实数[上学期]--北师大版-
北师大版数学八年级上册2.6《实数》教案
三、教学难点与重点
1.教学重点
-实数的定义:理解实数的概念,掌握实数包括有理数和无理数。
-实数的性质:掌握实数的封闭性、有序性、完备性等核心性质。
-实数的运算:熟练掌握实数的四则运算,特别是乘方和开方的运算规则。
北师大版数学八年级上册2.6《实数》教案
一、教学内容
本节课选自北师大版数学八年级上册第二章第六节《实数》。教学内容主要包括以下几部分:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无限不循环小数等。
2.无理数的概念:介绍无理数的定义,如π、e等,以及无理数的性质和表示方法。
3.实数的性质:探讨实数的封闭性、有序性、完备性等特性。
-实数与数轴的关系:理解实数与数轴上点的对应关系,能够用数轴表示实数。
举例:重点讲解无理数的概念,如π和e,并强调它们是实数的一部分,通过具体的例子(如圆的周长与直径比是π)来加深学生对实数性质的理解。
2.教学难点
-无理数的理解:无理数的概念对学生来说是抽象的,难以直观理解。
-实数的运算:特别是无理数的运算,学生对运算规则和步骤不够熟悉。
3.重点难点解析:在讲授过程中,我会特别强调实数的定义和性质这两个重点。对于难点部分,如无理数的理解,我会通过举例(如π、√2等)和比较(无理数与有理数的区别)来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如无理数的估算、实数在数轴上的表示等。
-实数与数轴的联系:学生可能难以将实数的概念与数轴上的点联系起来,对数轴上的无理数位置把握不准确。
新版北师大版八年级数学上册第二章实数全章课件
所以BD DC,则BD AB
由勾股定理得 : h
h
h不可能是整数;
B
D
C
h也不可能是分数.
四、强化训练
2、长,宽分别是3,2的长方形,它的对角线的长可能是整数 吗?可能是分数吗?
3 2
四、强化训练
3、如图是16个边长为1的小正方形拼成的,任意连接这些 小正方形的若干个顶点,可得到一些线段,试分别找出两 条长度是有理数的线段和两条长度不是有理数的线段.
, 3 3 9 ..... . 2 2 4,
a
结果都为分数,所以a不可能是以2为分母的
分数.
二、新课讲解
, ,
...... , ,
a
(3)(9)2 的算术平方根等于 3 .
四、强化训练
2.求下列各数的值
(1) 64
8
(3) (5)
21 4
3 2
32 42
5
(2) 0.81
0.9
(4) 0
0
(6)
1.44
1.2
四、强化训练
3.求下列各式中的正数x的值:
二、新课讲解
例 下列各数中,哪些是有理数?哪些是无理数?
解:有理数有: 无理数有:
三、归纳小结
1.任何有限小数或无限循环小数也都是有理数. 2.无限不循环小数称为无理数.
四、强化训练
1.选择题
(1)、正三角形的边长为4,高h是( D ) A.整数 B.分数 C.有理数 D.无理数
(2)、如果一个圆的半径是2,那么该圆的周长与直径的和 是( B ) A.有理数 B.无理数 C.分数 D.整数
北师大版初中八年级数学上册-《实数》教学设计-02
《实数》教学设计 教学目标:(一)教学知识点1.了解有理数的运算法则在实数范围内仍然适用.2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式 );0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba . (二)能力训练要求 1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力. 2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.(三)情感与价值观要求通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。
教学重点:1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba .并能用规律进行计算. 教学难点1.类比的学习方法.2.发现规律的过程.教学方法:类比法.教学过程:Ⅰ.新课导入 上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究.Ⅱ.新课讲解1.有理数的运算法则在实数范围内仍然适用.[师]大家先回忆一下我们在有理数范围内学过哪些法则和运算律.[生]加、减、乘、除运算法则,加法交换律,结合律,分配律.[师]好.下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了. 如:2332⋅=⋅,.252)32(2322,3)212(32123=+=+=⋅⋅=⋅⋅所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题. 