2019-2020学年八年级数学上册《能得到直角三角形吗》教案-北师大版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章2019-2020学年八年级数学上册《能得到直角三角形吗》
教案北师大版
总课时:6课时
课题:1、2能得到直角三角形吗
教学目标
1、知识与技能目标
1.理解勾股定理逆定理的具体内容及勾股数的概念;
2.能根据所给三角形三边的条件判断三角形是否是直角三角形。
2、过程与方法
1.经历一般规律的探索过程,发展学生的抽象思维能力;
2.经历从实验到验证的过程,发展学生的数学归纳能力。
3、情感态度与价值观
1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;
2.在探索过程中体验成功的喜悦,树立学习的自信心。
教学重点:理解勾股定理逆定理的具体内容。
教学难点:应用勾股定理逆定理解决实际问题
教学准备:多媒体课件
教学过程:
第一环节:创设情境,引入新课(3分钟,教师设疑,学生猜想)
内容:
情境:1.直角三角形中,三边长度之间满足什么样的关系?
2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?
第二环节:探索发现勾股定理逆定理(15分钟,学生分组探究)
活动1:探究
下面有三组数,分别是一个三角形的三边长c
,,
b
a,
①5,12,13;
②7,24,25; ③8,15,17; 并回答这样两个问题:
1.这三组数都满足222c b a =+吗?
2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。
活动2:归纳
如果一个三角形的三边长c b a ,,,满足222c b a =+,那么这个三角形是直角三角形 满足222c b a =+的三个正整数,称为勾股数。
活动3:总结
1.同学们还能找出哪些勾股数呢?
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢? 第三环节:勾股定理逆定理的简单应用(7分钟,学生合作探究) 1.下列哪几组数据能作为直角三角形的三边长?请说明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一个三角形的三边长分别是cm cm cm 25,20,15,则这个三角形的面积是( ) A 250 2cm B 1502cm C 200 2cm D 不能确定
解答:B
3.如图1:在ABC ∆中,BC AD ⊥于D ,20,12,9===AC AD BD ,则ABC ∆是( ) A 等腰三角形 B 锐角三角形 C 直角三角形 D 钝角三角形
解答:C
4.将直角三角形的三边扩大相同的倍数后, (图1) 得到的三角形是( )
A 直角三角形
B 锐角三角形
C 钝角三角形
D 不能确定
解答:A
D
A
B
C
A
B
C
北
第四环节:巩固练习(10分钟,学生先独立完成,后全班交流)
1.一个零件的形状如图2所示,按规定这个零件中DBC A ∠∠,都应是直角。
工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?
解答:符合要求 222543=+,︒=∠∴90DAB 又22213125=+ ,∴︒=∠90DBC
2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90°,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?
第五环节:课堂小结(3分钟,师生对答,共同总结)
师生相互交流总结出:
1.今天所学内容①会利用三角形三边数量关系222c b a =+判断一个三角形是直角三角形;②满足222c b a =+的三个正整数,称为勾股数;
2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律;③利用三角形三边数量关系222c b a =+判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将222c b a =+作适当变形,222a b c =-便于计算。
第六 环节:布置作业(2分钟,学生分别记录)
内容:
图3
图2
C
C
13
12
53
4
D A
B
B A D
1、课本习题1.4第1,2,4题。
2、创新设计
要求:A组(学优生):1、2、
B组(中等生):1、2
C组(后三分之一生):2
板书设计:
能得到直角三角形吗引入————例题练习
逆定理————
教学反思:。