江阴市九年级上册期末数学试题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江阴市九年级上册期末数学试题(含答案)
一、选择题
1.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离 B .相切 C .相交 D .无法判断 2.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )
A .265cm π
B .290cm π
C .2130cm π
D .2155cm π
3.如图,已知正五边形ABCDE 内接于
O ,连结,BD CE 相交于点F ,则BFC ∠的度
数是( )
A .60︒
B .70︒
C .72︒
D .90︒
4.方程x 2﹣3x =0的根是( )
A .x =0
B .x =3
C .10x =,23x =-
D .10x =,23x =
5.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2) B .(﹣1,﹣2) C .(1,﹣2) D .(1,2) 6.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )
A .相交
B .相切
C .相离
D .无法确定 7.一元二次方程x 2=-3x 的解是( )
A .x =0
B .x =3
C .x 1=0,x 2=3
D .x 1=0,x 2=-3
8.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个根是x =1
D .不存在实数根
9.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( )
①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0). A .1
B .2
C .3
D .4
10.如图,在矩形中,
,
,若以为圆心,4为半径作⊙.下列四个点
中,在⊙外的是( )
A.点B.点C.点D.点
11.如图,在正方形 ABCD 中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:
①∠BAE=30°;
②射线FE是∠AFC的角平分线;
③CF=1
3 CD;
④AF=AB+CF.
其中正确结论的个数为()
A.1 个B.2 个C.3 个D.4 个
12.若二次函数y=x2+4x+n的图象与x轴只有一个公共点,则实数n的值是()A.1 B.3 C.4 D.6
13.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()
A.4
23
3
π
-B.
8
43
3
π
-C.
8
23
3
π
-D.
8
4
3
π
-
14.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()
A.3:2 B.3:1 C.1:1 D.1:2
15.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )
A .41x -<<
B .21x -<<
C .31x -<<
D .31x x <->或
二、填空题
16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.
17.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (
5
3
,0)、B (0,4),则点B 2020的横坐标为_____.
18.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)
19.如图是二次函数2
y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.
20.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.
21.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.
22.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.
23.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.
24.在平面直角坐标系中,抛物线2y
x 的图象如图所示.已知A 点坐标为()1,1,过点
A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作
23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行
下去,则点2019A 的坐标为_____.
25.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.
26.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.
27.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.
28.用配方法解一元二次方程2430x x +-=,配方后的方程为2
(2)x n +=,则n 的值为______.
29.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.
30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.
三、解答题
31.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.
(1)求y 与x 之间的函数关系式;
(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少? (3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.
32.如图,已知二次函数y =ax 2+4ax +c (a ≠0)的图象交x 轴于A 、B 两点(A 在B 的左侧),交y 轴于点C .一次函数y =﹣
1
2
x +b 的图象经过点A ,与y 轴交于点D (0,﹣3),与这个二次函数的图象的另一个交点为E ,且AD :DE =3:2. (1)求这个二次函数的表达式; (2)若点M 为x 轴上一点,求MD 5
MA 的最小值.
33.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;
(3)△A2B2C2的面积是平方单位.
34.2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.
(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;
(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?
35.如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.
(1)求A,D两点的坐标;
(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.
①当点P的横坐标为2时,求△PAD的面积;
②当∠PDA=∠CAD时,直接写出点P的坐标.
四、压轴题
36.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:
若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.
(1)如图1,已知A(-2,0),B(4,3),C(0,).
①若,则点A,B,C的最佳外延矩形的面积为;
②若点A,B,C的最佳外延矩形的面积为24,则的值为;
(2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线
上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围;
(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形
OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.
37.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作
Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右
侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点
E .在射线CD 上取点
F ,使3
2
DF CD =,以DE 、DF 等邻边作矩形DEGF ,设
3AQ x =
(1)用关于x 的代数式表示BQ 、DF .
(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.
38.如图,在Rt △AOB 中,∠AOB =90°,tan B =3
4
,OB =8. (1)求OA 、AB 的长;
(2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .
①当t 为何值时,点Q 与点D 重合?
②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.
39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF
(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.
(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.
