初中数学反比例函数易错题目学霸笔记分享
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学反比例函数易错题目学霸笔记分享
反比例函数
易错清单
1.利用待定系数法确定反比例函数关系式.
【例1】(2014·广东梅州)已知反比例函数
打开今日头条,查看更多精彩图片
的图象经过点M(2,1).
(1)求该函数的表达式;
(2)当2<>4时,求y的取值范围(直接写出结果).
【解析】(1)利用待定系数法把(2,1)代入反比例函数y=中可得k 的值,进而得到解析式;
(2)根据y=可得x=,再根据条件2<>4可得24,再解不等式即可.
【答案】(1)∵反比例函数
的图象经过点M(2,1).∴k=2×1=2,
∴该函数的表达式为
.
(2)
,
∵2<>4,
解得
.
【误区纠错】此题主要考查了待定系数法求反比例函数解析式,以及反比例函数的性质,关键是正确确定函数解析式.注意在求不等式的解时不能出错.
2.反比例函数系数k的几何意义.
【例2】(2014·湖南娄底)如图,M为反比例函数
的图象上的一点,MA垂直y轴,垂足为A,△MAO的面积为2,则k的值为 .
【解析】根据反比例函数比例系数k的几何意义得到
|k|=2,然后去绝对值得到满足条件的k的值.
【答案】∵MA垂直y轴,
∴S△AOM=
|k|,
∴
|k|=2,即|k|=4.
而k>0,∴k=4.
【误区纠错】本题考查了反比例函数比例系数k的几何意义:在反比例函数
的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
3.利用数形结合解决反比例函数与不等式相关问题.
【例3】(2014·四川南充)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).
(1)求这两个函数的解析式;
(2)当x取何值时,y1<>2.
【解析】(1)将点C、点A的坐标代入一次函数解析式可得k,b 的值,将点A的坐标代入反比例函数解析式可得m的值,继而可得两函数解析式;
(2)寻找满足使一次函数图象在反比例函数图象下面的x的取值范围.
∴一次函数解析式为y=-x+7.
将点(2,5)代入反比例函数解析式
,
∴m=10.
∴反比例函数解析式为
.
∴点D的坐标为(5,2),
当0<>2或x>5时,y1<>2.
【误区纠错】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是联立解析式,求出交点坐标.本题在写取值范围时容易出错.
4.反比例函数和几何图形相结合问题.
【例4】(2014·四川遂宁)已知:如图,反比例函数y=
的图象与一次函数y=x+b的图象交于点A(1,4)、点B(-4,n).
(1)求一次函数和反比例函数的解析式;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
【解析】(1)把A的坐标代入反比例函数解析式求出A的坐标,把A的坐标代入一次函数解析式求出即可;
(2)求出直线AB与y轴的交点C的坐标,求出△ACO和△BOC的面积相加即可;
(3)根据A,B的坐标结合图象即可得出答案.
(2)如图,当x=-4时,y=-1,B(-4,-1),
当y=0时,x+3=0,x=-3,故C(-3,0).
(3)∵B(-4,-1),A(1,4),
∴根据图象可知:当x>1或-4<>0时,一次函数值大于反比例函数值.
【误区纠错】本题考查了一次函数和反比例函数的交点问题,用
待定系数法求出一次函数的解析式,三角形的面积,一次函数的图象等知识点,用了数形结合思想.
名师点拨
1.掌握反比例函数的定义,会判断反比例函数.
2.会用待定系数法求反比例函数的解析式.
3.会画反比例函数的图象并能说明其性质.
4.借助函数思想解决实际问题.
提分策略
1.反比例函数值的大小比较.
比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.
A. 负数
B. 非正数
C. 正数
D. 不能确定
又点(-1,y1)和均位于第二象限,-1<>,
∴y1<>2.
∴y1-y20,即y1-y2的值是负数.
【答案】 A
2.与反比例函数有关的图形面积的求法.
过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.这里体现了数形结合的思想,做此类题一定要正确理解反比例函数y=(k≠0)中k的几何意义.
【例2】如图,点B在反比例函数
(x>0)的图象上,横坐标为1,过点B分别向x轴,y轴作垂线,垂足分别为A,C,则矩形OABC的面积为().
A. 1
B. 2
C. 3
D. 4
【解析】∵点B在反比例函数
(x>0)的图象上,过点B分别向x轴,y轴作垂线,垂足分别为A,C,故矩形OABC的面积S=|k|=2.
【答案】 B
3.一次函数与反比例函数的综合题解法.
主要题型:利用k值与图象的位置关系综合确定系数的符号或图象位置;已知直线与双曲线表达式求交点坐标;用待定系数法确定直线与双曲线的表达式;应用函数图象性质比较一次函数值与反比例值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.
【例3】如图,一次函数y=-x+2的图象与反比例函数
的图象交于A,B两点,与x轴交于D点,且C,D两点关于y轴对称.
(1)求A,B两点的坐标;
(2)求△ABC的面积.
【解析】(1)根据反比例函数与一次函数的交点问题得到方程组然后解方程组
即可得到A,B两点的坐标;
(2)先利用x轴上点的坐标特征确定D点坐标,再利用关于y轴对称的点的坐标特征得到C点坐标,然后利用S△ABC=S△ACD+S△BCD进行计算.
