2009年天津中考数学试题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案及评分标准
评分说明:
1.各题均按参考答案及评分标准评分.
2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.
一、选择题:本大题共10小题,每小题3分,共30分.
1.A 2.B 3.B 4.C 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题:本大题共8小题,每小题3分,共24分.
11
12.2
13.正方形(对角线互相垂直的四边形均可) 14.()01-,
15.56,80,156.8 16.60;13 17.21
18.①3,4(提示:答案不惟一);
②裁剪线及拼接方法如图所示:图中的点E 可以是以BC 为直径的半圆上的任意一点(点B C ,除外).BE CE ,的长分别为两个小正方形的边长. 三、解答题:本大题共8小题,共66分 19.本小题满分6分
解:5125431x x x x ->+⎧⎨-<+⎩,①②
由①得2x >, ······························································································· 2分
由②得,5
2
x >-
···························································································· 4分 ∴原不等式组的解集为2x > ··········································································· 6分
20.本小题满分8分. 解:(Ⅰ)这个反比例函数图象的另一支在第三象限. ············································· 1分 因为这个反比例函数的图象分布在第一、第三象限, 所以50m ->,解得5m >. ············································································ 3分
(Ⅱ)如图,由第一象限内的点A 在正比例函数2y x =的图象上,
设点A 的坐标为()()00020x x x >,,则点B 的坐标为()00x ,,
0014242
OAB S x x =∴=△,·,解得02x =(负值舍去).
∴点A 的坐标为()24,. ·
··················································································· 6分 D
C
A
E 2 3
1 2
3
又
点A 在反比例函数5
m y x
-=
的图象上, 5
42
m -∴=
,即58m -=. ∴反比例函数的解析式为8y x
=
. ········································································ 8分 21.本小题满分8分.
解(Ⅰ)法一:根据题意,可以画出如下的树形图:
从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:
从上表中可以看出,摸出两球出现的所有可能结果共有6种. ··································· 4分 (Ⅱ)设两个球号码之和等于5为事件A .
摸出的两个球号码之和等于5的结果有2种,它们是:()()2332,,,.
()21
63
P A ∴=
=. ·
·························································································· 8分 22.本小题满分8分.
解(Ⅰ)PA 是O ⊙的切线,AB 为O ⊙的直径, PA AB ∴⊥.
90BAP ∴∠=°.
30BAC ∠=°,
9060CAP BAC ∴∠=-∠=°°. ·
··································
····························· 2分 又PA 、PC 切O ⊙于点A C ,. PA PC ∴=. PAC ∴△为等边三角形.
60P ∴∠=°. ·
································································································ 5分
(Ⅱ)如图,连接BC , 则90ACB ∠=°.
在Rt ACB △中,230AB BAC =∠=,°,
AC AB ∴=·cos 2BAC ∠=cos 30°=. PAC △为等边三角形, PA AC ∴=.
1 2 3
2 1
3 3 1 2 第一个球 第二个球 第二个球 第一个球 (1,3) (2,3) (1,2) (3,2)
(3,1) (2,1) 3 2 1 1 2 3 P C B A O
PA ∴=································································································· 8分
23.本小题满分8分
解:如图,过C 点作CD 垂直于AB 交BA 的延长线于点D . ··································· 1分 在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°. ················ 2分
CD AC ∴=·sin 30CAD ∠=·
sin 60=°AD AC =·cos 30CAD ∠=·cos 60°=15. 又在Rt CDB △中,
22270BC BD BC CD ==,-,
65BD ∴==. ········································································ 7分
651550AB BD AD ∴=-=-=,
答:A B ,两个凉亭之间的距离为50m. ······························································· 8分
24.本小题满分8分.
解(Ⅰ)220630424260600x x x x ---+,,; ···················································· 3分 (Ⅱ)根据题意,得2
124260*********x x ⎛
⎫-+=-⨯⨯ ⎪⎝⎭
. ···································· 5分 整理,得2665500x x -+=.
解方程,得125106
x x ==,(不合题意,舍去).
则55
2332
x x ==,.
答:每个横、竖彩条的宽度分别为
53cm ,5
2
cm. ···················································· 8分 25.本小题满分10分.
解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.
设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.
在Rt AOC △中,由勾股定理,得222
AC OC OA =+,
即()2
2242m m -=+,解得32
m =
. ∴点C 的坐标为302⎛⎫
⎪⎝⎭
,. ··················································································· 4分
图①
图②
图③
(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,
在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.
()2
224y y x ∴-=+,
即2
128
y x =-
+ ·
··························································································· 6分 由点B '在边OA 上,有02x ≤≤,
∴ 解析式21
28
y x =-+()02x ≤≤为所求.
∴ 当02x ≤≤时,y 随x 的增大而减小,
y ∴的取值范围为3
22
y ≤≤. ·
···································································· 7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB
''=,得2OC OB ''=. ·································································· 9分 在Rt B OC ''△中,
设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2
001228
x x =-
+,
解得000808x x x =-±>∴=-+,
∴点C 的坐标为()
016. ··································································· 10分
26.本小题满分10分. 解(Ⅰ)
212120y x y x bx c y y ==++-=,,,
()210x b x c ∴+-+=. ·············································································· 1分 将1
132
αβ==
,分别代入()2
10x b x c +-+=,得 ()()2
2
111110103322b c b c ⎛⎫⎛⎫
+-⨯+=+-⨯+= ⎪ ⎪⎝⎭⎝⎭
,,
解得1166
b c =
=,. ∴函数2y 的解析式为2y 251
66
x x =-
+. ·
····················································· 3分
(Ⅱ)由已知,得6
AB =
,设ABM △的高为h ,
31121212ABM S AB h h ∴=
==△·1144
=.
根据题意,t T -=,
由211
66
T t t =++,得251166144t t -+-=
. 当251166144t t -
+=-
时,解得12512
t t ==;
当2511
66144
t t -
+=
时,解得34551212t t -==.
t ∴的值为
512··································································· 6分 (Ⅲ)由已知,得
222b c b c T t bt c αααβββ=++=++=++,,. ()()T t t b ααα∴-=-++, ()()T t t b βββ-=-++,
()()22b c b c αβααββ-=++-++,化简得()()10b αβαβ-++-=.
01αβ<<<,得0αβ-≠, 10b αβ∴++-=.
有1010b b αββα+=->+=->,. 又01t <<,0t b α∴++>,0t b β++>,
∴当0t a <≤时,T αβ≤≤;
当t αβ<≤时,T αβ<≤;
当1t β<<时,T αβ<<. ············································································ 10分。