40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =
1
2
∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.A 解析:A 【解析】
【分析】
根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断. 【详解】
解:∵圆心O 到直线l 的距离d=6,⊙O 的半径R=4, ∴d>R , ∴直线和圆相离. 故选:A . 【点睛】
本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..
2.B
解析:B 【解析】 【分析】
先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】
解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】
本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.
3.C
解析:C 【解析】 【分析】
连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】
解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725
︒
=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=
∠=︒,1
722
BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.
【点睛】
本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.
4.D
解析:D
【解析】
【分析】
先将方程左边提公因式x ,解方程即可得答案.
【详解】
x 2﹣3x =0,
x (x ﹣3)=0,
x 1=0,x 2=3,
故选:D .
【点睛】
本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.
5.D
解析:D
【解析】
【分析】
根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.
【详解】
∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),
∴抛物线2(1)2y x =-+的顶点坐标是(1,2).
故选D .
6.A
解析:A
【解析】
【分析】
根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.
【详解】
∵⊙O 的半径为5,圆心O 到直线的距离为3,∴直线l 与⊙O 的位置关系是相交. 故选A .
【点睛】
本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.
7.D
解析:D
【解析】
【分析】
先移项,然后利用因式分解法求解.
【详解】
解:(1)x 2=-3x ,
x 2+3x=0,
x (x+3)=0,
解得:x 1=0,x 2=-3.
故选:D .
【点睛】
本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.
8.A
解析:A
【解析】
【分析】
直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.
【详解】
∵x =﹣1为方程x 2﹣8x ﹣c =0的根,
1+8﹣c =0,解得c =9,
∴原方程为x 2-8x +9=0,
∵24b ac ∆=-=(﹣8)2-4×9>0,
∴方程有两个不相等的实数根.
故选:A .
【点睛】
本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()2
00++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.
9.B
解析:B
【解析】
【分析】
直接利用二次函数的性质分析判断即可.
【详解】
①y=x2+2x+3,
a=1>0,函数的图象的开口向上,故①错误;
②y=x2+2x+3的对称轴是直线x=
2
21
-
⨯
=﹣1,
即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;
③y=x2+2x+3,
△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;
④y=x2+2x+3,
当x=0时,y=3,
即函数的图象与y轴的交点是(0,3),故④错误;
即正确的个数是2个,
故选:B.
【点睛】
本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.
10.C
解析:C
【解析】
【分析】
连接AC,利用勾股定理求出AC的长度,即可解题.
【详解】
解:如下图,连接AC,
∵圆A的半径是4,AB=4,AD=3,
∴由勾股定理可知对角线AC=5,
∴D在圆A内,B在圆上,C在圆外,
故选C.
【点睛】
本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.
11.B
解析:B
【解析】
【分析】
根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明
△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.
【详解】
解:∵E 是BC 的中点,
∴tan ∠BAE=1=2
BE AB , ∴∠BAE ≠30°,故①错误;
∵四边形ABCD 是正方形,
∴∠B=∠C=90°,AB=BC=CD ,
∵AE ⊥EF ,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF ,
在△BAE 和△CEF 中,
==B C BAE CEF ∠∠⎧⎨∠∠⎩
, ∴△BAE ∽△CEF , ∴==2AB BE EC CF
, ∴BE=CE=2CF ,
∵BE=CF=12BC=12
CD , 即2CF=12
CD , ∴CF=14
CD , 故③错误;
设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,
∴AE=,,AF=5a ,
∴
AE AF BE EF , ∴=AE BE AF EF
, 又∵∠B=∠AEF ,
∴△ABE ∽△AEF ,
∴∠AEB=∠AFE,∠BAE=∠EAG,
又∵∠AEB=∠EFC,
∴∠AFE=∠EFC,
∴射线FE是∠AFC的角平分线,故②正确;
过点E作AF的垂线于点G,
在△ABE和△AGE中,
=
=
=
BAE GAE
B AGE
AE AE
∠∠
⎧
⎪
∠∠
⎨
⎪
⎩
,
∴△ABE≌△AGE(AAS),
∴AG=AB,GE=BE=CE,
在Rt△EFG和Rt△EFC中,
=
=
GE CE
EF EF
⎧
⎨
⎩
,
Rt△EFG≌Rt△EFC(HL),
∴GF=CF,
∴AB+CF=AG+GF=AF,故④正确.
