A. 4,2,2B. 6,3,2C. 5,3,9D. 3,6,6【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A选项:2+2=4,不能构成三角形;B选项2+3<6,不能构成三角形;C选项5+3<9,不能构成三角形;D选项三条边满足三角形三条边之间的关系.选D.方法总结:三角形三条边之间的关系:两边之和大于第三边,两边之差小于第三边.15.【答题】下列四组线段中,能组成三角形的是()A. 2cm,3 cm,4 cmB. 3 cm,4 cm,7 cmC. 4 cm,6 cm,2 cmD. 5cm,11 cm,5cm【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解: A.2+3>4,能构成三角形,故本选项正确.B.3+4=7,不能构成三角形,故本选项错误.C.2+4=6,不能构成三角形,故本选项错误.D.5+5<11,不能构成三角形,故本选项错误.选A.方法总结:本题考查三角形的三边关系,根据三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形.16.【答题】下列长度的各组线段能组成三角形的是()A. 3、8、5;B. 12、5、6;C. 5、5、10;D. 15、10、7.【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:根据三角形任意两边的和大于第三边,可知:A.3+5=8=8,不能组成三角形,故本选项错误;B.5+6=11<12,不能组成三角形,故本选项错误;C.5+5=10=10,不能够组成三角形,故本选项错误;D.10+7>15,能组成三角形,故本选项正确;选D.方法总结:本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.17.【答题】如图,图中共有三角形的个数是()A. 3个B. 4个C. 5个D. 6个【答案】C【分析】不在同一直线上三点可以确定一个三角形,据此即可判断.【解答】图中的三角形有:△ADO、△ADB、△AOB、△ACB、△OCB,一共5个.选C.18.【答题】下列各组长度的线段能构成三角形的是()A. 1,4,2B. 3,6,3C. 6,1,6D. 4,10,4【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】选项A,∵1+2<4,∴不能构成三角形;选项B,∵3+3=6,∴不能构成三角形;选项C,∵1+6>6,∴能构成三角形;选项D,∵4+4<10,不能构成三角形.选C.19.【答题】一个等腰三角形两边长分别为20和10,则周长为()A. 40B. 50C. 40或50D. 不能确定【答案】B【分析】根据三角形的三边关系进行判断.【解答】当20为底边长时,则另两边长为10、10,由10+10=20,不符合三角形三边关系,故不能构成三角形;当10为底边长时,则另两边长为20、20,符合三角形三边关系,此时周长为10+20+20=50.选B.20.【答题】已知三角形两边的长分别是4和10,则此三角形第三边的长可能是().A. 16B. 5C. 6D. 11【答案】D【分析】根据三角形的三边关系进行判断.【解答】根据三角形的三边关系,得第三边长a的取值范围为10-4<a<10+4,即6<a<14.选项中只有11符合题意.选D.。
七年级数学下册 9.1 三角形的边同步练习 冀教版(2021学年)
七年级数学下册9.1 三角形的边同步练习(新版)冀教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册9.1 三角形的边同步练习(新版)冀教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册9.1三角形的边同步练习(新版)冀教版的全部内容。
9。
1三角形的边基础训练1。
以下列各组线段为边,能组成三角形的是( )A.1 cm,2 cm,4 cm B.4 cm,6 cm,8 cmC。
5 cm,6 cm,12 cmﻩ D.2cm,3 cm,5cm2。
如图所示的图形中共有()三角形.A.1个B.2个ﻩC。
3个ﻩD。
4个3。
已知三角形的两边长分别是3和8,则该三角形第三边的长可能是( )A.5ﻩB。
10ﻩC。
11ﻩD。
124.下列说法正确的是()A。
由三条线段组成的图形叫做三角形B。
在△ABC中∠A所对的边是直线BCC。
三条边分别为a,b,c的三角形记作△abcD。
由不在同一直线上的三条线段首尾顺次相接所组成的图形是三角形5。
已知x=3是关于x的方程4x—m=3的解,且3,m是等腰三角形ABC的两条边长,求△ABC 的周长。
培优提升1.如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得OA=15 m,OB=10 m,A,B两点间的距离不可能是()A。
5 m B.10 m C。
15 m D.20 m2。
若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A.2对ﻩB.3对C。
4对D。
6对3.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A.8或10 B。
9.1三角形的边(3)课件(冀教版七下)
生活的思考
斜 梁 斜 梁
直
梁
动手做一做,并探究下列问题:
1、将三根木条用钉子钉成一个三 角形木架,然后扭动它,它的形 状会改变吗?
2、将四根木条用钉子钉成一个四 边形木架,然后扭动它,它的形 状会改变吗?
做一做
3、在四边形木架上再钉一根木条, 将它的一对顶点连接起来,然后扭动 它,它的形状会改变吗?
做一做
三角形具有稳定性, 四边形具有不稳定性
在日常生活中三 角形稳定性有什 么应用?
