小学5年级奥数
五年级数学奥数题目
五年级数学奥数题目:
1.有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。
问:
第二组有多少个数?
答案:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
2.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2
分。
如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
答案:因为第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
3.妈妈每4天要去一次副食商店,每5天要去一次百货商店。
妈妈平均每星期去这两个商店几次?
答案:4和5的最小公倍数是20,因此妈妈每20天去这两个商店的次数是2次。
由于一周是7天,所以妈妈平均每星期去这两个商店的次数是2/5*7=2.8次。
小学五年级奥数练习题(五篇)
小学五年级奥数练习题(五篇)小学五年级奥数练习题篇一1、学校买来两种粉笔共240盒,已知白色粉笔的盒数是彩色粉笔的5倍。
两种粉笔各买了多少盒?2、师傅和徒弟3小时共生产零件90个,已知师傅每小时做的零件个数是徒弟的2倍,师傅和徒弟每小时各做多少个零件?3、哥哥和弟弟共有48本书,弟弟给哥哥5本后,哥哥的书就是弟弟的3倍,哥哥、弟弟原来各有几本书?4、甲乙两个粮仓共有粮食230吨,后来从甲仓运出50吨,乙仓运进20吨,这时乙仓的粮食是甲仓的3倍,甲乙两仓原来各有粮食多少吨?5、某校三年级和四年级共有学生372人,三年级的人数比四年级人数的2倍多36人,该校三、四年级各有学生多少人?6、动物园的猴山上共有180只猴。
大猴子的只数比小猴子的3倍少8只。
猴山上大小猴子各有多少只?7、有红、黄、蓝三种颜色的玻璃球共270个,黄球的个数是红球的2倍,蓝球的个数是黄球的3倍,三种颜色的玻璃球各有多少个?8、书架上层有46本书,下层有22本书,要使上层的书是下层书的3倍,那么必须从下层拿几本书放到上层去?9、两个数相除,商3余10,被除数、除数、商与余数的和是163,求被除数和除数分别是多少?10、果园里有桃树、梨树、苹果树共552棵。
桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?小学五年级奥数练习题篇二1、有人说:“任何7个连续整数中一定有质数。
”请你举一个例子,说明这句话是错的。
2、从小到大写出5个质数,使后面的数都比前面的数大12。
3、9个连续的自然数,它们都大于80,那么其中质数最多有多少个?4、用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?5、已知一个两位数除1477,余数是49。
求满足这样条件的所有两位数。
6、某校师生为贫困地区捐款1995元。
这个学校共有35名教师,14个教学班。
各班学生人数相同且多于30人不超过45人。
小学五年级奥数试题(含答案)
小学五年级奥数试题(含答案)一、选择题1. 小明有8个苹果,小红有6个苹果,小明比小红多几个苹果?A. 2个B. 4个C. 6个D. 8个答案:B. 4个2. 一只小狗每天晨跑2公里,晚跑3公里,一周跑多少公里?A. 10公里B. 12公里C. 14公里D. 16公里答案:D. 16公里3. 一个月有30天,一个星期有7天,那么3个星期有多少天?A. 19天B. 20天D. 22天答案:C. 21天4. 小红拿了25个苹果,她和小明一共有38个苹果,请问小明拿了几个苹果?A. 10个B. 12个C. 13个D. 15个答案:B. 12个5. 一盒牛奶有900毫升,小明喝了1/4盒,还剩多少毫升?A. 200毫升B. 300毫升C. 450毫升D. 600毫升答案:C. 450毫升二、填空题1. 36 ÷ 6 = ____2. 54 - __ = 42答案:123. 78 + __ = 100答案:224. 3 × 5 - __ = 7答案:85. 72 ÷ __ = 8答案:9三、解答题1. 用算术法解答:小明和小红一起买了15颗苹果,小明买了3颗苹果,那么小红买了几颗苹果?答案:小红买了12颗苹果。
2. 用绘图法解答:平行四边形ABCD的周长是24cm,边长AB是4cm,请画出平行四边形ABCD。
答案:(请自行绘图)3. 用列式解答:一个数加上3等于10,这个数是多少?答案:这个数是7。
总结:通过以上的奥数试题,我们可以锻炼和提高我们的数学技能。
不仅需要掌握基本的运算规则和运算方法,还需要灵活运用解题思路和方法。
