黑台镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑台镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)x的5倍与它的一半之差不超过7,列出的关系式为()
A.5x-x≥7
B.5x-x≤7
C.5x-x>7
D.5x-x<7
【答案】B
【考点】一元一次不等式的应用
【解析】【解答】解:根据题意,可列关系式为:5x-x≤7,
故答案为:B.
【分析】先求出x的5倍与它的一半,再求差,再根据题意列出不等式解答即可.注意“不超过”用数学符号表示为“≤”.
2、(2分)在下列不等式中,是一元一次不等式的为()
A. 8>6
B. x²>9
C. 2x+y≤5
D. (x-3)<0
【答案】D
【考点】一元一次不等式的定义
【解析】【解答】A、不含未知数,不是一元一次不等式,不符合题意;
B、未知数的指数不是1,不是一元一次不等式,不符合题意;
C、含有两个未知数,不是一元一次不等式,不符合题意;
D、含有一个未知数,未知数的指数都为1,是一元一次不等式,符合题意.
故答案为:D.
【分析】根据一元一次不等式的定义,含有一个未知数,含未知数的最高次数是1的不等式,对各选项逐一判断。

3、(2分)不等式的解集是()
A.
B.
C.
D.
【答案】A
【考点】解一元一次不等式
【解析】【解答】解:,去分母得3x-2(x-1)≤6,解得,,故答案为:A.
【分析】根据以下步骤进行计算:(1)两边同乘以各分母的最小公倍数去分母;(2)去括号(不要漏乘);(3)移项、合并同类项;(4)系数化为1(注意不等号的方向),
4、(2分)下列说法,正确的有()
(1 )整数和分数统称为有理数;(2)符号不同的两个数叫做互为相反数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】A
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,立方根及开立方,有理数及其分类
【解析】【解答】解:(1)整数和分数统称为有理数;正确.
(2)符号不同的两个数叫做互为相反数;错误,比如2,-4符号不同,不是互为相反数.
(3)一个数的绝对值一定为正数;错误,0的绝对值是0.
(4)立方等于本身的数是1和-1.错误,0的立方等于本身,
故答案为:A.
【分析】根据有理数的定义,可对(1)作出判断;只有符号不同的两个数叫互为相反数,可对(2)作出判断;任何数的绝对值都是非负数,可对(3)作出判断;立方根等于它本身的数是1,-1和0,可对(4)作出判断,综上所述可得出说法正确的个数。

5、(2分)若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有()
A. 3种
B. 4种
C. 5种
D. 6种
【答案】A
【考点】解一元一次不等式组,一元一次不等式组的应用
【解析】【解答】设要购买轿车x辆,则要购买面包车(10-x)辆,
由题意得7x+4(10-x)≤55,
解得x≤5.
又因为x≥3,所以x=3,4,5.
因此有三种购买方案:①购买轿车3辆,面包车7辆;
②购买轿车4辆,面包车6辆;
③购买轿车5辆,面包车5辆.
故答案为:A.
【分析】此题的等量关系是:轿车的数量+面包车的数量=10;不等关系为:购车款≤55;购买轿车的数量≥3,设未知数,列不等式组,解不等式组,求出不等式组的整数解,即可解答。

6、(2分)实数a在数轴上对应的点如图所示,则a,﹣a,1的大小关系正确的是()
A. a<﹣a<1
B. ﹣a<a<1
C. 1<﹣a<a
D. a<1<﹣a
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:由数轴上a的位置可知a<0,|a|>1;
设a=﹣2,则﹣a=2,
∵﹣2<1<2
∴a<1<﹣a,
故答案为:D.
【分析】由数轴得:a<0,且大于1;所以,>1>a.又因为a<0,所以=-a.所以最终选D
7、(2分),则a与b的关系是()
A. B. a与b相等 C. a与b互为相反数 D. 无法判定
【答案】C
【考点】立方根及开立方
【解析】【解答】∵,∴,∴a与b互为相反数.故答案为:C.
【分析】立方根的性质是:正数的立方根是正数,负数的立方根是负数,0的立方根是0。

