(完整版)苏科版八年级数学下册期中试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(完整版)苏科版八年级数学下册期中试卷及答案
一、选择题
1.下列调查中,最不适合普查的是( )
A .了解一批灯泡的使用寿命情况
B .了解某班学生视力情况
C .了解某校初二学生体重情况
D .了解我国人口男女比例情况
2.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,5AB =,6AC =,过D 作AC 的平行线交BC 的延长线于点E ,则BDE ∆的面积为( )
A .22
B .24
C .48
D .44
3.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AB =4,BC =3,则四边形CODE 的周长是( )
A .5
B .8
C .10
D .12
4.一个事件的概率不可能是( )
A .32
B .1
C .23
D .0
5.如果把分式a a b
-中的a 、b 都扩大2倍,那么分式的值一定( ) A .是原来的2倍 B .是原来的4倍
C .是原来的12
D .不变 6.如图,▱ABCD 的周长为22m ,对角线AC 、BD 交于点O ,过点O 与AC 垂直的直线交边AD 于点
E ,则△CDE 的周长为( )
A .8cm
B .9cm
C .10cm
D .11cm 7.下列图形不是轴对称图形的是( )
A .等腰三角形
B .平行四边形
C .线段
D .正方形
8.如图所示,在矩形ABCD中,E为AD上一点,EF CE
⊥交AB于点F,若2
DE=,矩形ABCD的周长为16,且CE EF
=,求AE的长( )
A.2B.3C.4D.6
9.下列调查中,最适宜采用全面调查方式的是()
A.调查某市成年人的学历水平B.调查某批次日光灯的使用寿命
C.调查市场上矿泉水的质量情况D.了解某个班级学生的视力情况
10.下列判断正确的是()
A.对角线互相垂直的平行四边形是菱形B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形D.有一个角是直角的平行四边形是正方形二、填空题
11.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是___.
12.若分式x3
x3
-
-
的值为零,则x=______.
13.如图,在ABCD中,对角线AC、BD相交于点O.如果AC=6,BD=8,AB=x,那么x 的取值范围是__________.
14.一个样本的50个数据分别落在5个小组内,第1、2、3、4组的数据的个数分别为2、8、15、5,则第5组的频率为______。
15.若点A(﹣4,y1),B(﹣2,y2)都在反比例函数
1
y
x
=-的图象上,则y1,y2的大
小关系是y1_____y2.
16.如图,在矩形ABCD中,AB=5,BC=6,P为AD上一动点,把△ABP沿BP翻折,使点A落在点F处,连接CF,若BF=CF,则AP的长为_____.
17.2,则该正方形的边长为_____.
18.方程x2=0的解是_______.
19.▱ABCD的周长是32cm,∠ABC的平分线交AD所在直线于点E,且AE:ED=3:2,则AB的长为_____.
20.如图,在□ABCD中,AB=7,AD=11,DE平分∠ADC,则BE=_
_.
三、解答题
21.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,
PE⊥BC于E,PF⊥DC于F.
(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;
(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;
(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.
22.如图,在ABC中,∠BAC=90°,DE是ABC的中位线,AF是ABC的中线.求证DE=AF.
证法1:∵DE是ABC的中位线,
∴DE=.
∵AF是ABC的中线,∠BAC=90°,
∴AF=,
∴DE =AF .
请把证法1补充完整,连接EF ,DF ,试用不同的方法证明DE =AF
证法2:
23.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形ABCD 的对角线BD 上.
(1)求证:BG =DE ;
(2)若E 为AD 中点,FH =2,求菱形ABCD 的周长.
24.如图,在▱ABCD 中,点E 、F 分别在边CB 、AD 的延长线上,且BE =DF ,EF 分别与AB ,CD 交于点G ,H ,则BG 与DH 有怎样数量关系?证明你的结论.
25.如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB ,A ,B 均为格点,按要求完成下列问题.
(1)以AB 为对角线画一个面积最小的菱形AEBF ,且E ,F 为格点;
(2)在(1)中该菱形的边长是 ,面积是 ;
(3)以AB 为对角线画一个菱形AEBF ,且E ,F 为格点,则可画 个菱形.
