景县第一高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
景县第一高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 函数()log 1x
a f x a x =-有两个不同的零点,则实数的取值范围是( )
A .()1,10
B .()1,+∞
C .()0,1
D .()10,+∞ 2. 设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )
A .1
B .3
C .5
D .不确定
3. 下列命题的说法错误的是( )
A .若复合命题p ∧q 为假命题,则p ,q 都是假命题
B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件
C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0
D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0” 4. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .
12
2
+ D .122+
5. 已知α∈(0,π),且sin α+cos α=,则tan α=( )
A .
B .
C .
D .
6. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )
A .AC BD ⊥
B .A
C B
D =
C.AC PQMN D .异面直线PM 与BD 所成的角为45
7. 函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2)
B .(e ﹣2,+∞)
C .(﹣∞,e ﹣2)
D .(e ﹣2,+∞)
8. 不等式x (x ﹣1)<2的解集是( )
A .{x|﹣2<x <1}
B .{x|﹣1<x <2}
C .{x|x >1或x <﹣2}
D .{x|x >2或x <﹣1}
9. 设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为( )
A .12
B .10
C .8
D .2
10.如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )
A .
B .
C . +
D . ++1
11.幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )
A .
B .﹣
C .3
D .﹣3
12.已知函数()cos()3
f x x π
=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =
的图象( )
A .向右平移
2π个单位 B .向左平移2π
个单位 C. 向右平移23π个单位 D .左平移23
π
个单位
二、填空题
13.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 14.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .
15.【南通中学2018届高三10月月考】已知函数()3
2f x x x =-,若曲线()f x 在点()()
1,1f 处的切线经过圆()2
2
:2C x y a +-=的圆心,则实数a 的值为__________.
16.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论: ①在区间(﹣2,1)内f (x )是增函数; ②在区间(1,3)内f (x )是减函数; ③在x=2时,f (x )取得极大值; ④在x=3时,f (x )取得极小值. 其中正确的是 .
17.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.
18.若复数34
sin (cos )i 55
z αα=-
+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.
三、解答题
19.(本小题满分12分)已知函数2
()(21)ln f x x a x a x =-++(a R ∈).
(I )若1
2
a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.
20.等差数列{a n } 中,a 1=1,前n 项和S n 满足条件,
(Ⅰ)求数列{a n } 的通项公式和S n ;
(Ⅱ)记b n =a n 2n ﹣1
,求数列{b n }的前n 项和T n .
21.已知数列{a n}共有2k(k≥2,k∈Z)项,a1=1,前n项和为S n,前n项乘积为T n,且a n+1=(a﹣1)S n+2(n=1,
2,…,2k﹣1),其中a=2,数列{b n}满足b n=log2,
(Ⅰ)求数列{b n}的通项公式;
(Ⅱ)若|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|≤,求k的值.
22.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;
(Ⅱ)求点D到平面AMP的距离.
23.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1
(1)
n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的
取值范围.
24.【南通中学2018届高三10月月考】设,,函数
,其中是自然对数的底数,曲
线
在点
处的切线方程为
.
(Ⅰ)求实数、的值;
(Ⅱ)求证:函数存在极小值; (Ⅲ)若,使得不等式
成立,求实数的取值范围.
景县第一高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】B 【解析】
试题分析:函数()f x 有两个零点等价于1x
y a ⎛⎫
= ⎪⎝⎭
与log a y x =的图象有两个交点,当01a <<时同一坐标
系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图
(1),由图知有两个交点,不符合题意,故选B.
x
(1) (2)
考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.
【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③.
2. 【答案】B
【解析】解:∵f (1988)=asin (1988π+α)+bcos (1998π+β)+4=asin α+bcos β+4=3,
∴asin α+bcos β=﹣1,
故f (2008)=asin (2008π+α)+bcos (2008π+β)+4=asin α+bcos β+4=﹣1+4=3,
故选:B .
【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.