希望大家能够通过不断的练习和思考,提高自己的数学水平。
小学五年级奥数题100道及答案(完整版)
小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。
2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。
这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。
3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。
4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。
5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。
6. 一个合数至少有()个因数。
A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。
所以一个合数至少有3 个因数。
7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。
8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。
小学五年级数学奥数题100道及答案(完整版)
小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
五年级小学生奥数题3篇
五年级小学生奥数题3篇【篇一】五年级小学生奥数题1、有两条各长30厘米的纸条, 粘贴在一起长56厘米, 粘贴在一起的部分长()厘米。
2、一条直线能将平面分为两部分, 两条直线最多能将平面分为4部分, 那么5条直线最多能将平面划分成()部分。
3、小华参加数学竞赛, 共有10道赛题。
规定答对一题给十分, 答错一题扣五分。
小华十题全部答完, 得了85分。
小华答对了几题?4、图书室有连环画28本, 文艺书36本, 买来的故事书比连环画和文艺书的总和少50本。
图书室有故事书多少本?5、用数字0, 1, 2, 3, 4中的任意三个数相加可以得到多少个不同的和。
6、钟鼓楼的钟打点报时, 5点钟打5下需要4秒钟。
问中午12点是打12下需要多少秒钟?7、二(2)班有44个同学划船, 大船每条可以坐6人, 租金10元, 小船每条可以坐4人, 租金8元, 如果你是领队, 要使租金最少, 租多少条大船, 多少条小船, 租金多少元。
8、小青比小李大5岁, 小李比小风大2岁, 小风比小云小4岁, 他们4人(), ()最小。
的比最小的大()岁。
9、有一个卖茶叶蛋的老太太, 第一次卖去锅内茶叶蛋的一半多2个, 第二次又卖去余下的一半多2个, 锅内还有1个茶叶蛋, 这个老太太原来一共有多少个茶叶蛋?10、3个空汽水瓶可以换1瓶汽水, 小花买18瓶汽水, 可以喝到多少瓶汽水?【篇二】五年级小学生奥数题1、两组学生进行跳绳比赛, 平均每人跳152下, 甲, 组有6人, 平均每人跳140下, 乙组平均每人跳160下, 乙组有多少人?2、甲、乙、丙三人的平均年龄为22岁, 如果甲、乙的平均年龄是18岁, 乙、丙的平均年龄是25岁, 那么乙的年龄是多少岁?3、五个数排一排, 平均数是9, 如果前四个数的平均数是7, 后四个数的平均数是10, 那么, 第一个数和第五个数是多少?4、甲、乙两个码头相距144千米, 汽船从乙码头逆水行驶8小时到达甲码头, 已知汽船在静不中每小时行驶21千米。
小学五年级奥数题五篇
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第⼀届国际数学奥林匹克竞赛。
以下是⽆忧考整理的《⼩学五年级奥数题五篇》相关资料,希望帮助到您。
1.⼩学五年级奥数题 22.5-(□×32-24×□)÷3.2=10在上⾯算式的两个⽅框中填⼊相同的数,使得等式成⽴。
那么所填的数应是多少? 答案与解析:22.5-(□×32-24×□)÷3.2 =22.5-□×(32-24)÷3.2 =22.5-□×8÷3.2 =22.5-□×2.5 因为22.5-□×2.5=10,所以□×2.5=22.5-10,□=(22.5-10)÷2.5=5 答:所填的数应是5。
2.⼩学五年级奥数题 某⼩学的六年级有⼀百多名学⽣。
若按三⼈⼀⾏排队,则多出⼀⼈;若按五⼈⼀⾏排队,则多出⼆⼈;若按七⼈⼀⾏排队,则多出⼀⼈。
该年级的⼈数是______。