26.如图,在ABC ∆中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG 、DF .
(1)求证:BD DF =;
(2)求证:四边形BDFG 为菱形;
(3)若13AG =,6CF =,求四边形BDFG 的周长.
27.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.
(1)求证:PD PE =.
(2)探究:α与β的数量关系,并证明你的结论.
28.(数学实验)小明在学习轴对称一章角平分线一节后,做了一个实验:
第一步:如图1在一张纸上画了一个平角∠AOB ;
第二步:如图2在平角∠AOB 内画一条射线,沿着射线将平角∠AOB 裁开;
第三步:如图3将∠AO'C'放在∠COB 内部,使两边分别与OB 、OC 相交,且O'A =O'C'; 第四步:连接OO', 测量∠COB 度数和∠COO'度数.
(数学发现与证明)通过以上实验,小明发现OO'平分∠COB . 你能根据小明的实验给出的条件:(1)∠AO'C'与∠COB 的关系是 ;(2)线段O'A 与O'C'的关系是 . 请您结合图3将小明的实验条件和发现结论完成下面“已知”“求证”,并给出证明.
已知:
求证:
证明:
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
根据全面调查与抽样调查的特点对四个选项进行判断.
【详解】
A、了解一批灯泡的使用寿命情况,适合采用抽样调查,所以A选项符合题意;
B、了解某班学生视力情况,适合采用普查,所以B选项不合题意;
C、了解某校初二学生体重情况,适合采用普查,所以C选项不合题意;
D、了解我国人口男女比例情况,适合采用普查,所以D选项不合题意.
故选:A.
【点睛】
本题考查了全面调查与抽样调查:如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其二,调查过程带有破坏性.如:调查一批灯泡的使用寿命就只能采取抽样调查,而不能将整批灯泡全部用于实验.其三,有些被调查的对象无法进行普查.2.B
解析:B
【分析】
先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.
【详解】
解:∵AD∥BE,AC∥DE,
∴四边形ACED是平行四边形,
∴AC=DE=6,
在RT△BCO中,4
=,即可得BD=8,又∵BE=BC+CE=BC+AD=10,
∴△BDE是直角三角形,
∴S△BDE=1
24 2
DE BD
⋅=.
故答案为B.
【点睛】
此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.
3.C
解析:C
【分析】
由矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,易证得四边形CODE是菱形,又由AB=4,BC=3,可求得AC的长,继而求得OC的长,则可求得答案.
【详解】
解:∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD,OB=OD,OC=OA,∠ABC=90°
∴OC=OD,
∴四边形CODE是菱形
∵AB=4,BC=3
5
AC
∴=
∴OC=5 2
∴四边形CODE的周长=4×5
2
=10
故选:C.
【点睛】
本题考查菱形的判定,运用勾股定理解三角形,掌握特殊平行四边形的判定与性质是解题的关键.
4.A
解析:A
【分析】
根据概率的意义知,一件事件的发生概率最大是1,所以只有A项是错误的,即找到正确选项.
【详解】
∵必然事件的概率是1,不可能事件的概率为0,
∴B、C 、D 选项的概率都有可能, ∵32
>1, ∴A 不成立.
故选:A .
【点睛】
本题主要考查了概率的定义,正确把握各事件的概率是解题的关键.
5.D
解析:D
【分析】
把2a 、2b 代入分式,然后进行分式的化简计算,从而与原式进行比较得出结论.
【详解】
解:把2a 、2b 代入分式可得
22222()a a a a b a b a b
==---, 由此可知分式的值没有改变,
故选:D .
【点睛】
本题主要考查了分式的性质,分式的分子和分母同时扩大或者缩小相同的倍数,分式的值不变.
6.D
解析:D
【解析】
【分析】
由平行四边形的性质可得AB =CD ,AD =BC ,AO =CO ,可得AD+CD =11cm ,由线段垂直平分线的性质可得AE =CE ,即可求△CDE 的周长=CE+DE+CD =AE+DE+CD =AD+CD =11cm .