稳定性在生活中的运用举例:
四边形不稳定性的应用.
同步练习1
下列图形中具有稳定性的是(C ) (A)正方形 (C)直角三角形 (B)长方形 (D)平行四边形
同步练习2
要使下列木架稳定各至少需要多少根木棍?
同步练习3
如图,工人师傅砌门时,常用木条EF固定 门框ABCD,使其不变形,这种做法的根据是 ( ) A E D E F
B
C
同步练习4
下列图中具有稳定性有( C )
A 1个
B 2个
C 3个 D 4个
同步练习5
下列设备,没有利用三角形的稳定性的 是( ) A.活动的四边形衣架 B.起重机 C.屋顶三角形钢架 D.索道支架
同步练习6
人站在晃动的公共汽车上,若你分 开两腿站立,则需伸出一只手去抓 住栏杆才能站稳,这是利用了那个 数学知识?
课堂小结
1.通过本节课的学习,你有什么收获? 还有什么困惑吗? 2.你对自己本节课的表现满意吗?为 什么?
作 业
这节课我们学习到这里,再见!
初中数学冀教版七年级下册第九章 三角形9.2 三角形的内角和外角-章节测试习题(6)
章节测试题1.【题文】若∠C=α,∠EAC+∠FBC=β(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系是______.(用α、β表示)(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2;依此类推,则∠P5=______.(用α、β表示)【答案】∠APB=α-β∠P5=α-β【分析】(1)根据角平分线的定义表示出∠MAC+∠NCB,再根据两直线平行,内错角相等可得∠C=∠MAC+∠NBC;(2)根据角平分线的定义表示出∠PAC+∠PBC,利用三角形的一个外角等于与它不相邻的两个内角的和列式整理即可得解;(3)根据(2)的结论分别表示出∠P1、∠P2…,从而得解.【解答】解:(1)∵AM是∠EAC的平分线,BN是∠FBC的平分线,∴∠MAC+∠NCB=∠EAC+∠FBC=β,∵AM∥BN,∴∠C=∠MAC+∠NCB,即α=β;(2)∵∠EAC的平分线与∠FBC平分线相交于P,∴∠PAC+∠PBC=∠EAC+∠FBC=β,∴∠C=∠APB+(∠PAC+∠PBC),∴α=∠APB+β,即∠APB=α-β;(3)由(2)得,∠P1=∠C-(∠PAC+∠PBC)=α-β,∠P2=∠P1-(∠P2AP1+∠P2BP1),=α-β-β=α-β,∠P3=α-β-β=α-β,∠P4=α-β-β=α-β,∠P5=α-β-β=α-β.2.【题文】如图,在△ABC中,∠B=50°,∠AEC=80°,CE平分∠ACB,求∠A 和∠BCE的度数.【答案】70°,30°【分析】根据三角形外角的性质得出∠BCE=∠AEC-∠B,由CE平分∠ACB,求得∠BCA的度数,根据三角形内角和定理就可以求出∠A.【解答】解:∵∠B=50°,∠AEC=80°,∴∠BCE=∠AEC-∠B=30°,∵CE平分∠ACB,∴∠BCA=2∠BCE=60°,∴∠A=180°-∠B-∠BCA=70°.3.【题文】如图,在中,平分,且,求的度数.【答案】72°【分析】先根据角平分线定义得到∠BAD=∠BAC,再利用三角形内角和定理得到∠BAC+∠B+∠C=180°,加上∠B=3∠BAD,所以2∠BAD+3∠BAD+90°=180°,解得∠BAD=18°,则∠B=54°,然后根据三角形外角性质计算∠ADC的度数.【解答】解:∵AD平分∠BAC,∴∠BAD=∠BAC.∵∠BAC+∠B+∠C=180°,而∠B=3∠BAD,∴2∠BAD+3∠BAD+90°=180°,∴∠BAD=18°,∴∠B=3∠BAD=54°,∴∠ADC=∠BAD+∠B=18°+54°=72°.4.【题文】认真阅读下面关于三角形内外角平分线的研究片断,完成所提出的问题. 探究1:如图(1)在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,∠2=∠ACB.∴∠1+∠2= (∠ABC+∠ACB)= (180°-∠A)=90°-∠A.∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.【答案】∠BOC=∠A.【分析】根据提供的信息,由三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC 与∠A的关系;【解答】解:结论:∠BOC=∠A.理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD.又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1.∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A,即∠BOC=∠A.5.【题文】如图,△ABC中,∠A=50°,∠ABC的平分线与∠C的外角∠ACE平分线交于D,求∠D的度数.【答案】25°.【分析】根据角平分线的性质可得∠4=∠ACE,∠2=∠ABC,利用三角形外角的性质,找出∠D和∠A的关系,即可求∠D的度数.【解答】解:∵∠ABC的平分线BD与△ACB的外角∠ACE的平分线CD相交于点D,∴∠4=∠ACE,∠2=∠ABC,∵∠DCE是△BCD的外角,∴∠D=∠4﹣∠2,=∠ACE﹣∠ABC,=(∠A+∠ABC)﹣∠ABC,=∠A+∠ABC﹣∠ABC=∠A,∵∠A=50°,∴∠D=25°.6.【题文】某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,求:(1)此时轮船与小岛P的距离BP是多少海里;(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行使,请问轮船有没有触焦的危险?