答案与解析: 苏教版⼩学五年级奥数题及答案-排队:符合第⼀、第三条条件的⼈数为的最少⼈数为3×7+1=22⼈,经检验,22也符合第⼆个条件,所以22也是符合三个条件的最⼩值,但该⼩学有⼀百多名学⽣,所以学⽣总⼈数为22+3×5×7=127。
3.⼩学五年级奥数题 1、甲、⼄、丙、丁约定上午10时在公园门⼝集合.见⾯后,甲说:“我提前了6分钟,⼄是正点到的.” ⼄说:“我提前了4分钟,丙⽐我晚到2分钟.”丙说:“我提前了3分钟,丁提前了2分钟.”丁说:“我还以为我迟到了1分钟呢,其实我到后1分钟才听到收⾳机报北京时间10时整.” 请根据以上谈话分析,这4个⼈中,谁的表最快,快多少分钟? 2、甲、⼄、丙、丁4个同学同在⼀间教室⾥,他们当中⼀个⼈在做数学题,⼀个⼈在念英语,⼀个⼈在看⼩说,⼀个⼈在写信.已知: ①甲不在念英语,也不在看⼩说; ②如果甲不在做数学题,那么丁不在念英语; ③有⼈说⼄在做数学题,或在念英语,但事实并⾮如此; ④丁如果不在做数学题,那么⼀定在看⼩说,这种说法是不对的; ⑤丙既不是在看⼩说,也不在念英语. 那么在写信的是谁? 3、在国际饭店的宴会桌旁,甲、⼄、丙、丁4位朋友进⾏有趣的交谈,他们分别⽤了汉语、英语、法语、⽇语4种语⾔.并且还知道: ①甲、⼄、丙各会两种语⾔,丁只会⼀种语⾔; ②有⼀种语⾔4⼈中有3⼈都会; ③甲会⽇语,丁不会⽇语,⼄不会英语; ④甲与丙、丙与丁不能直接交谈,⼄与丙可以直接交谈; ⑤没有⼈既会⽇语,⼜会法语. 请根据上⾯的情况,判断他们各会什么语⾔? 4、甲、⼄、丙3个学⽣分别戴着3种不同颜⾊的帽⼦,穿着3种不同颜⾊的⾐服去参加⼀次争办奥运的活动.已知: ①帽⼦和⾐服的颜⾊都只有红、黄、蓝3种: ②甲没戴红帽⼦,⼄没戴黄帽⼦; ③戴红帽⼦的学⽣没有穿蓝⾐服: ④戴黄帽⼦的学⽣穿着红⾐服: ⑤⼄没有穿黄⾊⾐服. 试问:甲、⼄、丙3⼈各戴什么颜⾊的帽⼦,穿什么颜⾊的⾐服? 5、5位学⽣A,B,C,D,E参加⼀场⽐赛.某⼈预测⽐赛结果的顺序是ABCDE,结果没有猜对任何⼀个名次,也没有猜中任何⼀对相邻的名次(意即某两个⼈实际上名次相邻,⽽在此⼈的猜测中名次也相邻,且先后顺序相同);另⼀个⼈预测⽐赛结果为DAECB,结果猜对了两个名次,同时还猜中了两对相邻的名次.求这次⽐赛的结果。
小学五年级数学奥数题100道附完整答案
小学五年级数学奥数题100道附完整答案题目1:一个数除以4 余3,除以5 余4,除以6 余5,这个数最小是多少?答案:这个数加上1 就能被4、5、6 整除,4、5、6 的最小公倍数是60,所以这个数最小是59。
题目2:有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米。
现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?答案:每小段的长度是120、180、300 的最大公因数,即60 厘米。
一共可以截成:(120 + 180 + 300) ÷60 = 10 段。
题目3:一间教室长8 米,宽6 米,高4 米。
要粉刷教室的天花板和四周墙壁,除去门窗和黑板面积25.4 平方米,粉刷的面积是多少平方米?答案:天花板面积:8×6 = 48 平方米,四周墙壁面积:2×(8×4 + 6×4) = 112 平方米,总面积:48 + 112 = 160 平方米,粉刷面积:160 - 25.4 = 134.6 平方米。
题目4:一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,缸内水深12 厘米。
把一块石头浸入水中后,水面升到16 厘米,求石块的体积。
答案:升高的水的体积就是石块的体积,40×25×(16 - 12) = 4000 立方厘米。
题目5:甲、乙两数的最大公因数是12,最小公倍数是180,甲数是36,乙数是多少?答案:180×12÷36 = 60,乙数是60。
题目6:有一筐苹果,无论是平均分给8 个人,还是平均分给18 个人,结果都剩下3 个,这筐苹果至少有多少个?答案:8 和18 的最小公倍数是72,72 + 3 = 75 个,这筐苹果至少有75 个。
题目7:一个长方体的棱长总和是80 厘米,长10 厘米,宽7 厘米,高是多少厘米?答案:高:80÷4 - 10 - 7 = 3 厘米。
小学五年级经典奥数题带答案
小学五年级经典奥数题(一)题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克元,小的每千克元,这样卖这批西瓜共值290元,如果每千克西瓜降价元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?答案:1.解:设有1元的x张,1角的(28-x)张x+(28-x)==x=328-x=25答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)x+2(x-2)+5(52-2x)=116x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张。