【详解】
解:∵四边形ABCD 是平行四边形
∴AB =CD ,AD =BC ,AO =CO ,
又∵EO ⊥AC ,
∴AE =CE ,
∵▱ABCD 的周长为22cm ,
∴2(AD+CD )=22cm
∴AD+CD =11cm
∴△CDE 的周长=CE+DE+CD =AE+DE+CD =AD+CD =11cm
故选:D .
【点睛】
本题考查了平行四边形的性质,线段垂直平分线的性质,熟练运用平行四边形的性质是本
题的关键.
7.B
解析:B
【分析】
根据轴对称图形的概念判断即可.
【详解】
等腰三角形是轴对称图形,故A 错误;
平行四边形不是轴对称图形,故B 正确;
线段是轴对称图形,故C 错误;
正方形是轴对称图形,故D 错误;
故答案为:B.
【点睛】
本题主要考查了轴对称图形的判断,针对平常所熟悉的图形的理解进行分析,要注意平行四边形的特殊.
8.B
解析:B
【分析】
易证△AEF ≌△ECD ,可得AE=CD ,由矩形的周长为16,可得2(AE+DE+CD)=16,可求AE 的长度.
【详解】
∵四边形ABCD 为矩形,
∴∠A=∠D=90°,
∵EF ⊥CE ,
∴∠CEF=90°,
∴∠CED+∠AEF=90°,
∵∠CED+∠DCE=90°,
∴∠DCE=∠AEF ,
在△AEF 和△DCE 中,
A D AEF DCE EF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△AEF ≌△DCE(AAS),
∴AE=DC ,
由题意可知:2(AE+DE+CD)=16,DE=2,
∴2AE=6,
∴AE=3;
故选:B .
【点睛】
本题考查了矩形的性质,全等三角形的性质和判定以及直角三角形的性质等知识,熟练掌
握矩形的性质,证明三角形全等是解题的关键.
9.D
解析:D
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.
【详解】
A. 调查某市成年人的学历水平工作量比较大,宜采用抽样调查;
B. 调查某批次日光灯的使用寿命具有破坏性,宜采用抽样调查;
C. 调查市场上矿泉水的质量情况具有破坏性,宜采用抽样调查;
D. 了解某个班级学生的视力情况工作量比较小,宜采用全面调查.
故选D.
【点睛】
本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10.A
解析:A
【分析】
利用特殊四边形的判定定理逐项判断即可.
【详解】
A、对角线互相垂直的平行四边形是菱形,此项正确
B、两组对边分别相等的四边形是平行四边形,此项错误
C、对角线相等的平行四边形是矩形,此项错误
D、有一个角是直角的平行四边形是矩形,此项错误
故选:A.
【点睛】
本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.
二、填空题
11.(﹣5, 3)
【详解】
解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5, 3).
故答案为: (﹣5, 3).
解析:(﹣5, 3)
【详解】
解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5, 3).
故答案为: (﹣5, 3).
12.-3
【分析】
分式的值为零:分子等于零,且分母不等于零.
【详解】
依题意,得
|x|-3=0且x-3≠0,
解得,x=-3.
故答案是:-3.
【点睛】
考查了分式的值为零的条件.若分式的值为零
解析:-3
【分析】
分式的值为零:分子等于零,且分母不等于零.
【详解】
依题意,得
|x|-3=0且x-3≠0,
解得,x=-3.
故答案是:-3.
【点睛】
考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为
0;(2)分母不为0.这两个条件缺一不可.
13.1<x<7
【解析】
因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即1<x<7,故答案为1<x<7.
解析:1<x<7
【解析】
因为平行四边形的对角线互相平分,所以OA=OC=3,OB=OD=4,所以4-3<x<4+3,即
1<x<7,故答案为1<x<7.
14.4
【解析】
【分析】
根据总数计算出第5组的频数,用第5组的频数除以数据总数就是第五组的频率.
