《三角形的内角和》教学设计(最新5篇)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形的内角和》教学设计(最新5篇)
《三角形的内角和〉教学设计篇一
课题
三角形的内角和
手记
教学目标
1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点
重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程
资源
体验目标
“学”与“教”
创设问题情境
课件出示:两个三角板
遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?
生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?
生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?
生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建
模型
每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)
课件
学生自己剪的一个任意三角形
大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。

这一系列活动同时还潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

师:之前老师为每个同学准备了①-⑥六个三角形,下面请组长分发给每个三角形,拿到手后,先别着急,先想一想你准备用什么方法去验证三角形内角和?
学生动手操作验证
师:汇报时,请先说一说是几号三角形?然后说一说这个三角形是什么三角形?
学生汇报:
生1:③号三角形是直角三角形,内角和是180°。

生2:②号三角形是锐角三角形,内角和是180°。

生3:⑤号三角形是钝角三角形,内角和是180°。

生4:④号三角形是直角三角形,内角和是180°。

生5:①号三角形是钝角三角形,内角和是180°。

生6:⑥号三角形是锐角三角形,内角和是180°。

师:除了量的方法外,还有其他方法验证三角形内角和吗?
生1:分别剪下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生2:分别撕下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生3:把三角形的三个角折成平角,平角是180°,所以推理得出三角形内角和是180°。

这些方法都验证了:三角形的内角和是180°。

师:观察这些三角形的内角和是多少度?这些三角形的内角和都是180°,这是不是老师故意安排好的呢?
师:有没有人质疑,用什么方法验证?
生用自己剪的任意三角形再次验证三角形内角和是否180°。

生:得出内角和还是180°。

师:不管是老师提供的三角形,还是你们自己准备的三角形,通过我们的算一算、拼一拼、折一折,都得出了三角形的内角和是180°。

师:我们已经学习了三角形的分类,三角形可以分成锐角三角形、直角三角形、钝角三角形。

这些三角形的内角和是180°,我们能把它们概括成一句话吗?
生:三角形的内角和是180°。

师:看来我们的猜想是正确的。

师:早在2023多年前著名数学家欧几里得就已经得到这个结论,到了初中以后同学们还会用更加严密的方法证明三角形的内角和是180°。

解释
运用拓展
课件
正方形纸
让学生更深的对所学的新知加以巩固,从而促使学生综合运用知识,解决问题的能力。

同时在练习中发展学生的观察、归纳、概括能力和初步的空间想象力。

1、∠1=40°,∠2=48°,求∠3有多少度?
2、算出下面三角形∠3的度数。

⑴∠1=42°,∠2=38°,∠3=?
⑵∠1=28°,∠2=62°,∠3=?
⑶∠1=80°,∠2=56°,∠3=?
师:你是怎样算的?这三个三角形各是什么三角形?
提问:在一个三角形中最多有几个钝角?
在一个三角形中最多有几个直角?
3、游戏:将准备的正方形纸对折成一个三角形?
师:这个三角形的内角和是多少度?再对折一次,现在内角和是多少度?如果继续折下去,越折越小,三角形的内角和会是多少度?
说明:三角形大小变了,内角和不变。

4、有两个完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?
说明:三角形形状变了,内角和不变。

5、根据所学知识,你能想办法求出下面图形的内角和吗?
板书
设计
三角形内角和
①号钝角三角形内角和180°
②号锐角三角形内角和180°
三角形内角和是180°
③号直角三角形内角和180°
④号直角三角形内角和180°
⑤号钝角三角形内角和180°
⑥号锐角三角形内角和180°
学具教具准备
课件三角形纸片量角器正方形纸
《三角形的内角和〉教学设计篇二
设计理念:
本教学活动通过创设情境,让学生从情境中出发经历猜测、验证、交流等数学活动,培养学生动手实践、自主探究与合作交流的能力。

同时,让学生充分感受到:数学源于生活,生活离不开数学,数学就在我们身边。

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一,并在这一系列教学活动中潜移默化地向学生渗透了“转化”数学思想,为后续学习奠定必要的基础。

教学内容:
《义务教育课程标准实验教科书·数学》(人教版)四年级下册第85页例5及相应练习。

学情与教材分析:
该内容是本册教材第五单元关于三角形内角和的教学。

它安排在三角形的分类之后,组织学生对不同形状和不同大小三角形度量内角的度数。

通过度量,各种三角形内角和之和都接近180°,引发学生对三角形内角和探究的欲望,应用折叠、拼凑等方法验证。

教材重视知识的探索与发现,安排了一系列的实验操作活动。

教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生进行自主探索和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

教学目标:
1、通过量、剪、拼等方法,探索和发现三角形内角和是180°。

2、在操作活动中,培养学生的合作能力、动手操作能力,发展学生的空间观念,并应用新知识解决问题。

3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:引导学生发现三角形内角和是180°。

教学难点:用不同方法验证三角形的内角和是180°。

教学用具:三种不同类型三角形,多媒体课件。

教学过程:
一、创设情境,揭示课题。

与学生交流。

(同学们,星期天你们喜欢玩什么?)
小明打破一块三角形玻璃的情景。

(课件出示)
(学生猜一猜,他会带哪一块到玻璃店配玻璃)
③介绍三角形内角及三角形内角和的含义。

④设疑揭题。

从刚才的情境中,我们知道,破掉的三角形玻璃,只要知道其中的两内角,就能配出和原来一样的玻璃。

究竟有什么奥妙?这节课我们就一起来研究有关三角形内角和的知识。

二、自主探索、验证猜想。

1、猜一猜。

猜一猜,它们的内角和到底是谁的大呢?(板贴三种不同类型三角形)
2、量一量。

用量角器来量一量,算一算。

合作要求:
三种三角形和一张表格,四人小组合作,你们觉得怎样分工度量的速度会最快?
温馨提示:
测量的同学:量出每个角的度数,把它写在三角形里面。

三个角的度数都
量好后,再汇报给记录的同学登记。

记录的同学:监督小组其他同学量得是不是很准确、真实。

不能改掉小组成员度量出来的数据。

(开始)
量一量、算一算不同类型三角形内角和各是多少度?
⑵小组合作探究
⑶汇报交流
(4)说一说。

师:观察这些测量结果你能发现什么(三角形内角和大约是180°左右)?
3、验证。

(1)剪拼、撕拼
用度量的方法验证,得到的结果不统一。

有没有比度量更精确的验证方法?也就是不用度量你能用别的方法验证吗?
(2)折拼
用剪拼的方法是比较精确,美中不足就是把三角形给剪了或是撕了。

有没有更好验证方法?(用折的方法—课件演示)
(3)观察小结。

现在大家知道这几个三角形的内角和是多少度吗?
任何三角形的内角和都是180°。

4、揭疑解惑。

小明为什么带只剩两个角的三角形玻璃到玻璃店配玻璃?
四、巩固深化。

师:学会了知识,我们就要懂得去运用。

下面,我们就根据三角形的内角和的知识来解决一些。

相关文档
最新文档