小学五年级奥数题大全及答案(更新版)
小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。
小学五年级奥数题30道(附答案)
小学五年级奥数题30道(附答案)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,求一张桌子和一把椅子的价钱分别是多少元。
设一把椅子的价钱为x元,则一张桌子的价钱为10x元。
根据题意,有10x - x = 288,解得x = 32,因此一把椅子的价钱为32元,一张桌子的价钱为320元。
2.3箱苹果重45千克,一箱梨比一箱苹果多5千克,求3箱梨的重量是多少千克。
设一箱苹果的重量为x千克,则3箱苹果的重量为3x千克。
根据题意,有3x = 45,解得x = 15,因此一箱苹果的重量为15千克,一箱梨的重量为20千克,因此3箱梨的重量为60千克。
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快10千米,求甲、乙两人的速度分别是多少千米每小时。
设甲的速度为x千米每小时,则乙的速度为x - 10千米每小时。
根据题意,有4x = (4 + 4) * 2,解得x = 4,因此甲的速度为4千米每小时,乙的速度为(4 - 10)千米每小时,即-6千米每小时(表示向相反方向行驶)。
4.XXX和XXX同样多的钱买了同一种铅笔,XXX要了13支,XXX要了7支,XXX又给XXX0.6元钱。
求每支铅笔的价格是多少元。
设每支铅笔的价格为x元,则李军和XXX分别付出的钱数为13x元和7x元。
根据题意,有13x = 7x + 0.6,解得x = 0.1,因此每支铅笔的价格为0.1元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,求两地相距多少千米。
设两地相距为x千米,则甲车和乙车相遇时,它们共行驶了(x/2)千米。
根据题意,甲车和乙车共用了6个小时,因此它们共行驶了2x千米。
小学奥数(五年级完整版)
第1讲平均数(一)一、知识要点把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数二、精讲精练【例题1】有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
一箱苹果多少个?【思路导航】(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。
1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习1:1.一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。
问:甲、丁各得多少分?2.甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。
求四人的平均体重是多少千克?【例题2】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。
求这个班男生有多少人?【思路导航】女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均数学奥数培训资料箭金学堂分低91.2-90.5=0.7(分)。
全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。
五年级奥数题及答案通用13篇
五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。
实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。
照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。
实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。
现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。
快车每小时行42千米,慢车每小时行35千米。