【详解】
解:第5组的频数:50-2-8-15-5=20,
频率为:20÷50=0.4,
故答案为:
解析:4
【解析】
【分析】
根据总数计算出第5组的频数,用第5组的频数除以数据总数就是第五组的频率.【详解】
解:第5组的频数:50-2-8-15-5=20,
频率为:20÷50=0.4,
故答案为:0.4.
【点睛】
本题考查频数和频率的求法,关键知道频数=总数×频率,从而可求出解.15.<
【分析】
直接利用反比例函数的增减性分析得出答案.
【详解】
∵反比例函数中,k=﹣1<0,
∴在每个象限内,y随x的增大而增大,
∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数的图象上,
解析:<
【分析】
直接利用反比例函数的增减性分析得出答案.
【详解】
∵反比例函数
1
y
x
=-中,k=﹣1<0,
∴在每个象限内,y随x的增大而增大,
∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数
1
y
x
=-的图象上,且﹣2>﹣4,
∴y1<y2,
故答案为:<.
【点睛】
此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.
16.【分析】
过点F作EN∥DC交BC于点N,交AD于点E,设AP=x,则PF=x,得出(3﹣x)2+12=x2,解方程即可得解.
【详解】
解:过点F作EN∥DC交BC于点N,交AD于点E,∵四
解析:5 3
【分析】
过点F作EN∥DC交BC于点N,交AD于点E,设AP=x,则PF=x,得出(3﹣x)2+12=x2,解方程即可得解.
【详解】
解:过点F作EN∥DC交BC于点N,交AD于点E,
∵四边形ABCD是矩形,
∴∠A=∠D=∠DCB=90°,
∴FN⊥BC,FE⊥AD,
∵BF=CF,BC=6,
∴CN=BN=3,
由折叠的性质可知,AB=BF=5,AP=PF,
∴224
FN BF BN
=-=,
∴EF=EN﹣FN=5﹣4=1,
设AP=x,则PF=x,
∵PE2+EF2=PF2,
∴(3﹣x)2+12=x2,
解得,
5
3
x=,
故答案为:5
3
.
【点睛】
本题主要考查了折叠变换的性质、等腰三角形的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠变换的性质、勾股定理是关键.
17.【分析】
利用正方形的性质,可得AD=CD,∠D=90°,再利用勾股定理求正方形的边长.
【详解】
解:如图所示:
∵四边形ABCD 是正方形,
∴AD=CD ,∠D=90°
设AD =CD =x ,在Rt
解析:【分析】
利用正方形的性质,可得AD =CD ,∠D =90°,再利用勾股定理求正方形的边长.
【详解】
解:如图所示:
∵四边形ABCD 是正方形,
∴AD =CD ,∠D =90°
设AD =CD =x ,在Rt △ADC 中,
∵AD 2+CD 2=AC 2
即x 2+x 2=(2)2
解得:x =1,(x =﹣1舍去)
所以该正方形的边长为1
故答案为:1.
【点睛】
本题考查正方形的性质,一元二次方程的应用和勾股定理的应用,根据题意列出方程求解是解题的关键.
18.【分析】
直接开平方,求出方程的解即可.
【详解】
∵x2=0,
开方得,,
故答案为:.
【点睛】
此题考查了解一元二次方程-直接开平方法,比较简单.
解析:120x x ==
【分析】
直接开平方,求出方程的解即可.
【详解】
∵x 2=0,
开方得,120x x ==,
故答案为:120x x ==.
【点睛】
此题考查了解一元二次方程-直接开平方法,比较简单.
19.6cm 或12cm .
【分析】
证△ABE 是等腰三角形,分“点E 在线段AD 上” 和“点E 在AD 的延长线上”两种情况,分别求得答案即可.
【详解】
解:分两种情况:
①点E 在线段AD 上,如图1,
∵四边
解析:6cm 或12cm .
【分析】
证△ABE 是等腰三角形,分“点E 在线段AD 上” 和“点
E 在AD 的延长线上”两种情况,分别求得答案即可.