计算:(1)1313+⋅; (2)77-;(3)(25)2;(4)2)212(+. 2.做一做填空:(1)94⨯=_________,94⨯=_________;(2)916⨯=_________,916⨯=_________;(3)94=_________,94=_________; (4)=2516_________,2516=_______ [师]通过上面计算的结果,大家认真总结找出规律.如果把具体的数字换成字母应怎样表示呢?b a b a ⋅=⋅(a ≥0,b ≥0);b a ba = (a ≥0,b >0) 并作一些练习. 化简:(1)326⨯; (2)327⨯-4;(3)(3-1)2;(4)326⨯;(5)546. 3.例题讲解[例题]化简:(1)5312-⨯;(2)236⨯;(3)(5+1)2;(4))12)(12(-+. Ⅲ.课堂练习(一)随堂练习 化简:(1)2095⨯;(2)8612⨯;(3)(1+3)(2-3);(4)(323-)2. (二)补充练习1.化简: (1)250580⨯-⨯;(2)(1+5)(5-2);(3))82(2+;(4)3721⨯; (5)2)313(-;(6)10405104+ 2.一个直角三角形的两条直角边长分别为5 cm 和45 cm ,求这个直角三角形的面积.解:S =45521⨯⨯ )cm (5.71521)35(214552122=⨯=⨯⨯=⨯⨯= 答:这个三角形的面积为7.5 cm 2.Ⅳ.课时小结本节课主要掌握以下内容.1.在实数范围内,有理数的运算法则、运算律仍然适用,并能正确运用.2.b a b a ⋅=⋅ (a ≥0,b ≥0);b a b a =(a ≥0,b >0)的推导及运用. Ⅴ.课后作业习题2.91.化简: (1)313⨯;(2)23;(3)23222+;(4)850⨯-21. Ⅵ.活动与探究下面的每个式子各等于什么数?2222222003,2002,2001,,4,3,2 .由此能得到一般的规律吗?对于一个实数a 、2a 一定等于a 吗?当a ≥0时,2a =a .当a <0时,有 .20032003)2003(,20022002)2002(,20012001)2001(,416)4(,39)3(,24)2(222222222==-==-==-==-==-==-所以当a <0时,有2a =-a .板书设计:§2.6.2 实数(二)一、有理数的运算法则在实数范围内仍然适用二、找规律b a b a ⋅=⋅(a ≥0,b ≥0);b a ba = (a ≥0,b >0) 三、例题讲解 四、课堂练习 五、课时小结 六、课后作业教学反思:这节内容是两个公式的推导与运用。
北师大版八年级上册数学-第二章实数复习课
一、复习回顾
1、无理数的定义: 无限不循环小数叫做无理数
2、有理数的定义: 有限和无限循环小数叫做有理数
或整数与分数统称为有理数
二、实数
1、实数的定义:
有理数和无理数统称为实数
有理数
正实数
即:实数
或:实数 零
无理数
负实数
1、实数的分类
整数 有理 数
实数
分数
正整数 负整数
正分数 负分数
5、a、b互为相反数,c与d互为倒数则a+1+b+cd=
2
。
6、实数a,b,c,d在数轴上的对应点如图1-1所示,则
它们从小到大的顺序是 c<d<b<a
。
c d 0 ba
图1-1-1
其中:
a b a+b
d c -d-c
cb b-c a d a-d
➢ 典型例题解析
例1、(1) 3 的倒数是 1/3 ;
数为( A )个
A.1
B.2
C.3
D.4
2.6.2实 数
横江中
回顾
1. 有理数的运算法则有哪些? 2. 有理数的运算律有哪些?
实数和有理数一样也可以进行加、 减、乘、除、乘方运算,而且有理数 的运算法则与运算律对实数仍然适用.
自学指导:
(一) 自主指导(相信自己潜力无穷)
1、判断正误:
①3 3 +4 3 =(3+4) 3 (
3、下列语句中正确的是(D) (A) -9的平方根是-3 (B) 9的平方根是3
(C) 9的算术平方根是 3
(D) 9的算术平方根是3
4、下列运算中,正确的是( A) (A) 1 25 1 1 144 12
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。
数学北师大版八年级上册《实数》教案
《实数》教案一、教学内容与解析我从网上查了一下人教版的初中数学教材目录,发现“实数”一节内容在人教版数学教材上放在八年级上册第十三章的第三节,其主要内容是无理数与实数的概念、实数的分类、实数与数轴的一一对应关系、实数的相关性质、实数的运算等。
根据初中阶段学生的认知发展规律,此节内容可先让学生学习无理数、实数的概念和实数的分类以及实数与数轴的一一对应关系,余下内容可留在第二课时学习。