两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。
两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。
甲每小时做124个,乙每小时做136个。
他们合做了8小时,超额完成120个。
他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。
客船开出4小时与货船相遇。
货船每小时行18千米,客船每小时行27千米。
两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。
(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。
小学五年级奥数题50道及答案
小学五年级奥数题50道及答案1、设这个数为x,则25=2x*3+1,解得x=4.2、设去年绿化面积为x,则1800=2x+40,解得x=880.3、设去年平均日产洗衣机为x,则260=2.5x-40,解得x=120.4、设小汽车每次运x吨,则8*4+6x=47,解得x=1.5、布裁剪后剩余的长度为36-10*2.4-8x=36-24-8x,即12-8x,因为剩余长度等于0,所以12-8x=0,解得x=1.5.6、设两车行驶t小时后相遇,则48t+56t=12+272,解得t=4.7、设公鸡的数量为x,则母鸡的数量为1.5x+300,因为公鸡和母鸡的数量之和为4800,所以x+1.5x+300=4800,解得x=1200,1.5x+300=2100.8、设弟弟的年龄为x,则哥哥的年龄为x+3,因为两人年龄之和为35,所以x+x+3=35,解得x=16,哥哥的年龄为19.9、设甲车每小时行x千米,则乙车每小时行x-6千米,因为两车相向而行,所以6(x+x-6)=528,解得x=57,甲车每小时行57千米,乙车每小时行51千米。
10、设橘子的价格为x元/kg,则XXX的价格为7.4/2-0.6=3.1元/kg,因为1kg苹果的价格为3.1元,所以1kg橘子的价格为3.1/x元,解得x=5.11、设科技书的本数为x,则文艺书的本数为x+156,因为文艺书的本数比科技书的3倍还多12本,所以x+156=3x+12,解得x=72,文艺书买了228本,科技书买了72本。
12、设甲有书的本数为3x,则乙有书的本数为x,因为甲、乙两人平均每人有82本书,所以4x/2=82,解得x=41,甲有123本书,乙有41本书。
13、设下层有x本书,则上层有3x本书,因为两层的书一样多,所以3x-60=x+60,解得x=40,上层有120本书,下层有40本书。
14、设乙缸原有金鱼x条,则甲缸原有金鱼2x条,因为从乙缸里取出9条金鱼放入甲缸后,两缸鱼的条数相等,所以2x+9=x/2,解得x=18,甲缸原有36条金鱼。
小学五年级奥数题及答案6篇
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是⽆忧考整理的《⼩学五年级奥数题及答案6篇》相关资料,希望帮助到您。
1.⼩学五年级奥数题及答案 ⼀排椅⼦只有15个座位,部分座位已有⼈就座,乐乐来后⼀看,他⽆论坐在哪个座位,都将与已就座的⼈相邻。
问:在乐乐之前已就座的最少有⼏⼈? 将15个座位顺次编为1:15号。
如果2号位、5号位已有⼈就座,那么就座1号位、3号位、4号位、6号位的⼈就必然与2号位或5号位的⼈相邻。
根据这⼀想法,让2号位、5号位、8号位、11号位、14号位都有⼈就座,也就是说,预先让这5个座位有⼈就座,那么乐乐⽆论坐在哪个座位,必将与已就座的⼈相邻。
因此所求的答案为5⼈。
2.⼩学五年级奥数题及答案 1、某⼯车间共有77个⼯⼈,已知每天每个⼯⼈平均可加⼯甲种部件5个,或者⼄种部件4个,或丙种部件3个。
但加⼯3个甲种部件,⼀个⼄种部件和9个丙种部件才恰好配成⼀套。
问应安排甲、⼄、丙种部件⼯⼈各多少⼈时,才能使⽣产出来的甲、⼄、丙三种部件恰好都配套? 解:设加⼯后⼄种部件有x个。
3/5X+1/4X+9/3X=77 x=20 甲:0.6×20=12(⼈)⼄:0.25×20=5(⼈)丙:3×20==60(⼈) 2、哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁? 解:设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3 x=18 弟弟30-18=12(岁)3.⼩学五年级奥数题及答案 对任意两个不同的⾃然数,将其中较⼤的数换成这两数之差,称为⼀次变换。