请说明理由.【答案】(1)BP=7海里;(2)没有危险,理由见解析.【分析】(1)由方向角求出∠PAB和∠PBD,再根据外角的性质求出∠APB,可证明△APB是等腰三角形,即可求解.(2)过P作AB的垂线PD,在直角△BPD中可以求出∠PBD的度数是30°,从而根据30°角的性质求出PD的长,再把PD的长与3海里比较大小.【解答】解:(1)∵∠PAB=90﹣75=15°,∠PBD=90°﹣60°=30°∴∠APB=∠PBD-∠PAB=30°-15°=15°,∴∠PAB=∠APB∴BP=AB=7(海里)(2)过点P作PD垂直AC,则∠PDB=90°∴PD=PB=3.5>3∴没有危险7.【题文】如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,求∠AEC的度数.【答案】66.5°【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2)=;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=47°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=66.5°;故答案是:66.5°.8.【题文】如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD、BD相交于点D,求∠D的度数.【答案】45°.【分析】先利用三角形外角性质求出∠EAB+∠FBA=270°,DA,DB是角平分线,所以∠DAB+∠DBA=135°,易得∠D度数.【解答】解:根据三角形的外角性质,∠EAB=∠ABC+∠C,∠ABF=∠BAC+∠C,∵AD、BD分别是∠EAB,∠ABF的平分线,∴∠DAB+∠DBA=(∠ABC+∠C+∠BAC+∠C)=(∠ABC+∠BAC)+∠C,∵∠C=90°,∴∠ABC+∠BAC=180°﹣90°=90°,∴∠DAB+∠DBA=×90°+90°=135°,在△ABD中,∠D=180°﹣135°=45°.9.【题文】如图所示,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.【答案】(1) (2) (3)【分析】如图所示,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.【解答】解:在图(1)中,根据三角形内角和定理可得:∠ABC+∠ACB=180°-∠A.∵BP与CP是△ABC的角平分线,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB)=90°-α.在△PBC中,∠BPC=180°-(∠PCB+∠PCB)=180°-(90°-α)=90°+α.∴β=90°+α.故答案为:β=90°+α.如图(2),结论:∠BPC=∠A.证明如下:∠P=∠1-∠2=(∠ACD-∠ABC)=∠A.∴β=α;故答案为:β=α;如图(3)∵BP、CP分别是△ABC两个外角∠CBD和∠BCE的平分线,∴∠CBP=(∠A+∠ACB),∠BCP=(∠A+∠ABC),∴∠BPC=180°-∠CBP-∠BCP=180°-∠A-(∠ABC+∠ACB),∴∠P与∠A的关系是:∠P=180°-∠A-(∠ABC+∠ACB)=90°-α,即β=90°-α.故答案为:β=90°-α.10.【题文】已知∠A=60°,∠B=30°,∠C=20°,求∠BDC的度数.【答案】110°.【分析】连接AD并延长,利用三角形外角的性质:“三角形的一个外角等于与它不相邻的两个内角的和”即可证得:∠BDC=∠BAC+∠B+∠C=110°.【解答】解:连接AD,并延长.∵∠3=∠1+∠B,∠4=∠2+∠C,∴∠BDC=∠3+∠4=(∠1+∠B)+(∠2+∠C)=∠B+∠BAC+∠C,∵∠A=60°,∠B=30°,∠C=20°,∴∠BDC=110°.11.【题文】如图,点D,E分别在AB,AC上,DE∥BC,F是AD上一点,FE 的延长线交BC的延长线于点G.求证:(1)∠EGH>∠ADE;(2)∠EGH=∠ADE+∠A+∠AEF.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形的外角性质得出∠EGH>∠B,再根据平行线的性质得出∠B=∠ADE,即可得出答案;(2)根据三角形的外角性质得出∠BFE=∠A+∠AEF,∠EGH=∠B+∠BFE,根据平行线的性质得出∠B=∠ADE,即可得出答案.【解答】证明:(1)因为∠EGH是△FBG的外角,所以∠EGH>∠B.又因为DE∥BC,所以∠B=∠ADE.所以∠EGH>∠ADE.(2)因为∠BFE是△AFE的外角,所以∠BFE=∠A+∠AEF.因为∠EGH是△BFG的外角,所以∠EGH=∠B+∠BFE.所以∠EGH=∠B+∠A+∠AEF.又因为DE∥BC,所以∠B=∠ADE,所以∠EGH=∠ADE+∠A+∠AEF.12.【题文】如图,∠B=60°,∠BAC=80°,AD⊥BC,AE平分∠BAC,求∠DAE 的度数.【答案】10°.【分析】由∠BAC=80°,AE平分∠BAC,可得:∠BAE=40°,结合∠AEC=∠B+∠BAE及∠B=60°,可得∠AEC=100°;由AD⊥BC可得∠ADE=90°,再由∠AEC=∠DAE+∠ADE,就可计算出∠DAE的度数.【解答】解:∵∠BAC=80°,AE平分∠BAC,∴∠BAE=40°,∴∠AEC=∠B+∠BAE=60°+40°=100°.