故选B.
【点睛】
此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.
12.C
解析:C
【解析】
【分析】
二次函数y=x2+4x+n的图象与x轴只有一个公共点,则240
b ac
=-=
⊿,据此即可求得.【详解】
∵1
a=,4
b=,c n
=,
根据题意得:22
44410
b a
c n
=-=⨯⨯=
⊿﹣,
解得:n=4,
故选:C.
【点睛】 本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.
13.C
解析:C
【解析】
【分析】
连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.
【详解】
解:连接OD ,
在Rt △OCD 中,OC =12
OD =2, ∴∠ODC =30°,CD =2223OD OC +=
∴∠COD =60°,
∴阴影部分的面积=260418223=2336023
π⨯-⨯⨯π- , 故选:C .
【点睛】
本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.
14.D
解析:D
【解析】
【分析】
根据题意得出△DEF ∽△BCF ,进而得出
=DE EF BC FC
,利用点E 是边AD 的中点得出答案即可.
【详解】
解:∵▱ABCD ,故AD ∥BC ,
∴△DEF ∽△BCF ,
∴=DE EF BC FC
, ∵点E 是边AD 的中点,
∴AE=DE=
12AD , ∴12
EF FC . 故选D .
15.C
解析:C
【解析】
【分析】
根据抛物线的对称性确定抛物线与x 轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x 轴上方的部分所对应的自变量的范围即可.
【详解】
∵y =ax 2+bx +c 的对称轴为直线x =−1,与x 轴的一个交点为(1,0),
∴抛物线与x 轴的另一个交点为(−3,0),
∴当−3<x <1时,y >0.
故选:C .
【点睛】
此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x 轴的交点.
二、填空题
16.3
【解析】
【分析】
把m 代入方程2x2﹣3x =1,得到2m2-3m=1,再把6m2-9m 变形为3(2m2-3m ),然后利用整体代入的方法计算.
【详解】
解:∵m 是方程2x2﹣3x =1的一个根,
解析:3
【解析】
【分析】
把m 代入方程2x 2﹣3x =1,得到2m 2-3m=1,再把6m 2-9m 变形为3(2m 2-3m ),然后利用整体代入的方法计算.
【详解】
解:∵m 是方程2x 2﹣3x =1的一个根,
∴2m2﹣3m=1,
∴6m2﹣9m=3(2m2﹣3m)=3×1=3.
故答案为3.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
17.10100
【解析】
【分析】
首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.
【详解】
由图象可知点B2020在第一象限
解析:10100
【解析】
【分析】
首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.
【详解】
由图象可知点B2020在第一象限,
∵OA=5
3
,OB=4,∠AOB=90°,
∴AB
13
3
===,
∴OA+AB1+B1C2=5
3
+
13
3
+4=10,
∴B2的横坐标为:10,
同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,
∴点B2020横坐标为:2020
10
2
⨯=10100.
故答案为:10100.
【点睛】
本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.
18.或
【解析】
根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.
【详解】
解:AB=10cm ,C 是黄金分割点,
当AC>BC 时,
则有
解析:5 或1555
【解析】
【分析】
计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.
【详解】
解:AB=10cm ,C 是黄金分割点,
当AC>BC 时,
则有×10=5, 当AC<BC 时,
则有×10=5-,
∴AC=AB-BC=10-(5 )=15-,
∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555
【点睛】
本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.
19.【解析】
【分析】
求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.
【详解】
由图像可知,二次函数的对称轴x=2,图像与x
解析:15x -<<
【解析】
求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.
【详解】
由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.
故答案为15x -<<
【点睛】
要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.
20.【解析】
【分析】
如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.
【详解】
解:
【解析】
【分析】
如图所示,由网格的特点易得△CEF ≌△DBF ,从而可得BF 的长,易证△BOF ∽△AOD ,从而可得AO 与AB 的关系,然后根据勾股定理可求出AB 的长,进而可得答案.
【详解】
解:如图所示,∵∠CEB =∠DBF =90°,∠CFE =∠DFB ,CE=DB =1,
∴△CEF ≌△DBF ,
∴BF =EF =12BE =12
, ∵BF ∥AD ,
∴△BOF ∽△AOD , ∴1
1248
BO BF AO AD ===, ∴89
AO AB =,
∵AB =
∴AO =
故答案为:817 9
【点睛】
本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.