(3)根据坐标与线段的转换可得出AC,BD的长,然后根据三角形的面积公式即可求出答案.
【答案】(1)根据题意,得解方程组
,得或
所以A点坐标为(-1,3),B点坐标为(3,-1).
(2)把y=0代入y=-x+2,得-x+2=0,解得x=2,
所以D点坐标为(2,0).
因为C,D两点关于y轴对称,
所以C点坐标为(-2,0).
所以S△ABC=S△ACD+S△BCD
4.利用反比例函数解决实际问题.
把实际问题转化为反比例函数应用题的关键是建立反比例函数模型,即列出符合题意的反比例函数解析式,然后根据反比例函数的性质综合方程(组)、不等式(组)及图象求解.
【例4】实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数
(k>0)刻画(如图所示).
(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?
②当x=5时,y=45,求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于'酒后驾驶',不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
【解析】(1)①利用y=-200x2+400x=-200(x-1)2+200确定最大值;
②直接利用待定系数法求反比例函数解析式即可;
(2)求出x=11时,y的值,进而得出能否驾车去上班.
【答案】(1)①y=-200x2+400x=-200(x-1)2+200,
∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升).
②∵当x=5时,y=45,y=(k>0),
∴k=xy=45×5=225.
(2)不能驾车上班.
理由如下
∵晚上20:00到第二天早上7:00,一共有11小时,
∴第二天早上7:00不能驾车去上班.
5.利用反比例函数与几何知识相结合解题.
在近几年的中考题目中,常常把几何知识和反比例函数相结合在一起,综合性强,对学生的思维能力要求高.解决此类问题的关键是熟悉常见几何图形的特征,将几何图形的隐含性质结合反比例函数知识挖掘出来.
【例5】如图,在平面直角坐标系中,反比例函数
(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)直接写出B,C,D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
【解析】先根据矩形的对边平行且相等的性质得到B,C,D三点的坐标,再从矩形的平移过程发现只有A、C两点能同时在双曲线上,把A、C两点坐标代入
中,得到关于a,k的方程组,从而求得k的值.
【答案】(1)B(2,4),C(6,4),D(6,6).
如图,矩形ABCD平移后得到矩形A'B'C'D',
设平移距离为a,则A'(2,6-a),C'(6,4-a).
∵点A',点C'在
的图象上,
∴2(6-a)=6(4-a), 解得a=3.
∴点A'(2,3).
∴反比例函数的解析式为
.
专项训练
一、选择题
1.(2014·江苏泰州二中模拟)如图,已知点(m,y1),(m-3,y2),(m-4,y3)在反比例函数
的图象上,则y1,y2,y3的大小关系是().
A. y1>y2>y3
B. y2>y1>y3
C. y1>y3>y2
D. y3>y2>y1
(第1题)
(第2题)
2.(2014·山东济南二模)如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数
的图象交于A,B两点.若点C是y轴上任意一点,连接AC,BC,则△ABC的面积为().
A. 3
B. 4
C. 5
D. 10
3.(2013·新疆石河子中考一模)如图,矩形ABOC的面积为3,反比例函数
的图象过点A,则k的值为().
(第3题)
A. 3
B. -1.5
C. -3
D. -6
二、填空题
4.(2014·安徽安庆正月21校联考)如图,点P1(x1,y1),点P2(x2,y2),…,点Pn(xn,yn)在函数
(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,△PnAn-1An都是等腰直角三角形,斜边OA1,A1A2,A2A3,…,An-1An都在x轴上(n是大于或等于2的正整数),则点P3的坐标是;点Pn的坐标是(用含n的式子表示).
(第4题)
5.(2013·江西高安模拟)一个函数具有下列性质:①它的图象经过点(-1,1);②它的图象在第二、四象限内;③在每个象限内,函数值y随自变量x的增大而增大,则这个函数的解析式可以为 .
三、解答题
7.(2014·江苏大丰模拟)如图,一次函数y=kx+b的图象与反比例函
数
的图象交于A(-2,1),B(1,m)两点.
(1)试确定上述反比例函数和一次函数的关系式;
(2)求△AOB的面积.
(第7题)
8.(2013·河北一模)如图,一次函数y=mx+5的图象与反比例函数
(k≠0)在第一象限的图象交于A(1,n)和B(4,1)两点,过点A作y轴的垂线,垂足为M.
(1)求一次函数和反比例函数的解析式;
(2)求△OAM的面积S;
(3)在y轴上求一点P,使PA+PB最小.
参考答案与解析
1. C[解析]根据图形,得0<>11,
∴1<>2,则点(m,y1)在第一象限,而点(m-3,y2),(m-4,y3)在第三象限.
2. C[解析]△ABC的面积
3.C[解析]根据矩形面积,得x与y的积等于3,图象过第二象限,所以k=-3.
[解析]过点P1,P2向x轴作垂线,分别求出这二点的坐标.
(2)在y=-x-1中,当y=0时,得x=-1. ∴ 直线y=-x-1与x 轴的交点为C (-1,0). ∵ 线段OC 将△AOB 分成△AOC 和△BOC ,。