∵AD⊥BC,∴∠ADE=90°.∵∠AEC=∠DAE+∠ADE,∴∠DAE=∠AEC-∠ADE=100°-90°=10°.13.【题文】一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说:“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.【答案】50°,理由见解析.【分析】根据邻补角定义求出∠1的邻补角的度数,再根据三角形的一个外角等于和它不相邻的两个内角的和求出∠3-∠2等于∠1的邻补角的度数.【解答】解:小刚的答案为50°.理由如下:如图,设∠1的邻补角为∠4,∵∠1=130°,∴∠4=180°-130°=50°,∵∠3是人字架三角形的外角,∴∠3=∠2+∠4,∴∠4=∠3-∠2=50°,∴∠3比∠2大50°.14.【题文】如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,求∠AEC的度数.【答案】66.5°【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2)=;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=47°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=66.5°;故答案是:66.5°.15.【题文】如图,BE,CD相交于点A,∠DEA、∠BCA的平分线相交于F. (1)探求:∠F与∠B、∠D有何等量关系?(2)当∠B︰∠D︰∠F=2︰4︰x时,x为多少?【答案】【答案:(1)∠F=(∠B+∠D);(2)3.【分析】(1)由三角形内角和外角的关系可知∠D+∠1=∠3+∠F,∠2+∠F=∠B+∠4,由角平分线的性质可知∠1=∠2,∠3=∠4,故∠F=(∠B+∠D).(2)设∠B=2α,则∠D=4α.利用(1)中的结论和已知条件来求x的值.【解答】解: 1)∠F=(∠B+∠D);理由如下:∵∠DHF是△DEH的外角,∠EHC是△FCH的外角,∠DHF=∠EHC,∴∠D+∠1=∠3+∠F①同理,∠2+∠F=∠B+∠4 ②又∵∠DEA,∠BCA的平分线相交于F,∴∠1=∠2,∠3=∠4;∴①﹣②得:∠B+∠D=2∠F,即∠F=(∠B+∠D).(2)∵∠B:∠D:∠F=2:4:x,∴设∠B=2α,则∠D=4α,∴∠F=(∠B+∠D)=3α,又∠B:∠D:∠F=2:4:x,∴x=3.16.【题文】如图,在△ABC中,∠1 是它的一个外角,点E为边AC上一点,延长BC到点H,连接EH.求证:∠1>∠2.【答案】证明见解析.【分析】根据三角形外角的性质解答即可.【解答】证明:如图,在△ABC中,∠1>∠3,在△DCE中,∠3>∠2,所以∠1>∠2.17.【题文】证明“三角形的外角和等于360°”.如图,∠BAE,∠CBF,∠ACD 是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.【答案】证明见解析.【分析】根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论.【解答】∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.18.【题文】如图,在△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA 中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.【答案】∠B=60°.【分析】∠A=20°,DE是CA边上的高,所以∠EDA=∠CDB=90°-20°=70°,根据外角的性质得∠CDB=∠A+∠DCE=70°,所以∠DCE=∠BCD=50°,所以∠B=180°-∠BCD-∠CDB=60°.【解答】∵DE是CA边上的高,∴∠DEA=∠DEC=90°.∵∠A=20°,∴∠EDA=90°-20°=70°.∵∠EDA=∠CDB,∴∠CDE=180°-70°×2=40°.在Rt△CDE中,∠DCE=90°-40°=50°.∵CD是∠BCA的平分线,∴∠BCA=2∠DCE=2×50°=100°.∴∠B=180°-∠BCA-∠A=60°.19.【题文】如图,在△ABC中,∠1=100°,∠C=80°,∠2=∠3,BE平分∠ABC.求∠4的度数.【答案】45度【分析】由三角形外角的性质易得∠3的度数,再由已知条件可得∠2的度数,这样就可求得∠ABC的度数,由BE平分∠ABC可得∠EBA的度数,最后由∠4=∠2+∠EBA 可得∠4的度数.【解答】解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,∴∠3=20°.∴∠2=∠3=10°.∴∠BAC=∠2+∠3=30° .∴∠CBA=180°-∠C-∠BAC=70°∵BE平分∠CBA,∴∠EBA=∠CBA=35° .∴∠4=∠EBA+∠2=45°.20.【题文】如图,D是AB上的一点,E是AC上的一点,BE、CD相交于一点F,∠A=63°,∠ACD=34°∠ABE=20°,求∠BDC和∠BFC的度数。
七年级下册冀教版数学【练习】9.1 三角形的边
15 16 17
9.1 三角形的边
基础通关 能力突破 素养达标
17.【应用意识】如图,草原上有四口油井,位于四边形ABCD的四个顶 点上,现在要建立一个维修站H,要使它到四口油井的距离之和HA+HB+ HC+HD最小,问H建在何处.请在图上画出.