21.4
【解析】
【分析】
根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.
【详解】
解:由图可知,
第一行1个数,
第二行2个数,
第
解析:4
【解析】
【分析】
根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.
【详解】
解:由图可知,
第一行1个数,
第二行2个数,
第三行3个数,
…,
则第n行n个数,
故前n个数字的个数为:1+2+3+…+n=
(1)
2
n n+
,
∵当n=63时,前63行共有6364
2
⨯
=2016个数字,2020﹣2016=4,
∴2020在第64行左起第4个数,故答案为:64,4.
【点睛】
本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.
22.16
【解析】
【分析】
易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】
解:∵OA⊥DA,CE⊥DA,
∴∠CED=∠OAB=90°,
∵CD∥OE,
∴∠C
解析:16
【解析】
【分析】
易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.
【详解】
解:∵OA⊥DA,CE⊥DA,
∴∠CED=∠OAB=90°,
∵CD∥OE,
∴∠CDA=∠OBA,
∴△AOB∽△ECD,
∴CE OA16OA
==,
,
DE AB220
解得OA=16.
故答案为16.
23.54
【解析】
【分析】
连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到
∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1
解析:54
【解析】
【分析】
连接AD ,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.
【详解】
连接AD ,
∵AF 是⊙O 的直径,
∴∠ADF=90°,
∵五边形ABCDE 是⊙O 的内接正五边形,
∴∠ABC=∠C=108°,
∴∠ABD=72°,
∴∠F=∠ABD=72°,
∴∠FAD=18°,
∴∠CDF=∠DAF=18°,
∴∠BDF=36°+18°=54°,
故答案为54.
【点睛】
本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.
24.【解析】
【分析】
根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.
【详解】
解:∵
解析:2(1010,1010)-
【解析】
【分析】
根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出
变化规律,即可找出点2019A 的坐标.
【详解】
解:∵A 点坐标为()1,1,
∴直线OA 为y x =,()11,1A -,
∵12A A OA ∕∕,
∴直线12A A 为2y x =+,
解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24
x y =⎧⎨=⎩, ∴()22,4A ,
∴()32,4A -,
∵34A A OA ∕∕,
∴直线34A A 为6y x =+,
解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39
x y =⎧⎨=⎩, ∴()43,9A ,
∴()53,9A -
…,
∴(
)220191010,1010A -,
故答案为()21010,1010-. 【点睛】
本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.
25.140°.
【解析】
【分析】
根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB 的度数,进而可求出∠B OC 的度数.
【详解】
∵点O 是△ABC
解析:140°.
【解析】
【分析】
根据内心的定义可知OB 、OC 为∠ABC 和∠ACB 的角平分线,根据三角形内角和定理可求
出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】
∵点O是△ABC的内切圆的圆心,
∴OB、OC为∠ABC和∠ACB的角平分线,
∴∠OBC=1
2
∠ABC,∠OCB=
1
2
∠ACB,
∵∠A=100°,
∴∠ABC+∠ACB=180°-100°=80°,
∴∠OBC+∠OCB=1
2
(∠ABC+∠ACB)=40°,
∴∠BOC=180°-40°=140°.
故答案为:140°
【点睛】
本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.
26.2
【解析】
【分析】
首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求
解析:2
【解析】
【分析】
首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.
【详解】
如图,连接BE,
∵四边形BCEK是正方形,
∴KF=CF=1
2
CK,BF=
1
2
BE,CK=BE,BE⊥CK,
∴BF=CF,
根据题意得:AC∥BK,∴△ACO∽△BKO,
∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,
∴KO=OF=1
2
CF=
1
2
BF,
在Rt△PBF中,tan∠BOF=BF
OF
=2,
∵∠AOD=∠BOF,
∴tan∠AOD=2.
故答案为2
【点睛】
此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
27.y=-5(x+2)2-3
【解析】
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】
解:∵抛物线y=-5x2先向左平移2个单位长度,再
解析:y=-5(x+2)2-3
【解析】
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】
解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,
∴新抛物线顶点坐标为(-2,-3),
∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.
