运筹学实验的心得体会范文(通用3篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学实验的心得体会范文(通用3篇)运筹学实验的心得体会1
古人作战讲“夫运筹帷幄之中,决胜千里之外”。
在现代商业社会中,更加讲求运筹学的应用。
作为一名物流管理的学生,更应该能够熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题。
即:应用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行统筹安排。
本着这样的心态,在本学期运筹学即将结课之时,我得出以下关于运筹学的知识。
是虽上机考试没有通过,感到不安,但是我明白要将理论联系实际,才能更好的发挥。
线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
一个问题要满足一下条件时才能归结为线性规划的模型:
⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;
⑵为达到这个目标存在很多种方案;
⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。
解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。
简单的设计2个变量的线性规划问题可以直接运用图解法得到。
但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。
单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。
将所得的量的值代入目标函数,得出最优值。
遇到评价同类型的组织的工作绩效相对有效性的问题时,可以用数据包络进行分析,运用数据包络分析的的决策单元要有相同的投入和相投的产出。
对偶理论:其基本思想是每一个线性规划问题都涉及一个与其对偶的问题,在求一个解的时候,也同时给出另一问题的解。
对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。
非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标标准形式的对偶问题。
因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。
灵敏度分析:分析在线性规划问题中,一个或几个参数的变化对最优解的影响问题。
可以分析目标函数中变量系数、约束条件的右端项、增加一个约束变量、增加一个约束条件、约束条件
的系数矩阵中的参数值等的变化。
如果将问题转化为研究参数值在保持最优解或最优基不变时的允许范围或改变到某一值时对问题最优解的影响时,就属于参数线性规划的内容。
运输问题是解决多个产地和多个销地之间的同品种物品的规划问题。
根据运输问题的独特性,一般采用一种简单而有效的方法:表上作业法。
表上作业法先找出运输问题的基可行解,方法有:最小元素法、西北角法、沃格尔法。
其中沃格尔法得出的解最接近最优解。
然后利用闭回路法或对偶变量法对得到解进行最优性判别。
当检验的结果为非最优解时,进行解的改进,然后再进行最优性判别,直到所有的非基变量检验数全非负,得到最优解。
在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。
整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定解法。
整数规划中的0-1规划整数问题是一个非常有用的方法。
在实际问题中,该方法能够解决很多问题。
0-1整数规划的解决方法有枚举法和隐枚举法。
指派问题是0-1整数规划中的特例,现在采用的解法一般为匈牙利法,由于指派问题的特殊性,使用匈牙利法可以有效的减少计算量。
学习理论的目的就是为了解决实际问题。
线性规划的理论对我们的实际生活指导意义很大。
当我们遇到一个问题,需要认真考察该问题。
如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。
但是很多时候我们遇到的问题用线性规划解决耗时、准确度低或者根本无法用线性规划解决。
那么我们就要寻找别的理论方法来解决问题,即:非线性规划。
关于非线性规划的理论还没有深入学习,暂将我的学习所得进行到此。
运筹学实验的心得体会2
一、运筹学基础学习的方法
刚接触运筹学时,由于学习内容与中学数学相关,让我觉得运筹学很简单易懂,但是自从开始学习单纯形法,我就觉得有些吃力了。
可能是因为我数学底子不好,再加上上课还不够认真,所以接下来的一段日子我一直在弥补,争取赶上老师的上课节奏。
刚开始,我的方法佷笨,就是抄书、抄主要知识点,写课后习题,并对照习题解析,课后习题简单的计算题我都能熟练地做对。
接下来的阶段里,开始尝试理解数本上的知识点,不再停留在简单的计算题计算求解阶段,慢慢地摸出了一些思路,形成了自己的一点小方法。
运筹学学习最大的困难,就是变量繁多,不明白这么多的数学式子所要表达的意思。
其实只需要知道每道题所要表达的意思和我们最终想要得到的效果,然后引入必要的变量,观察这些变量与我们最后在那个想要的结果的差距在哪里,再根据题目条件,列出相关变量的代数式,接下来最重要的就是利用各种方法对代数式组进行求解。
这些方法就涉及到了线性规划、整数线性规划、图与络分析的问题等等。
方法众多的情况下,容易产生记忆和思路上的混淆。
所以我往往很注重寻找各知识点间的联系。
举例说线性规划一章,__研究的是最优化的问题,解决线性规划的方法主要有:图解法、单纯形法、对偶单纯性法、两阶段法、计算机软件求解法。
其中除了图解法与计算机软件求解法之外,其余的方法都可归为单纯形中去,体现划归思想。
求得最优解之后,就得进行灵敏度分析,即分析该问题中一个或几个因素发生变化对最优解产生的影响。
到目前为止,就能较为完整地解决一些资源分配、生产计划等一系列最优化问题,即理论与实践相结合的过程,体现数形结合的思想。
二、运筹学学习的意义
运筹、运筹就是运筹帷幄、统筹兼顾的意思。
用发展和系统的眼光看待实际问题,再对实际问题进行数学化,转化为数学语言进行思考并解决问题。
不用多说,作为应用数学的一个分支,运筹学在实际生活中的应用一定十分广泛,只是目前对于大部分作为大学生的我们(尤其是师范生),无法利用,故经常嚷嚷着“这个课学了到底有什么作用呢?”