解:如图所示,H建在AC,BD的交点处.
H
15 16 17
9.1 三角形的边
基础通关 能力突破 素养达标
5.[2023·衡水二模]如图,下列结论错误的是 ( B ) A.直线m,n相交于点P B.PA+PB>QA+QB C.PA+PB<QA+QB D.直线n经过点Q
1 2 3 4 5 6 7 8 9 10
9.1 三角形的边
基础通关 能力突破 素养达标
6.[2023·石家庄二模]如图,将三角形纸片ABC剪掉一角得到四边形BCDE, 设△ABC与四边形BCDE的周长分别为a,b,则正确的是( A )
15 16 17
9.1 三角形的边
基础通关 能力突破 素养达标
(2)若a=5,b=4,你能求出(1)式的值吗?请写出结果并求出△ABC周长的 范围.
解:当b=4时,原式=2×4=8. ∵a=5,b=4, ∴a-b<c<a+b,即1<c<9. ∴5+4+1<a+b+c<5+4+9,即10<△ABC的周长<18.
1 2 3 4 5 6 7 8 9 10
9.1 三角形的边
基础通关 能力突破 素养达标
能力突破 11.[2022·河北中考]平面内,将长分别为1,5,1,1,d的线段,顺次首尾 相接组成凸五边形(如图),则d可能是( C )
七年级数学下册课件(冀教版)三角形的内角和外角
总结
判定一个角是三角形的外角的三个条件:一 是顶点在三角形的一个顶点上;二是一边是三角 形的一条边;三是另一边是三角形的另一条边的 延长线.
∠A 等于( A )
A.40°
B.60°
C.80°
D.90°
7 在△ABC 中,∠A∶∠B∶∠C=3∶4∶5,则∠C 等于( C )
A.45°
B.60°
C.75°
D.90°
知识点 2 三角形内角和的应用
例2 在△ABC 中,∠A∶∠B∶∠C=1∶2∶3,试判断△ABC
的形状,并说明理由.
导引:引用辅助量x °,用x °表示出△ABC 的三个内角, 在△ABC 中,运用三角形内角和定理构造方程,解 方程后,求出△ABC 中各角的度数,再判断△ABC
5 直角三角尺和直尺如图放置.若∠1=20°,则∠2的度数为( C ) A.60° B.50° C.40° D.30°
6 如图,在△ABC中,∠ABC,∠ACB 的平分线BE,CD 相交于 点F,∠ABC=42°,∠A=60°,则∠BFC=( C )
A.118° B.119° C.120° D.121°
解:(1)如图,过A 作AF∥BD,∴∠BAF=∠ABD=40°. 显然AF∥EC,∴∠CAF=∠ECA=50°.∴∠BAC= ∠BAF+∠CAF=40°+50°=90°.∴△ABC 为直
角三角形.
(2)∵∠DBC=75°,∠DBA=40°,∴∠ABC= ∠DBC-∠DBA=75°-40°=35°.∴在Rt△ABC 中,∠BCA=90°-∠ABC=90°-35°=55°.