3. 【答案】A
【解析】解:A .复合命题p ∧q 为假命题,则p ,q 至少有一个命题为假命题,因此不正确;
B .由x 2﹣3x+2=0,解得x=1,2,因此“x=1”是“x 2﹣3x+2=0”的充分不必要条件,正确;
C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0,正确;
D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”,正确. 故选:A .
4. 【答案】B 【解析】
试题分析:化简为标准形式()()1112
2
=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半
径,22
2
11=--=
d ,半径为1,所以距离的最大值是12+,故选B.
考点:直线与圆的位置关系 1 5. 【答案】D
【解析】解:将sin α+cos α=①两边平方得:(sin α+cos α)2
=1+2sin αcos α=
,即2sin αcos α=﹣<0,
∵0<α<π,∴<α<π,
∴sin α﹣cos α>0,
∴(sin α﹣cos α)2
=1﹣2sin αcos α=
,即sin α﹣cos α=②,
联立①②解得:sin α=,cos α=﹣,
则tan α=﹣. 故选:D .
6. 【答案】B 【解析】
试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面
PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD
所成的角,且为0
45,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD
==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1
考点:空间直线与平面的位置关系的判定与证明.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和
解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.
7.【答案】B
【解析】解:函数的定义域为(0,+∞)
求导函数可得f′(x)=lnx+2,令f′(x)>0,可得x>e﹣2,
∴函数f(x)的单调增区间是(e﹣2,+∞)
故选B.
8.【答案】B
【解析】解:∵x(x﹣1)<2,
∴x2﹣x﹣2<0,
即(x﹣2)(x+1)<0,
∴﹣1<x<2,
即不等式的解集为{x|﹣1<x<2}.
故选:B
9.【答案】B
【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.
10.【答案】D
【解析】解:由三视图可知:该几何体是如图所示的三棱锥,
其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,
边AC上的高OB=1,PO=为底面上的高.
于是此几何体的表面积S=S
+S△ABC+2S△PAB=××2+×2×1+2×××=+1+.
△PAC
故选:D
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
11.【答案】A
【解析】解:设幂函数为y=x α
,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3
所以幂函数解析式为y=x ﹣3,由f (x )=27,得:x ﹣3
=27,所以x=.
故选A .
12.【答案】B
【解析】
试题分析:函数()cos ,3f x x π⎛
⎫
=+
∴ ⎪⎝
⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫
=-+=+ ⎪ ⎪⎝⎭⎝⎭
,所以函数 ()cos 3f x x π⎛
⎫=+ ⎪⎝
⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到
5cos cos 326y x x πππ⎛⎫⎛
⎫=++=+ ⎪ ⎪⎝⎭⎝⎭
,故选B.
考点:函数()sin y A x ωϕ=+的图象变换.
二、填空题
13.【答案】 (﹣4,0] .
【解析】解:当a=0时,不等式等价为﹣4<0,满足条件; 当a ≠0时,要使不等式ax 2﹣2ax ﹣4<0恒成立, 则满足,
即
,
∴
解得﹣4<a<0,
综上:a的取值范围是(﹣4,0].
故答案为:(﹣4,0].
【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.
14.【答案】cm2.
【解析】解:如图所示,是正六棱台的一部分,
侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,
则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.
根据正六棱台的性质得OC=,O
C1==,
1
∴CC1==.
又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.
∴正六棱台的侧面积:
S=.
=
=(cm2).
故答案为:cm2.
【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.
15.【答案】2-
【解析】结合函数的解析式可得:()3
11211f =-⨯=-,
对函数求导可得:()2
'32f x x =-,故切线的斜率为()2
'13121k f ==⨯-=,
则切线方程为:()111y x +=⨯-,即2y x =-,
圆C :()2
2
2x y a +-=的圆心为()0,a ,则:022a =-=-.
16.【答案】 ③ .