学生在第十三章的一、二节里已经学习了数的开平方和开立方运算,所以在课堂上可以通过复习上节内容顺利引出无理数的概念,进而引出实数的概念,进行实数的分类与授课。
实数概念的形成是数学发展的过程中很关键的一个环节,让学生深刻体会实数的构成是中学数学教学过程中很重要的一步,因此在讲述实数这一概念时,需要层层递进,一些关于有理数、实数的重要性质(比如所有的有理数均可写出分数的形式、实数的稠密性等等)在后续课程中可依据学生的学习情况讲授,不必第一节课即全部讲出,不然不利于学生的学习和教学的开展。
知识结构:二、教学目标1.知识与能力:理解有理数、实数的概念,会对实数进行分类,知道实数与数轴上的点具有一一对应的关系;2.过程与方法:让学生了解数的范围从整数到有理数,再到实数的扩展过程;积极参与负无理数问题引导下的思考和操作活动,体验发现无理数的过程,知道无理数是客观存在的数;3.情感态度价值观:培养观察、操作、分析能力,体会分类思想。
三、教学重点与难点(1)重点:了解无理数与实数的意义,知道如何对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
(2)难点:数轴上的点与实数一一对应。
四、教学过程1:复习导入(导言):公元前400年左右的古希腊,有个叫毕达哥拉斯学派。
这个学派中有一个名叫希帕索斯现却给他带来了杀生之祸,为什么这些数给他带来了不幸,这些数究竟与我们以前学过的数有什么不一样呢?这就涉及到我们前几节课学习的这些数的性质,我们这节课就来看看这些数的性质,通过这节课或许你就会知道,为什么这些数会给希帕索斯带来不幸了。
2.6 实 数 课件 2024--2025学年北师大版八年级数学上册
2.6 实 数
返回目录
对点典例剖析
考
点
典例 4
在数轴上表示下列各数,并按从小到大的顺序
清
单
解 用“<”把这些数连接起来:
读
− ,0,0.5,-(-5),+(-4),-|-3|
2.6 实 数
返回目录
考
[答案] 解 : − =-2, -(-5)=5,+(-4)=-4
点
清 ,-|-3|=-3,
比较大小
比左边的点表示的实数大
利用性质
比较大小
正实数大于 0,负实数小于 0,正实数大于
一切负实数,两个负实数比较,绝对值大的
反而小
2.6 实 数
返回目录
归纳总结
考
点
用数轴比较实数的大小,首先将实数在数轴上表示出来
清
单 ,然后利用数轴上右边的点表示的数比左边的点表示的数大
解
读 进行比较,进而得出结论.
2.6 实 数
● 考点清单解读
● 重难题型突破
2.6 实 数
考
点
清
单
解
读
■考点一
实数的概念及其分类
定义
分类
按定
义分
有理数和无理数统称为实数
返回目录
2.6 实 数
考
点
清
单
解
读
返回目录
续表
按性
分类
质符
号分
注意
0 既不是正数,也不是负数
2.6 实 数
返回目录
归纳总结
考
点
至今所学的数除了有理数就是无理数,当遇到实数的分
型 入计算.
突
破
北师大版数学八年级上册《实数》课件
归纳
实数的定义
有理数和无理数统称为实数,
即实数可以分为有理数和无理数.
正整数
整数 0
有理数
负整数
实数
分数 无理数
正分数 负分数
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
议一议 下面集合内的数还可以怎样分?
正有理数
负有理数
正无理数
1 , 5, 3 8,
42
94,0,
有理数集合
3 2, 7,π, 2, 20,
的相反数是___π2__,倒数是___π2__,绝对值是__π2__.
1
(2) 3 15 的相反数是__3_1_5_,倒数是__3 1_5__,绝对值是__3 1_5__.
分析:求相反数:若a是一个实数,它的相反数为-a;
∴ π 的相反数是 π ;3 15 的相反数是- 3 15 ;
2
2
求倒数:当a≠0时,那么它的倒数为 1 ;
3
5,0.3737737773
负无理数
无理数集合
无理数和有理数一样,也有正负之分.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
议一议
把下列各数分别填入相应的集合内.
3 2, 1 ,
4
7,
π,
5 2
,
2,
20, 3
5, 3 8,
4, 9
0, 0.3737737773 (相邻两个3之间的7的个数逐次加1).
(1) 7
(2)3 8
(3) 49
分析:
求相反数:若a是一个实数,它的相反数为 a ;
求倒数:当a≠0时,那么它的倒数为 1 ; a
求绝对值:若a是一个实数,则:
北师大版八年级上册数学实数课件
当a≠0时,它的倒数是
探究二
的画法:
1
-2
-1
O
B 1A 2
检测案(7min)
要求: 1.独立完成,切勿交头接耳; 2.不允许翻看课本、资料; 3.注意格式书写; 4.注意时间把握。
课堂小结(3min)
通过今天的学习, 说说你的收获(你学到了什么) 和体会(你在学习中需要注意什么)?