冀教版数学七年级下册《9.1三角形的边》教学设计1
冀教版数学七年级下册《9.1 三角形的边》教学设计1一. 教材分析冀教版数学七年级下册《9.1 三角形的边》是学生在学习了平面几何基本概念和几何图形的基础上,进一步探究三角形的性质。
本节内容主要介绍了三角形的三条边的关系,包括三角形的边长和角度的关系,以及三角形的稳定性。
教材通过丰富的实例和生动的图示,引导学生探究和发现三角形的边的基本性质,培养学生的几何直观能力和逻辑思维能力。
二. 学情分析七年级的学生已经具备了一定的几何基础知识,对平面几何的基本概念和几何图形有一定的了解。
但学生在学习过程中,可能对三角形的边长和角度的关系以及三角形的稳定性等概念的理解存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,通过生动的实例和图示,引导学生直观地感受和理解三角形的边的性质。
三. 教学目标1.了解三角形的三条边的关系,掌握三角形的边长和角度的关系。
2.能够运用三角形的边的关系解决实际问题,提高学生的应用能力。
3.培养学生的几何直观能力和逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.三角形的三条边的关系。
2.三角形的边长和角度的关系。
3.三角形的稳定性。
五. 教学方法1.采用直观演示法,通过实物和图示,引导学生直观地感受和理解三角形的边的性质。
2.采用问题驱动法,引导学生主动探究和发现三角形的边的性质。
3.采用合作交流法,引导学生分组讨论和分享,培养学生的团队协作能力。
4.采用练习法,通过适量练习,巩固学生对三角形边的性质的理解和应用。
六. 教学准备1.准备相关的实物模型和图示,以便进行直观演示。
2.准备练习题,以便进行课堂练习和巩固。
七. 教学过程1.导入(5分钟)通过展示一些生活中的三角形实例,如自行车三角架、自行车的三角铁等,引导学生观察和思考三角形的边的特点。
同时提出问题:“你们认为三角形有哪些特点呢?”让学生带着问题进入新课。
2.呈现(15分钟)利用多媒体展示三角形的三条边的关系,通过图示和实例,引导学生直观地感受和理解三角形的三条边的关系。
三角形的边说课稿
三角形的边尊敬的评委老师大家好:今天我说课的题目是《三角形的边》,《三角形的边》是冀教版七年级数学下册第9章第1节内容,今天说课的内容是《三角形的边》第一课时的学习。
Ⅰ教材分析教材的地位与作用《三角形的边》采用“螺旋上升”的教学原则,既是小学三角形的回顾和延伸,又是后续学习三角形性质及多边形的基础。
因此本节内容在教材中起到承上启下的作用。
三角形的性质在平面图形和空间立体图形的证明和计算中有着广泛的应用,在实际生活的测量、建筑、设计等方面也有独特的应用。
教学重点和难点重点:三角形的相关概念和三边关系。
难点:利用三角形三边关系解决实际问题。
Ⅱ教学目标分析知识与技能:认识了解三角形,掌握三角形的边的性质和应用。
过程与方法:采用“观察-探索-归纳-验证”的数学思想方法,潜移默化的提高学生发现问题、分析问题和解决问题的能力,拓展学生的发散性思维。
情感态度与价值观:培养学生合作交流的协作精神,激发学生学习数学的兴趣,让学生在数学活动中体会探索与创新的乐趣。
Ⅲ教学方法分析根据课程要求以及初中学生思维依赖于具体、直观、形象的特点,结合本节课的内容,主要运用实验探究的教学方法,充分利用教具、多媒体等辅助教学,通过合作交流、分析归纳等渠道,增强知识的直观性和趣味性,引导学生自主参与教学活动,启发学生动手、动口、动脑,激发学生兴趣,从而培养学生各方面的能力。
Ⅳ教学过程分析一:引入新课我们利用多媒体展示了日常生活中有关三角形的实物图片,如:道路交通警示牌。
让学生们回忆三角形,从而引出课题。
直接给出三角形的概念:由不在同一直线上的三条线段首尾顺次相接所构成的图形叫做三角形。
二:设计情景,展示动画利用多媒体展示三角形的Flash动画,展示喜洋洋与灰太狼在三角形同一端点,分别沿着两条路线共同去往另一端点,谁先到达目的地的动画。
根据两点之间直线距离最短的常识,使学生对三角形三边的关系有个先行认知。
为了学生感性认识上升到理性认识,我设计了探究发现的教学活动三:实验探究活动学生分组进行实验探究(1)从先前准备好的四根小棒中任选三根,并记录每一根的长度。
七年级下册冀教版数学【授课课件】第1课时 三角形的内角和定理
探究新知
证明:三角形的内角和等于180°.
A
B
C
已知:△ABC(如图),
求证:∠A+∠B+∠ACB=180°.
探究新知
如图,延长BC到点D,作CE//AB .
∵CE//AB,
∴∠1=∠4(两直线平行,内错角相等),
∠2=∠5(两直线平行,同位角相等).
∵∠3+∠4+∠5=180°(平角的定义),
学习难点:三角形内角和定理演绎推理的过程及应用.
导入新课 (创设情境)
三角形内角和等于180°.
关于三角形的内角,你都知道哪些结论?
小学阶段,都有哪些方法来验证这个结论?
探究新知
3
1
2
从这种剪拼的过程中,你能得到什么启示?
探究新知
A
B
C
从这种剪拼的过程中,你能想到什么方法
证明“三角形的内角和等于180°”?
当堂训练
变式1 :在△ABC中,∠A=30°,∠B= ∠C , 求∠C 的
度数.
解: ∵在△ABC中, ∠A=30°,∠B=∠C,
∠A+∠B+∠C=180°(三角形内角和定理),
∴ 30°+2∠C=180°,
解得∠C=75° .
当堂训练
变式 2:在△ABC中,∠A =
∠B
=
∠C
,求∠C 的度数.
置的重要手段.
当堂训练
例1
说出各图中∠1的度数.
∠1=40°
∠1=68°
当堂训练
例2
如图,在△ABC中,∠A=30°,∠B=65°,求
∠C 的度数.