如对18和42可进⾏这样的连续变换:18,42→18,24→18,6→12,6→6,6。
小学五年级五年级奥数题
小学五年级五年级奥数题在小学五年级时,学生们已经开始接触奥数了。
随着年级的升高,奥数的难度也逐渐加大。
下面就来看一些小学五年级的奥数题。
1. 鸡兔同笼问题一个笼子里关着鸡和兔,它们的头和脚的数量加起来共有50个。
问笼子里有几只兔子,几只鸡?解析:设兔子的数量为x,鸡的数量为y。
由题可知,2x+4y=50,化简可得x+2y=25。
因为一定存在整数解,所以我们可以从0开始枚举y的值,然后求解x的值,如果x是整数,那么就是一个解。
例如,当y=1时,x=23,此时笼子里有1只兔子,23只鸡。
当y=2时,x=21,此时笼子里有2只兔子,21只鸡。
当y=3时,x=19,此时笼子里有3只兔子,19只鸡……以此类推,直到找到所有的解。
2. 工程问题两个工人一起修路,需要5天时间才能修完;其中一个工人单独修路需要10天时间,问另一个工人单独修路需要多少天?解析:设两个工人单独修路所需要的时间分别为x和y,由题意可知,两个工人一起修路的效率是一样的。
所以可以列出下面的方程式:5/(1/x+1/y) = 5化简可得2x+2y=xy,移项可得xy-2x-2y=0,变形可得(x-2)(y-2)=4,因为要求的是整数解,所以只需枚举4的因数即可求解。
当4=1*4时,可得x=6,y=3;当4=2*2时,可得x=4,y=4。
所以另一位工人单独修路需要4天的时间。
3. 蒙提霍尔问题蒙提霍尔问题又称“三门问题”,是一个经典的悖论。
题目如下:有三扇门,其中一扇门后面是一辆汽车,另外两扇门后面是山羊。
你选择其中一扇门,然后主持人打开其中一扇门,露出其后面的山羊,问你是否要更换选择,以获得汽车的机会更大。
解析:这个问题的解法有两种,一种是基于概率的统计学方法,另一种是基于直觉的感性理解。
基于概率的统计学方法:首先,根据条件概率公式,汽车出现在你选择的门后面的概率是1/3。
而有两扇门没被选择,每扇门后面都是山羊的概率是2/3。
而当主持人打开一扇门,露出其中的山羊后,这个条件发生时,未被选择的门后面山羊的概率不变,仍然是2/3。
小学五年级奥数题及答案解析(五篇)
小学五年级奥数题及答案解析(五篇)篇一油库里有6桶油,分别装着汽油、柴油和机油。
油桶上只标明15公升、16公升、18公升、19公升、20公升和31公升,却没有注明是哪一种油。
只知道柴油是机油的2倍,汽油只有一桶。
请你分析一下,各个油桶里装的是什么油?【答案解析】根据“柴油是机油的2倍”这一条件可知,这两种油之和一定是3的倍数。
而六桶油的和为15+16+18+19+20+31=119(公升),119除以3得到的余数为2,说明汽油量是3的倍数还多2公升。
又知“汽油只有一桶”,在油桶上标明的六个数中,只有20是3的倍数多2的数,所以标明20公升这一桶装的是汽油。
从而可求出机油量为(15+16+18+19+31)÷3=33(公升),柴油量为33×2=66(公升)通过观察可知,标明15公升与18公升的两桶装的是机油,标明16公升、19公升与31公升的三桶装的是柴油。
篇二甲、乙、丙三个桶内各装了一些油,先将甲桶内三分之一的油倒入乙桶,再将乙桶内五分之一的油倒入丙桶,这时三个桶内的油一样多,如果最初丙桶内有油48千克,那么最初甲桶内有油_____千克。
乙桶内有油_____千克。
【答案解析】甲桶里面应该有96千克,乙桶里有48千克。
假设甲桶往乙桶倒过油之后乙桶的油是5份,那么它将五分之一给了丙桶,结果两桶一样多,说明丙桶原来有3份,那么三桶都一样的时候都是4份,可以知道,甲桶倒出去三分之一之后还有4份,那么原来就有6份,甲桶往乙桶倒过2份油之后乙桶的油是5份,说明原来乙桶也是3份,那么丙桶的3份相当于48千克,一份就是16千克,最初的甲桶里面应该有96千克,乙桶里有48千克。
篇三学校参加体操表演的学生人数在60~100之间。
把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完。
参加这次表演的同学至少有()人。
【答案解析】考点:公因数和公倍数应用题。
分析:按人数平均分成8人一组,或平均分成12人一组都正好分完,那么总人数就是8和12的公倍数,再根据总人数在60~100之间进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲平均数
例1.有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个。
苹果和桃平均每箱37个。
求一箱苹果多少个?一箱桃多少个?