【详解】
解:分两种情况:
①点E 在线段AD 上,如图1,
∵四边形ABCD 是平行四边形,
∴AD ∥BC ,AB =CD ,AD =BC ,
∴AB +AD =12×32=16(cm ),∠AEB =∠CBE ,
∵∠ABC 的平分线交AD 所在的直线于点E ,
∴∠ABE =∠CBE ,
∴∠ABE =∠AEB ,
∴AB =AE ,
∵AE :ED =3:2,
∴AB :AD =3:5,
∵平行四边形ABCD 的周长为32cm .
∴AB 的长为:16×3
8=6(cm ).
②点E 在AD 的延长线上,如图2,
∵四边形ABCD 是平行四边形,
∴AD∥BC,AB=CD,AD=BC,
∴AB+AD=1
2
×32=16(cm),∠AEB=∠CBE,
∵∠ABC的平分线交AD所在的直线于点E,∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
∵AE:ED=3:2,
∴AB:AD=3:1,
∵平行四边形ABCD的周长为32cm.
∴AB的长为:16×3
4
=12(cm);
故答案为:6cm或12cm.
【点睛】
本题考查了平行四边形与角平分线线的综合应用,熟知以上知识点及应用是解题的关键.20.4
【解析】
解:∵DE平分∠ADC,
∴∠ADE=∠CDE,
∵▱ABCD中AD∥BC,
∴∠ADE=∠CED,
∴∠CDE=∠CED,
∴CE=CD,
∵在▱ABCD中,AB=7,AD=11,
解析:4
【解析】
解:∵DE平分∠ADC,
∴∠ADE=∠CDE,
∵▱ABCD中AD∥BC,
∴∠ADE=∠CED,
∴∠CDE=∠CED,
∴CE=CD,
∵在▱ABCD中,AB=7,AD=11,
∴CD=AB=7,BC=AD=11,
∴BE=BC-CE=11-7=4.
三、解答题
21.(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;
【解析】
【分析】
(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明
△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.
【详解】
解:(1)AP=EF,AP⊥EF,理由如下:
连接AC,则AC必过点O,延长FO交AB于M;
∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,
∴四边形OECF是正方形,
∴OM=OF=OE=AM,
∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,
∴△AMO≌△FOE(AAS),
∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,
故AP=EF,且AP⊥EF.
(2)题(1)的结论仍然成立,理由如下:
延长AP交BC于N,延长FP交AB于M;
∵PM ⊥AB ,PE ⊥BC ,∠MBE=90°,且∠MBP=∠EBP=45°,
∴四边形MBEP 是正方形,
∴MP=PE ,∠AMP=∠FPE=90°;
又∵AB ﹣BM=AM ,BC ﹣BE=EC=PF ,且AB=BC ,BM=BE ,
∴AM=PF ,
∴△AMP ≌△FPE (SAS ),
∴AP=EF ,∠APM=∠FPN=∠PEF,
∵∠PEF+∠PFE=90°,∠FPN=∠PEF ,
∴∠FPN+∠PFE=90°,即AP ⊥EF ,
故AP=EF ,且AP ⊥EF .
(3)题(1)(2)的结论仍然成立;
如右图,延长AB 交PF 于H ,证法与(2)完全相同.
【点睛】
利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.
22.
2BC ,2
BC ,证明见解析 【分析】
证法1:根据三角形中位线定理得到DE=12BC ,根据直角三角形的性质得到AF=12
BC ,等量代换证明结论; 证法2:连接DF 、EF ,根据三角形中位线定理得到DF ∥AC ,EF ∥AB ,证明四边形ADFE 是矩形,根据矩形的对角线相等证明即可.
【详解】
证法1:∵DE 是△ABC 的中位线,
∴DE=12
BC , ∵AF 是△ABC 的中线,∠BAC=90°, ∴AF=
12BC , ∴DE=AF ,
证法2:连接DF 、EF ,
∵DE 是△ABC 的中位线,AF 是△ABC 的中线,
∴DF 、EF 是△ABC 的中位线,
∴DF ∥AC ,EF ∥AB ,
∴四边形ADFE 是平行四边形,
∵∠BAC=90°,
∴四边形ADFE 是矩形,
∴DE=AF .