解:∵∠A+∠B+∠C=180°
三角形的边课件初中数学冀教版七年级下册
不等边三角形
等腰三角形
等边三角形
三、自主学习
小结归纳
三条边互不相等的三角形叫做不等边三角形 ; 有两条边相等的三角形叫做等腰三角形,相等的两边叫做腰; 三条边都相等的三角形叫做等边三角形. 思考:等边三角形和等腰三角形之间有什么关系?
等边三角形是等腰三角形的一种特殊情况.
四、合作探究
三、自主学习
知识点二:三角形的三边关系
在A点的小狗,为了尽快吃到B点的香肠,它选择A B 路线,而不选择
A C B路线,难道小狗也懂数学?你能说出根据吗? C
解析:AC+BC>AB(两点之间线段最短)
由此得出: AC+BC>AB
AB+BC>AC
AC+AB>BC
A
B
三、自主学习
想一想
1.由此你能估计在同一个三角形中,任意两边之和与第三边有什么大小 关系?
第九章 三角形 9.1 三角形的边
一、学习目标
1.认识三角形并会用几何语言表示三角形,了解三角形分类. 2.掌握三角形的三边关系,并能运用三角形三边关系解决有关 的问题.(重点)
二、新课导入
(1)视察下列图片,它们都含有什么样的形状? (2)在我们的生活中有没有这样的形状呢?试举例.
三、自主学习
六、课堂总结
三角形
定义及其 基本要素
分类
顶点、角、边
按角分类 按边分类
不重不漏
原理 两点之间线段最短
三 边 关 系 内容 应用
两边之和大于第三边 两边之差小于第三边
并指出所有三角形中以E为顶点的角. 解:图中共有7个,
D B
△AEF,△ADE,△DEB,△ABF,△BCF,△ABC,△ABE,
冀教版七年级数学下册第9章三角形PPT课件
知1-讲
总 结
(1)在复杂图形中数三角形个数的方法:
①按图形形成的过程(即重新画一遍图形,按照三 角形形成的先后顺序去数); ②按三角形的大小顺序去数; ③可从图中的某一条边开始沿着一定方向去数; ④先固定一个顶点,按照一定的顺序不断变换另两 个顶点去数(如本例中的导引).
知1-讲
总 结
(2)本例如按方法③去找,可以为:①以AB为边开始
知1-练
ቤተ መጻሕፍቲ ባይዱ
1 请举出现实生活中有关三角形的实例. 略.
2
请找出图中所有的三角形,并把他们写出来.
解:题图中所有的三角形有△AOB,
△AOD,△BOC,△COD,
△ABD,△ABC,△ACD, △BCD.
(来自教材)
知1-练
3 找出图中的三角形,并分别写出这些三角形的 边和角.
(来自教材)
知1-练
CE ∠CBE所对的边是________ ;以∠A为公共角
的三角形有__________________________. △ABD,△ACE和△ABC
知1-练
6
【中考· 大庆】如图①是一个三角形,分别连接这 个三角形三边中点得到图②,再连接图②中间小 三角形三边中点得到图③,按这样的方法进行下 去,第n个图形中共有三角形的个数为________ 4n-3 .
(来自教材)
知1-练
4
下面是小强用三根火柴分别组成的图形,其中符 合三角形定义的是( C )
知1-练
5
如图,以CD为公共边的三角形是 △CDF与△BCD ;∠EFB是________ △BEF 的内 _________________
∠BCE , 角;在△BCE中,BE所对的角是________
冀教版七年级下册数学课件第9章9.三角形内角和定理
基础巩固练
7.【中考·湖北随州】如图,在平行线 l1,l2 之间放置一块直角三 角尺,三角尺的锐角顶点 A,B 分别在直线 l1,l2 上,若∠1 =65°,则∠2 的度数是( A ) A.25° B.35° C.45° D.65°
基础巩固练
8.【中考·湖北孝感】如图,直线 AD∥BC,若∠1=42°,∠BAC =78°,则∠2 的度数为( C ) A.42° B.50° C.60° D.68°
结论说明:∠E=12(∠A+∠C). 解:∵∠A+∠ABE=∠E+∠ADE,∠E+∠EBC= ∠C+∠EDC, ∠ABE=∠EBC,∠ADE=∠EDC, ∴∠A-∠E=∠E-∠C, ∴∠E=12(∠A+∠C).
精彩一题
17.如图,在△ABC 中,∠B>∠C,AD 是 BC 边上的高,AE 平分∠BAC.
基础巩固练
5.三角形内角和定理是求三角形有关角的主要依据,它往往与 角平分线及平行线等知识综合解决角的问题,有时也会用来 解决涉及三角形内角和的实际问题.