运筹学区别于其他科学,如数学、物理、生命科学等,有其特定的研究对象,有自成系统的基础理论,以及相对独立的研究方法和工具。
运筹学是使用科学的方法去研究人类对各种资源的运用、筹划活动的基本规律,以便发挥有限资源的最大效益,来达到总体全局优化的目标。
它的方法和实践已在科学管理、工程技术、社会经济、军事决策等方面起着重要的作用,已产生并将继续产生巨大的经济效益和社会效益。
运筹学实验的心得体会3
中国古代著名的例子“田忌赛马”,通过巧妙的安排部署马匹的出场顺序,利用了现有马匹资源的最大效用,设计出了一个最优的方案,这就是对运筹学中博弈论的运用,那么运筹学与我们的生活息息相关。
自古以来,运筹学就无处不在。
小到菜市场买菜的大妈,大到做军事部署的国家元首,都会用到运筹学。
当我们为选择去哪里旅游而犹豫不决,比对了很久终于找到一条最优路线时;当我们考试之前想临时抱佛脚,用最短时间复习而考到尽量高的分数
时无形之中,我们已经在运用运筹学不断的解决我们生活中的问题了。
运筹学是一应用数学和形式科学的跨领域研究,利用像是统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学等专业密切相关。
现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。
前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。
敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法。
“运筹”一词,本指运用算筹,后引伸为谋略之意。
“运筹”最早出自于汉高祖刘邦对张良的评价:“运筹帷幄之中,决胜千里之外。
”但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。
二次大战时,英军首次邀请科学家参与军事行动研究(operations research,在英国又称operational research或OR/MS, management science),战
后这些研究结果用于其他用途,这是现代“运筹学”的起源。
也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。
本学期,经过10周的学习,我对运筹学也有了一定的认识和了解,并且能够运用运筹学解决一些实际生活中的问题。
经过学习我了解到运筹学的具体内容包括:规划论(包括线性规划、非线性规划、整数规划和动态规划)、库存论、图论、决策论、对策论、排队论、博弈论、可靠性理论等。
一、运筹学的研究方法有:
1、从现实生活场合抽出本质的要素来构造数学模型,因而可寻求一个跟决策者的目标有关的解。
2、探索求解的结构并导出系统的求解过程。
3、从可行方案中寻求系统的最优解法。
二、线性规划:
数学规划的研究对象是计划管理工作中有关安排和估值的
问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。
它可以表示成求函数在满足约束条件下的极大极小值问题。
线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。
许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。
线性规划的某些特殊情况,例如络流、多商品流量等问题,都被认为非常重要,并有大量对其算法的专门研究。
很多其他种类的最优化问题算法都可以分拆成线性规划子问题,然后求得解。
在历史上,由线性规划引申出的很多概念,启发了最优化理论的核心概念,诸如“对偶”、“分解”、“凸性”的重要性及其一般化等。
同样的',在微观经济学和商业管理领域,线性规划被大量应用于解决收入极大化或生产过程的成本极小化之类的问题。
