线性代数第四章线性方程组复习题()

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性方程组复习题(4)

一、填空题:

1. 设矩阵A =⎪⎪⎪⎭

⎫ ⎝⎛--0 00000 10100 0101,则矩阵A 的秩为 ,线性

方程组O X A =的基础解系的向量个数为 .

2. 若A 为n m ⨯矩阵,则非齐次线性方程组AX

b =有唯一解的充分要条件是_________.

3. 若A 为n m ⨯矩阵,则齐次线性方程组

0AX =有非零解的充分要条件是

_________.

4. 设A 为n 阶方阵,且1)(-=n A r , 21,αα是AX=0的两个不同解,则21αα,一定

线性

5.设123456333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 则齐次线性方程组0Ax = 的基础解系所含向量个数为_____ ___。

6.在n 元齐次线性方程组0Ax =中,若秩(),R A k = 且12,,,r ηηηL 是它的一个基础解系,则r = ___ 。

二、 选择题:

1. 当( )时,齐次线性方程组02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩

,仅有零解

(A) 0k ≠ (B) 1k ≠- (C) 2k ≠ (D) 2k ≠-

2..设A 为n m ⨯矩阵,0≠b ,且n A r =)(,则线性方程组b Ax =___ .

(A). 有唯一解;(B). 有无穷多解; (C). 无解; (D). 可能无解。

3. 当( )时,齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321

321321x x x x x x x x x ,有非零解

(A) 1或2 (B) -1或-2 (C) 1或-2 (D) -1或2

4. 设A 为n 阶方阵,且秩12() 1.,A n αα=-是非齐次方程组AX B =的两个不同的解

向量,则AX =0的通解为( )

A 、1αk

B 、2αk

C 、)(21αα-k

D 、)(21αα+k

5. A 、B 均为n 阶方阵,X 、Y 、b 为1⨯n 阶列向量,则方程⎪⎪⎭

⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛b O Y X O A B O 有

解的充要条件是( )

A 、n

B r =)( B 、n A r <)(

C 、)()(b A r A r =

D 、n A r =)(

6. 若有 1133016,02135k k k ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭

则k 等于

(A) 1 (B) 2 (C) 3 (D) 4

计算题:(共60分)

1.求 123412341

23420363051050x x x x x x x x x x x x ++-=⎧⎪+--= ⎨⎪++-=⎩ 的通解

2. 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+-+=++-=+-+-=-+-7

7931833321543214321

43214321x x x x x x x x x x x x x x x x 的通解.

3.求非齐次线性方程组

1234

1234

1234

1234

52

234

388

3976

x x x x

x x x x

x x x x

x x x x

-+-=

⎪+-+=

-++=

⎪+-+=

的通解.

4. 求非齐次线性方程组

1234

1234

1234

1234

50

232

382

3974

x x x x

x x x x

x x x x

x x x x

-+-=

⎪+-+=

-++=

⎪+-+=

的通解.

5. 设线性方程组为 ⎪⎩⎪⎨⎧=++=++=++23213213211λ

λλλλx x x x x x x x x

试问λ取何值时,此线性方程组无解,有唯一解,有无穷多解?当其有无穷多解时,用基础解系表示其通解。

7、问当k 取何值时,Ax b =无解、有唯一解或有无穷多解?当有无穷多解时写出

Ax b =的全部解1231231

2321,2,455 1.x kx x kx x x x x x +-=⎧⎪-+=⎨⎪+-=-⎩

8. λ为何值时,线性方程组⎪⎩

⎪⎨⎧=++++=+-+=+++3)3()1(3)1(2)3(321321321x x x x x x x x x λλλλλλλλ 有唯一解,无穷多解,无解?

9. 求非齐次线性方程组123412341234

2+5+157+242+3+2115x x x x x x x x x x x x +=⎧⎪-+=⎨⎪+=⎩的通解,并求其对应的齐次线性方程组的基础解系。

相关文档
最新文档