故答案为:
12BC ;12
BC . 【点睛】
本题考查的是三角形中位线定理、矩形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
23.(1)详见解析;(2)8
【分析】
(1)先根据矩形的性质、平行线的性质得出,FG HE GFH EHF =∠=∠,再根据邻补角的定义可得BFG DHE ∠=∠,又根据菱形的性质、平行线的性质可得GBF EDH ∠=∠,最后根据三角形全等的判定定理与性质即可得证;
(2)如图,连接EG ,先根据矩形的性质可得EG 的长,再根据中点的性质、菱形的性质、题(1)的结论可得四边形ABGE 是平行四边形,从而可得AB 的长,然后根据菱形的周长公式即可得.
【详解】
(1)∵四边形EFGH 是矩形
,//FG HE EH FG ∴=
GFH EHF ∴∠=∠
180,180BFG GFH DHE EHF ∠=︒-∠∠=︒-∠
BFG DHE ∴∠=∠
∵四边形ABCD 是菱形
//AD BC ∴
GBF EDH ∴∠=∠
在BGF ∆和DEH ∆中,BFG DHE GBF EDH FG HE ∠=∠⎧⎪∠=∠⎨⎪=⎩
()BGF DEH AAS ∴∆≅∆
BG DE ∴=;
(2)如图,连接EG
∵四边形EFGH 是矩形,2FH =
2EG FH ∴==
∵四边形ABCD 是菱形
,//AD BC AD BC ∴=
∵E 为AD 中点
AE DE ∴=
BG DE =
,//AE BG AE BG ∴=
∴四边形ABGE 是平行四边形
2AB EG ∴==
∴菱形ABCD 的周长为248⨯=
故菱形ABCD 的周长为8.
【点睛】
本题考查了菱形的性质、矩形的性质、全等三角形的判定和性质,正确的识别作图是解题的关键.
24.见解析
【分析】
由平行四边形的性质得AD ∥BC ,根据平行线的性质证明∠E =∠F ,角边角证明△AFG ≌△CEH ,其性质得AG =CH ,进而可证明BG =DH .
【详解】
BG =DH ,理由如下:
∵四边形ABCD 是平行四边形,
∴AD ∥BC ,AD =BC ,∠A =∠C ,AB =DC ,
∴∠E =∠F ,
又∵BE =DF ,AF =AD +DF ,CE =CB +BE ,
∴AF =CE ,
在△CEH 和△AFG 中,
A C AF CE F E ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△AFG ≌△CEH (ASA ),
∴AG =CH ,
∴BG =DH .
【点睛】
本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.
25.(1)见解析;(2
,6;(3)3
【分析】
(1)根据菱形的定义以及已知条件画出满足条件的菱形即可.
(2)利用勾股定理,菱形的面积公式计算即可.
(3)画出满足条件的菱形即可判断.
【详解】
解:(1)如图,菱形AEBF 即为所求.
(2)AE
,菱形AEBF 的面积=
12
×6×2=6,
,6.
(3)如图备用图可知:可以画3个菱形,
故答案为3.
【点睛】
本题主要考查了格点作图和菱形的性质应用,涉及了勾股定理等,正确理解,准确利用网格的特点是解题的关键.
26.(1)详见解析;(2)详见解析;(3)20
【分析】
(1)先可判断四边形BGFD 是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD FD =;
(2)由邻边相等可判断四边形BGFD 是菱形;
(3)设GF x =,则13AF x =-,2AC x =,在Rt ACF ∆中利用勾股定理可求出x 的值.
【详解】
(1)证明:90ABC ∠=︒,BD 为AC 的中线,
12
BD AC ∴= //AG BD ,BD FG =,
∴四边形BDFG 是平行四边形,
CF BD ⊥
CF AG ∴⊥ 又点D 是AC 的中点
12
DF AC ∴= BD DF ∴=.