举一反三1
1.一次考试,甲、乙、丙三人平均91分,乙、丙、丁三人平均89分,甲、丁二人
平均95分,问甲、丁各得多少分?
2.甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。
求四人的平均体重是多少千克?
3.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植18棵,甲、丙两组平均每组植17棵,乙、丙两组平均每组植19棵。
三个小组各植树多少棵?
例2.一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求这个班男生有多少人?
举一反三2
1.两组学生进行跳绳比赛,平均每人跳152下。
甲组有6人,平均每人跳140下,乙组平均每人跳160下,乙组有多少人?
2.有两块棉田,平均每平方米产量是92.5千克。
已知一块田是5平方米,平均每平方米产量是101.5千克;另一块田平均每平方米产量是85千克,这块田是多少平方米?
3.把甲级糖和乙级糖放混在一起,平均每千克卖7元。
已知甲级糖有4千克,每千克8元,乙级糖有2千克。
乙级糖每千克多少元?
例3.小莉读一本小说,第一天读74页,第二天读82页,第三天读71页,第四天读63页,第五天读的页数比这5天中平均每天读的少6页,小莉第五天读多少页?
举一反三3
1.一个技术工带4个普通工人完成了一项工作,每个普通工人各得200元,这位技术工人的收入比他们5人的平均收入还多80元,问这位技术工人得多少元?
2.小宇与五名同学一起参加数学竞赛,那五名同学的成绩分别问为79分、82分、90分、85分、84分,小宇的成绩比6人的平均成绩高5分,求小宇的数学成绩。
3.两组工人加工零件,第一组有30人,平均每人加工60个零件。
第二组有25人,平均每人比两组工人的平均数多6个,两组工人平均每人加工多少个零件?
例4.一位同学在期中测试中,除了数学外,其他几门功课的平均成绩是94分,如果数学算在内,平均每门95分,已知他数学得了100分,问这位同学一共考了多少门功课?
举一反三4
1.小明前几次数学测验的平均成绩是84分,这次要考100分,才能把数学平均成绩提高到86分,问这是他第几次数学测验?
2.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。
如果师生合起来算,正好平均每人做了7朵,求有多少个同学在做花?
3.小明前五次数学测验的平均成绩是88分。
为了使平均成绩达到92.5分,小明要连续考多少次满分?
例5.小亮在期末考试中,政治、语文、数学、英语、自然五科的平均成绩是89分,政治、数学两科平均91.5分,语文、英语两科平均84分,政治、英语两科平均86分,英语比语文朵10分。
小亮的各科成绩是多少分?
举一反三5
1.甲乙丙三个数的平均数是82,甲乙两数的平均数是86,乙丙两数的平均数是77.乙数是多少?甲丙两个数的平均数是多少?
2.小华前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。
这一次是他第几次测验?
3.五个数排一排,平均数是9.如果前四个数的平均数是7,后四个数的平均数是10,那么,第一个数和第五个数的平均数是多少?
第二讲等差数列
例1.求等差数列3,8,13,18,...的第38项和第69项。
举一反三1
1.求等差数列1,4,,7,10,13...的第20项和第80项。
2.超市工作人员在商品上依次编号,分别为4,8,12,16,...请问第34个商品上标注的是什么数字?第58个呢?
3.商店中推行打包促销活动,每6个商品为一包。
第一包中每个商品的编号依次是3,6,9,12,15,18;第二包中编号为21,24,27,30,33,36。
依次类推,请问第20包的第3个商品编号为多少?。