故答案为:y=-5(x+2)2-3.
【点睛】
本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.28.7
【解析】
【分析】
根据配方法,先移项,然后两边同时加上4,即可求出n的值.
【详解】
解:∵,
∴,
∴,
∴,
∴;
故答案为:7.
【点睛】
本题考查了配方法解一元二次方程,解题的关键是熟
解析:7
【解析】
【分析】
根据配方法,先移项,然后两边同时加上4,即可求出n 的值.
【详解】
解:∵2430x x +-=,
∴243x x +=,
∴2447x x ++=,
∴2
(2)7x +=,
∴7n =;
故答案为:7.
【点睛】
本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 29.8
【解析】
【分析】
首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.
【详解】
解:∵y =x2﹣2x ﹣3,设y =0,
∴0=x2﹣2x ﹣3,
解得:x1=3,
解析:8
【解析】
【分析】
首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.
【详解】
解:∵y =x 2﹣2x ﹣3,设y =0,
∴0=x2﹣2x﹣3,
解得:x1=3,x2=﹣1,
即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,
=(x﹣1)2﹣4,
∴顶点C的坐标是(1,﹣4),
∴△ABC的面积=1
2
×4×4=8,
故答案为8.
【点睛】
本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.
30.【解析】
【分析】
取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可
解析:
3
【解析】
【分析】
取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得
△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.
【详解】
取DE的中点F,连接AF,
∴EF=DF,
∵BE:ED=1:2,
∴BE=EF=DF,
∴BF=DE,
∵AB=AD,
∴∠ABD=∠D,
∵AD⊥AE,EF=DF,
∴AF=EF,
在△BAF 和△DAE 中
AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩
∴△BAF ≌△DAE (SAS ),
∴AE =AF ,
∴△AEF 是等边三角形,
∴∠AED =60°,
∴∠D =30°,
∵∠ABC =2∠ABD ,∠ABD =∠D ,
∴∠ABC =60°,
∴cos ∠ABC =cos60°
故答案为:
2
. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.
三、解答题
31.(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56
【解析】
【分析】
(1)直接利用待定系数法求出一次函数解析式即可;
(2)利用w=销量乘以每件利润进而得出关系式求出答案;
(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.
【详解】
解:(1)y 与x 之间的函数关系式为:y kx b =+
把(35,350),(55,150)代入得:
由题意得:3503515055k b k b =+⎧⎨=+⎩
解得:10700k b =-⎧⎨=⎩
∴y 与x 之间的函数关系式为:10700y x =-+.
(2)设销售利润为W 元
则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700),
W =﹣10x 2+1000x ﹣21000
W =﹣10(x ﹣50)2+4000
∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.
(3)令W =3640
∴﹣10(x ﹣50)2+4000=3640
∴x 1=44,x 2=56
如图所示,由图象得:
当44≤x ≤56时,每天利润不低于3640元.
【点睛】
此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.
32.(1)25552443y x x =-
-+;(2)1255. 【解析】
【分析】
(1)先把D 点坐标代入y =﹣12x +b 中求得b ,则一次函数解析式为y =﹣12
x ﹣3,于是可确定A (﹣6,0),作EF ⊥x 轴于F ,如图,利用平行线分线段成比例求出OF =4,接着利用一次函数解析式确定E 点坐标为(4,﹣5),然后利用待定系数法求抛物线解析式; (2)作MH ⊥AD 于H ,作D 点关于x 轴的对称点D ′,如图,则D ′(0,3),利用勾股定理得到AD =5Rt △AMH ∽Rt △ADO ,利用相似比得到MH 5AM ,加上MD =MD ′,MD 5MA =MD ′+MH ,利用两点之间线段最短得到当点M 、H 、D ′共线时,MD 5的值最小,然后证明Rt △DHD ′∽Rt △DOA ,利用相似比求出D ′H 即可. 【详解】
解:(1)把D (0,﹣3)代入y =﹣
12x +b 得b =﹣3, ∴一次函数解析式为y =﹣
12x ﹣3, 当y =0时,﹣12
x ﹣3=0,解得x =﹣6,则A (﹣6,0), 作EF ⊥x 轴于F ,如图,。