三、动态规划:
对于多阶段决策的最优化问题,动态规划方法属较科学有效的算法。
它的基本思想是,把一个比较复杂的问题分解为一系列同类型的更易求解的子问题,便于应用计算机。
整个求解过程分为两个阶段,先按整体最优的思想逆序地求出各个子问题中所有可能状态的最优决策与最优路线值,然后再顺序地求出整个问题的最优策略和最优路线。
计算过程中,系统地删去了所有中间非最优的方案组合,从而使计算工作量比穷举法大为减少。
简单地说,问题能够分解成子问题来解决。
四、步骤:
1、应将实际问题恰当地分割成n个子问题(n个阶段)。
通常是根据时间或空间而划分的,或者在经由静态的数学规划模
型转换为动态规划模型时,常取静态规划中变量的个数n,即
k=n。
2、正确地定义状态变量sk,使它既能正确地描述过程的状态,又能满足无后效性.动态规划中的状态与一般控制系统中和通常所说的状态的概念是有所不同的。
3、正确地定义决策变量及各阶段的允许决策集合Uk(sk),根据经验,一般将问题中待求的量,选作动态规划模型中的决策变量。
或者在把静态规划模型(如线性与非线性规划)转换为动态规划模型时,常取前者的变量xj为后者的决策变量uk。
4、能够正确地写出状态转移方程,至少要能正确反映状态转移规律。
5、根据题意,正确地构造出目标与变量的函数关系——目标函数。
6、写出动态规划函数基本方程。
五、图论:
图论在《离散数学》就有讲过。
著名的“柯尼斯堡七桥问题”是图论的源起。
此问题被推广为著名的欧拉路问题,亦即一笔画问题。
而此论文与范德蒙德的一篇关于骑士周游问题的__,则是继承了莱布尼茨提出的“位置分析”的方法。
欧拉提出的关于凸多边形顶点数、棱数及面数之间的关系的欧拉公式与图论有密切
联系,此后又被柯西等人进一步研究推广,成了拓扑学的起源。
1857年,哈密顿发明了“环游世界游戏”(icosian game),与此相关的则是另一个广为人知的图论问题“哈密顿路径问题”。
图论是一个古老的但又十分活跃的分支,它是络技术的基础。
图论中图是现实中“图”的抽象和概括,它用点表示研究对象,用边表示这些对象之间的联系。
通常比较重要的问题是子图相关问题、染色问题、路径问题、络流于匹配问题、覆盖问题等。
六、决策论:
决策论是我自己比较感兴趣的一个章节。
决策论是根据信息和评价准则,用数量方法寻找或选取最优决策方案的科学,是运筹学的一个分支和决策分析的理论基础。
在实际生活与生产中对同一个问题所面临的几种自然情况或状态,又有几种可选方案,就构成一个决策,而决策者为对付这些情况所取的对策方案就组成决策方案或策略。
决策论是一个交叉学科,和数学、统计、经济学、哲学、管理和心理学相关。
决策问题根据不同性质通常可以分为确定型、风险型(又称统计型或随机型)和不确定型三种。
七、确定型决策:
是研究环境条件为确定情况下的决策。
确定型决策问题通常存在着一个确定的自然状态和决策者希望达到的一个确定目标(收益较大或损失较小),以及可供决策者选择的多个行动方案,并且不同的决策方案可计算出确定的收益值。
这种问题可以用数
学规划,包括线性规划、非线性规划、动态规划等方法求得最优解。
但许多决策问题不一定追求最优解,只要能达到满意解即可。
八、风险型决策:
是研究环境条件不确定,但以某种概率出现的决策。
风险型决策问题通常存在着多个可以用概率事先估算出来的自然状态,及决策者的一个确定目标和多个行动方案,并且可以计算出这些方案在不同状态下的收益值。
决策准则有期望收益最大准则和期望机会损失最小准则。
九、不确定型决策:
是研究环境条件不确定,可能出现不同的情况(事件),而情况出现的概率也无法估计的决策。
这时,在特定情况下的收益是已知的,可以用收益矩阵表示。
不确定型决策问题的方法有乐观法、悲观法、乐观系数法、等可能性法和后悔值法等。