(2)证明:由(1)知四边形BDFG 是平行四边形
又BD DF =
BDFG ∴是菱形
(3)解:设GF x =则13AF x =-,2AC x =,6CF =,
在Rt ACF ∆中,222CF AF AC +=
2226(13)(2)x x ∴+-=
解得5x =
4520BDFG C ∴=⨯=菱形.
【点睛】
本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质;解答本题的关键是证明四边形BGFD 是菱形.
27.(1)详见解析;(2)2180αβ+=︒,证明见解析.
【分析】
(1)如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE ,根据三角形的中位线定理和直角三角形的性质可得PM NE =,DM PN =,根据等腰三角形的性质、三角形的外角性质和已知条件可得BMD CNE ∠=∠,根据平行线的性质可得BMP BAC ∠=∠=CNP ∠,进而可得DMP PNE ∠=∠,于是可根据SAS 证明MDP NPE ∆≅∆,从而可得结论;
(2)根据平行线的性质可得BMP MPN ∠=∠,根据全等三角形的性质可得
EPN MDP ∠=∠,然后在DMP ∆中利用三角形的内角和定理和等量代换即可得出结论.
【详解】
(1)证明:如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE . 点P 为ABC ∆的边BC 的中点, ∴12PM AC =, NE 为Rt AEC ∆斜边上的中线,
∴12
NE AN AC ==, PM NE ∴=,
同理可得:DM PN =,
12
DM AM AB ==, ADM BAD ∴∠=∠,
2BMD BAD ∴∠=∠,
同理,2CNE CAE ∠=∠,
又BAD CAE α∠=∠=,
BMD CNE ∴∠=∠,
又PM 、PN 都是ABC ∆的中位线,
//PM AC ∴,//PN AB ,
BMP BAC ∴∠=∠,CNP BAC ∠=∠,
BMP CNP ∴∠=∠,
∴DMP PNE ∠=∠,
MDP NPE ∴∆≅∆(SAS),
PD PE ∴=;
(2)解:α与β的数量关系是:2180αβ+=︒;
证明:
//PN AB ,
BMP MPN ∴∠=∠,
∵MDP NPE ∆≅∆,
EPN MDP ∴∠=∠,
在DMP ∆中,∵180MDP DPM DMP ∠+∠+∠=︒,
∴180MDP DPM DMB PMB ∠+∠+∠+∠=︒,
而22DMB BAD α∠=∠=,
2180EPN DPM MPN α∴∠+∠++∠=︒,
DPE DPM MPN EPN β∠=∠+∠+∠=, 2180αβ∴+=︒.
【点睛】
本题考查了三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质、平行线的性质、三角形的外角性质和三角形的内角和定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.
28.(1)互补;(2)相等;证明见解析
【分析】
根据题意写出已知、求证,过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,证明Rt △Rt AO D '≅△C O E '',推出O D O E '=',利用角平分线的判定定理即可证明'OO 平分∠COB .
【详解】
(1)∠AO'C'与∠COB 的关系是互补;(2)线段O'A 与O'C'的关系是相等. 已知:AO C ∠''+∠COB=180︒,O'A=O'C',
求证:'OO 平分∠COB .
证明:过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,
∵O C B O OB C O O ∠=∠+∠''''',∠AO C ''+∠COB=180︒,
∴AO O ∠'+'AOO ∠ =180︒-(O OB C O O ∠+∠'''),
即O C B O OB C O O ∠=∠+∠'''''=180︒-(AO O ∠'+'AOO ∠),
又OAO ∠'=180︒-(AO O ∠'+'AOO ∠),
∴O C B OAO ∠=∠''',
∵O'A=O'C',
∴Rt △Rt AO D '≅△C O E '',
∴O D O E '=',
∵O D '⊥OC ,O E '⊥OB ,
∴'OO 平分∠COB .
【点睛】
本题考查了全等三角形的判定和性质,角平分线的判定,三角形内角和定理,三角形的外角性质,作出合适的辅助线构造全等三角形是解题的关键.。