作业布置
对自学中有疑问的地方双色笔标记
预习案参考答案
整数
1. 有理数
有理数
正有理数 0
分数
负有理数
2.无理数是无限不循环小数. 带根号的数不一定是无理数(举例).
3.(1)有理数、无理数;
(2)正实数、0、负实数;
(3)
1
2
4.均成立 。
把下列各数分别填入相应的集合内:
有理数集合
无理数集合
把下列各数分别填入相应的集合内吗?
正数集合
负数集合
探究案(15min)
• 学习要求: 1.按探究案要求,独立思考探究一、二; 2.就自学中存在的问题进行对学,A1与A2,A3与A4
,A5与A6; 3.组长针对本组存在问题进行群学,统一小组结果;
• 展示、点评要求: 规范用语,声音嘹亮,讲授思路清楚,作图标准;
探究一
a是一个实数,它的相反数是
第二章 实数
6. 实数
学习目标(2min)
1.掌握实数概念,并会按要求对其进行分 类(重点); 2.会求实数的相反数、绝对值和倒数; 3.了解实数与数轴上点的一一对应关系 ,并会在数轴上做出无理数的位置; (难点)
预习案(8min)
• 自学课本38页, 1.将数字准数、绝对值和倒数;
实数课件北师大版八年级数学上册
实数
教学目标
1.了解实数的意义,在实数范围内,相反数、倒数、绝对值的意义, 能对实数按要求分类. 2.了解有理数的运算法则在实数范围内仍然适用. 3.了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数. 4在学习有理数的基础上用类比的方法去解决问题,找规律,用旧 知识去探索新知识. 5通过复习旧知识探索新知识,培养学生学习的生动性,敢于大胆 猜想,和同学能积极交流的合作意识.
C
(3)正实数集合:{___________________________…}; (4)负实数集合:{________________…}.
-π的相反数为
为
π-3 .
π-3 ,倒数为
,绝对值
14.实数a,b在数轴上对应的点的位置如图所示,计算|a-b| 的结果为 b-a .
课堂小结
1.师生共同回忆实数的两种分类,相反数、倒数、绝对值的意义 等知识点. 2.通过这节课的学习,你掌握了哪些知识?还存在哪些不足? 引导学生回顾所学知识,进行知识提炼和系统归纳整理,有助于 学生加深印象,便于理解.
知识点一:实数的概念及分类 (1)有理数和 无理 数统称为实数. (2)实数的分类: ①按定义分类:
②按正负分类:
③注意:对实数进行分类时,应先对某些数进行计算或化简, 根据它的最后结果进行分类,不能看到带根号的数,就认为 是无理数.
1.(北师8上P25及P39、人教7下P57)判断下列说法是否正确: (1)无限小数都是无理数; (2)无理数都是无限小数; (3)带根号的数都是无理数. 解:(1)错误;(2)正确;(3)错误.
教学重难点
1了解实数的意义,能对实数进行分类,明确数轴上的点与实数一一 对应并能用数轴上的点来表示无理数. 2用数轴上的点来表示无理数.
北师大版八年级数学上册第二章实数知识点及习题
实数知识点一、【平方根】如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。
因此:1、当a=0时,它的平方根只有一个,也就是0本身;2、当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。
3、当a <0时,也即a 为负数时,它不存在平方根。
例1.(1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。
(3)若x 的平方根是±2,则x= ;的平方根是(4)当x 时,x 23-有意义。
(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少? 知识点二、【算术平方根】:1、如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a”,其中,a 称为被开方数。
特别规定:0的算术平方根仍然为0。
2、算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
3、算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。
例2.(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=; (C )、81的平方根是3±; (D )、0没有平方根; (2)下列各式正确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=-(3)2)3(-的算术平方根是 。
(4)若x x -+有意义,则=+1x ___________。
(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。
2023八年级数学上册第二章实数本章归纳总结教案(新版)北师大版
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解实数的基本概念和性质。
-思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
6.实数在实际问题中的应用:解决实际问题,如长度、面积、体积的计算等。
7.实数的推理与证明:利用实数的性质和运算规律进行推理和证明。
8.实数与几何:实数在几何中的运用,如坐标系、距离、角度等。
9.实数与概率:实数在概率论中的作用,包括概率的计算和分析。
10.实数的进一步研究:无理数的性质、实数的数轴表示等。
-提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
-自主学习法:引导学生自主思考,培养自主学习能力。
-信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
作用与目的:
-帮助学生提前了解本节课的主要内容,为课堂学习做好准备。
-培养学生的自主学习能力和独立思考能力。
然而,我也意识到,在教学过程中,我还有许多需要改进的地方。例如,在讲解实数与函数的部分,我发现部分学生对于函数的概念和图像的理解还有些模糊。这让我意识到,我需要在教学中更加注重学生的基础知识的巩固,而不能够一味地追求教学进度。
此外,我也需要更多地关注每一个学生的学习情况。在课堂上,我尽量让更多的学生参与到讨论中来,但我发现,还是有一些学生比较内向,他们不敢主动发言。这让我意识到,我需要在课堂上创造一个更加轻松自由的环境,让每一个学生都能够自由地表达自己的思考。
北师大版八年级数学上册《实数》课件(共18张PPT)
一、知识回顾
知识点填空:
(1) 无限不循环小数
(2) 有理数和无理数
整数
实
数
有理数
分数
分
类
无理数
正无理数
负无理数
叫做无理数; 统称为实数;
(3) 实数 和数轴上的点是一一对应的;
(4) a2 a
( a ) 2 a(a0)
( 3 a )3 a
3 a3 a
a b ab(a0,b0)
有理数的判断方法: 整数和分数
例1 下列各数中,哪些是有理数,哪 些是无理数?