【解析】解:由 y=f'(x )的图象可知, x ∈(﹣3,﹣),f'(x )<0,函数为减函数;
所以,①在区间(﹣2,1)内f (x )是增函数;不正确; ②在区间(1,3)内f (x )是减函数;不正确; x=2时,y=f'(x )=0,且在x=2的两侧导数值先正后负, ③在x=2时,f (x )取得极大值; 而,x=3附近,导函数值为正,
所以,④在x=3时,f (x )取得极小值.不正确. 故答案为③.
【点评】本题考察了函数的单调性,导数的应用,是一道基础题.
17.【答案】 【解析】
试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA ⊥底面ABC ,且ABC ∆为直角三角形,且
5,,6AB VA h AC ===,所以三棱锥的体积为11
5652032
V h h =⨯⨯⨯==,解得4h =.
考点:几何体的三视图与体积. 18.【答案】34
-
【解析】由题意知3sin 05α-
=,且4cos 05α-≠,所以4cos 5α=-,则3tan 4
α=-. 三、解答题
19.【答案】
【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.
请20.【答案】
【解析】解:(Ⅰ)设等差数列的公差为d,
由=4得=4,
所以a2=3a1=3且d=a2﹣a1=2,
所以a n=a1+(n﹣1)d=2n﹣1,
(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.
所以T n=1+321+522+…+(2n﹣1)2n﹣1①
2T n=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n②
①﹣②得:﹣T n=1+22+222+…+22n﹣1﹣(2n﹣1)2n
=2(1+2+22+…+2n﹣1)﹣(2n﹣1)2n﹣1
=2×﹣(2n﹣1)2n﹣1
=2n(3﹣2n)﹣3.
∴T n=(2n﹣3)2n+3.
【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.
21.【答案】
【解析】(本小题满分13分)
解:(1)当n=1时,a2=2a,则;
当2≤n≤2k﹣1时,a n+1=(a﹣1)S n+2,a n=(a﹣1)S n﹣1+2,
所以a n+1﹣a n=(a﹣1)a n,故=a,即数列{a n}是等比数列,,
∴T n=a1×a2×…×a n=2n a1+2+…+(n﹣1)=,
b n==.…
(2)令,则n≤k+,又n∈N*,故当n≤k时,,
当n≥k+1时,.…
|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|
=+()+…+()…
=(k+1+…+b2k)﹣(b1+…+b k)
=[+k]﹣[]
=,
由,得2k2﹣6k+3≤0,解得,…
又k≥2,且k∈N*,所以k=2.…
【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.
22.【答案】
【解析】(Ⅰ)证明:取CD的中点E,连接PE、EM、EA
∵△PCD为正三角形
∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
∵平面PCD⊥平面ABCD
∴PE⊥平面ABCD
∵四边形ABCD是矩形
∴△ADE、△ECM、△ABM均为直角三角形
由勾股定理得EM=,AM=,AE=3
∴EM2+AM2=AE2,∴∠AME=90°
∴AM⊥PM
(Ⅱ)解:设D点到平面PAM的距离为d,连接DM,则V P﹣ADM=V D﹣PAM
∴
而
在Rt△PEM中,由勾股定理得PM=
∴
∴
∴,即点D到平面PAM的距离为
23.【答案】
【解析】【命题意图】本题考查等差数列通项与前n项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.
24.【答案】(Ⅰ);(Ⅱ)证明见解析;(Ⅲ).
【解析】试题分析:
(Ⅰ)利用导函数研究函数的切线,得到关于实数a,b的方程组,求解方程组可得;
(Ⅱ)结合(Ⅰ)中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存在极小值;
试题解析:
(Ⅰ)∵,∴,由题设得,∴;
(Ⅱ)由(Ⅰ)得,∴,∴,∴函数在
是增函数,∵,,且函数图像在上不间断,∴,使得
,结合函数在是增函数有:
)
∴函数存在极小值;
(Ⅲ),使得不等式成立,即,使得不等式成立……
(*),令,,
则,
∴结合(Ⅱ)得,其中,满足,
即,∴,,∴,∴,,∴在内单调递增,
∴,
结合(*)有,即实数的取值范围为.。