基础巩固练
6.【河北石家庄裕华区一模】如图,将△ABC 沿 DE,EF 翻折, 顶点 A,B 均落在点 O 处,且 EA 与 EB 重合于线段 EO,若 ∠DOF=142°,则∠C 的度数为( A ) A.38° B.39° C.42° D.48°
综合创新练 (2)小明在(1)的解题过程中发现∠1+∠2=2∠C,小明的这个发
现对任意的三角形都成立吗?请说明理由. 解:都成立.理由如下: 由题意可知:2∠CNM+∠1=180°,2∠CMN+∠2=180°, ∴2(∠CNM+∠CMN)+∠1+∠2=360°. ∵∠C+∠CNM+∠CMN=180°, ∴∠CNM+∠CMN=180°-∠C, ∴2(180°-∠C)=360°-(∠1+∠2),∴∠1+∠2=2∠C.
冀教版数学七年级下册同步课件:三角形的边
任意两根木棒长度的和与第三 根的关系 (用数字表示)
2+3=5,2+5>3 , 3+5>2
2+3>4,2+4>3 , 3+4>2
2+44>5,3+5>4 , 4+5>3
大家谈谈:1.是不是任意三根木棒都能拼成三角形呢?谈谈
哪些实验是失败的?找出失败的原因,并总结什么
知识点 2 三角形的三边关系 一起探究
每组课前准备四根木条,分别长为2 cm,3 cm,4 cm,5 cm,现 在从其中任取三根相接来摆三角形,试试能否成功?做好实验 记录,并分类汇总实验.
实验数据记录在下表:
三根木棒 的长度cm 2,3,5
2,3,4
2,4,5
3,4,5
能否构成三角形
否 能 能 能
归纳:三角形任意两边之和大于第三边.
例题讲授
例1 长度为6cm,4cm,3cm三条线段能否组成三角形?
解:∵6+4>3 6+3>4 4+3>6
∴能组成三角形
解: ∵最长线段是6cm 4+3>6
∴能组成三角形
方法点拨:判断三条线段能否组成三角形的方法:
①找出最长线段; ②比较较短两条线段之和与最长线段的大小;
等腰三角形与等边三角形的关系: 等边三角形是特殊的等腰三角形,即底边和腰相等的等 腰三角形.
三角形的分类
三角形 按边分
等腰三角形 不等边三角形
三边相等的等腰三角形 两边相等的等腰三角形
等边三角形
不等边三 角形
等腰三角 形
等边三 角形
三角形
随堂演练
1.三角形是指( C ) A.由三条线段所组成的封闭图形 B.由不在同一直线上的三条直线首尾顺次相接组成的图形 C.由不在同一直线上的三条线段首尾顺次相接组成的图形 D.由三条线段首尾顺次相接组成的图形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
找错
以长为2,4,6的三条线段能 否构成三角形?
解:因为 6+4>2,6+2>4, 所以符合“三角形任意两边之和 大于第三边”. 所以以长为2,4,6的三条线段能否 构成三角形.
已知:三角形的两条边分别为6 和9,求第三边的取值范围?
等腰三角形:两条边相等的三角形 等边三角形:三条边相等的三角形, (又叫正三角形)
1.任取3根有几种取法?把他们列举出来 2.试一试,哪组首尾相连可以构成三角形 3.能构成三角形的一组小木棒中,每两 根的长度和第三根的长度有什么关系? 不能组成三角形的呢? 4.请你再用其他长度的小木棒试一试,检 验你的结论是否正确?
结论:
三角形的两边之和大于第三边
三角形的两边之差小于第三边
例.以长为6,8,10的三条线段能 否构成三角形? 解:因为 6+8>10,6+10>8,8+10>6. 所以符合“三角形任意两边之和大 于第三边”. 所以以长为6,8,10的三条线段能 构成三角形.
三条边是:AB、BC、AC 三个顶点是:A、B、C 三个内角是 : A 、 B、 C 注:三条边也可以用小写字母a,b,c表示
外角定义:三角形的一边与另一边的延长 线组成的角叫做三角形的外角。
A
思考:三角形 有几个外角?
B
外角 C
结论:三角形有6个外角
探究:准备一组长度分别为3cm、4cm、 6cm、8cm的小棒,从中取出3根,依次首 尾相连来构造三角形
9.1三角形的边
承德第十六中学
彭立华
红领巾
流动红旗
三角形:由不在同一条直线上的三条线 段首尾顺次相连组成的图形. 三角形的表示:如图中的三角形 ABC,记作:“ ABC”,读作: “三角形ABC” A
B
C
三角形有三条边、三 个顶点、三个内角 如图:在 ABC中
A c a
内角 b
顶点
B
边 外角 C
等腰三角形
等边三角形
三角形按边分类:
斜三角形 等腰三角形 三角形 等腰三角形 等边三角形
判断: 1.有两边相等的三角形叫做等腰三角 形. ( ) 2.只有两边相等的三角形叫做等腰三 角形. ( ) 3.等边三角形是等腰三角形.( )
1.三角形的顶点、边、内角及外角 2.三边的数量关系 . 2.三角形按边的分类 .