23 ,3 5 ,3.14159265, 9 , π ,
3 1 ,( 5 ) 2 ,3.1010010001…(相邻两 个1之间0的各数逐次加1)
无理数的判断方法:无限不循环的小数 主要有以下几种: ①开方开不尽的方根
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
例1 下列各数中,哪些是有理数,哪 些是无理数?
23 ,3 5 ,3.14159265, 9 , π ,
3 1 ,( 5 ) 2 ,3.1010010001…(相邻两 个1之间0的各数逐次加1)
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021
•7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021
北师大版数学八年级上册第二章实数
思考2:你能在数轴上表示出 2 和 - 2 吗?
2
-2
-2
-1
0
1
2
2
每一个实数都可以用数轴上的一个点来表示;
反过来,数轴上的每一点都表示一个实数.
★实数和数轴上的点是一一对应的.
学以致用
把下列实数表示在数轴上,并比较他们的大小 用“ < ” 连接
8
,-π,1.5,3
解:把
3
8
,-π,1.5,3
问题:在有理数范围内,能进行哪些运算?
判断下列各式成立吗?
2 5 5 2
1
1
3 5
3 5
3
5
5
43 2 73 2 4 7 3 2 113 2
有理数的运算及运算律对实数仍然适用
学以致用
分别求下列各数的相反数、倒数和绝对值.
(1)
3
64 ;
绝对值为
a
;
(2)如果a ≠0,那么它的倒数为
a ,
1
a
.
知识点3 实数与数轴上的点
思考1: 如图,直径为1个单位长度的圆从原点沿数
轴向右滚动一周,圆上一点从原点到达A点,则数轴
上表示点A的数是多少?
●
●
●
●
●
●
●
●
●
●●
-2
-1
0
1
2
π
●●
3A
4
因为圆的周长为π,无理数π可以用数轴上的点来表示.
原式=-(a+b)-[-(a-b)]
= -a-b+(a-b)
= -a-b+(a-b)
= -a-b+a-b
北师大版新教材八年级上数学《实数》教案
八年级数学单元测试试卷---第二单元《实数》大全第二章 实数2.1认识无理数一、问题引入:1、和统称有理数,它们都是有限小数和无限 (填循环或不循环)小数。
2、(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b ,则b 应满足什么条件?(3)b 是有理数吗?3、请你举出一个无限不循环小数的例子___________,并说出它的整数部分是,小数部分是,请指出它的十分位、 百分位、千分位……..。
4、称为无理数,请举两个例子。
二、基础训练:1、28x =,则x _____分数,______整数,______有理数.(填“是”或“不是”)2、在0.351,-32,4.969696…,0,-5.2333,5.411010010001…,6.751755175551…中,不是有理数的数有_____。
3、长、宽分别是3、2的长方形,它的对角线的长可能是整数吗?可能是分数吗?下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.四、课堂检测:1、在下列实数-12,π,4,13,5中,无理数有( )A .1个B .2个C .3个D .4个2、下列说法正确的是( )A .有理数只是有限小数B .无理数是无限不循环小数C .无限小数都是无理数D .3π是分数3、实数:3.14,π,0.315315315…,722,0.3030030003…中,无理数有 _________ 个.4、下列各数中,哪些是有理数?哪些是无理数?π、0.351,-∙∙69.4,32,3.14159,-5.2323332…,0、0.1234567891011112131…(小数部分由相继 的正整数组成)在下列每一个圈里,至少填入三个适当的数 .5、(1)设面积为10的正方形的边长为x ,x 是有理数吗?说说你的理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。