由已知条件和立方根的性质可知,a与b互为相反数。

8、(2分)如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()
A. a户最长
B. b户最长
C. c户最长
D. 三户一样长
【考点】平移的性质
【解析】【解答】解: 通过作辅助线,由平行线性质可选D项
故答案为:D
【分析】a、b、c三线可以由其中一条得到另外两条,所以它们是相等的.
9、(2分)代入法解方程组有以下步骤:(1)由①,得2y=7x-3③;(2)把③代入①,得7x-7x-3=3;(3)整理,得3=3;(4)∴x可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是()
A.第(1)步
B.第(2)步
C.第(3)步
D.第(4)步
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:错的是第步,应该将③代入②.
故答案为:B.
【分析】用代入法解二元一次方程组的时候,由原方程组中的①方程变形得出的③方程只能代入原方程组的②方程,由原方程组中的②方程变形得出的③方程只能代入原方程组的①方程,不然就会出现消去未知数得到恒等式。

10、(2分)不等式3x<18 的解集是()
A.x>6
B.x<6
C.x<-6
D.x<0
【答案】B
【考点】解一元一次不等式
【解析】【解答】解:(1)系数化为1得:x<6
【分析】不等式的两边同时除以3即可求出答案。

11、(2分)如图,若AB∥CD,CD∥EF,那么AB和EF的位置关系是()
A. 平行
B. 相交
C. 垂直
D. 不能确定【答案】A
【考点】平行线的判定与性质
【解析】【解答】解:因为平行于同一条直线的两直线平行,所以AB∥EF.
故答案为:A.
【分析】若两直线同时平行于第三条直线,则这两条直线也平行.
12、(2分)下列生活现象中,属于平移的是()
A. 足球在草地上滚动
B. 拉开抽屉
C. 投影片上的文字经投影转换到屏幕上
D. 钟摆的摆动【答案】B
【考点】生活中的平移现象
【解析】【解答】解:拉开抽屉是平移。

【分析】根据平移的定义,平移只改变图形的位置,不改变图形的大小,方向,即可得出结论。

二、填空题
13、(1分)方程2x-y= 1和2x+y=7的公共解是________;
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:联立方程组得:
解得:
【分析】解联立两方程组成的方程组,即可求出其公共解。

14、(1分)如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.
【答案】90°
【考点】平行线的性质
【解析】【解答】解:∵CE、AE分别平分∠ACD、∠CAB,
∴∠1=∠DCE=∠ACD,∠2=∠BAE=∠CAB,
∴∠ACD=2∠1,∠CAB=2∠2,
又∵AB∥CD,
∴∠CAB+∠ACD=180°,
∴2∠2+2∠1=180°,
∴∠2+∠1=90°.
故答案为:90°.
【分析】根据角平分线定义得∠ACD=2∠1,∠CAB=2∠2,再由平行线性质得∠CAB+∠ACD=180°,代入、计算即可得出答案.
15、(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:∵AD∥BC(已知),
∴∠1=∠3(________).
∵∠1=∠2(已知),
∴∠2=∠3.
∴BE∥________(________).
∴∠3+∠4=180°(________).
【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补
【考点】平行线的判定与性质
【解析】【分析】根据平行线性质:两直线平行,内错角相等;
根据平行线判定:同位角相等,两直线平行;
根据平行线性质:两直线平行,同旁内角互补.
16、(2分)若方程组与有相同的解,则a=________,b=________。

【答案】3;2
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:
由得:11x=22
解之:x=2
把x=2代入得:4-y=5
解之:y=-1

由题意得:把代入得
解之:
故答案为:
【分析】利用加减消元法解方程组,求出x、y的值,再将x、y的值代入,建立关于a、b的方程组,解方程组求出a、b的值即可。

17、(1分)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.
【答案】
【考点】解二元一次方程组
【解析】【解答】解:方程整理得:,
根据方程组解是,得到,
解得:,
故答案为:
【分析】将方程组转化为,再根据题意可得出,然后求出x、y的值。

18、(1分)已知方程组由于甲看错了方程①中a得到方程组的解为,乙看
错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:将代入②得,﹣12+b=﹣2,b=10;
将代入①,5a+20=15,a=﹣1.
故原方程组为,
解得.
故答案为:.
【分析】甲看错了方程①中的a 但没有看错b,所以可把x=-3和y=-1代入方程②得到关于b的方程,激发出可求得b的值;乙看错了方程组②中的b 但没有看错a,所以把x=5和y=4代入①可得关于a的方程,解方程可求得a的值;再将求得的a、b的值代入原方程组中,解这个新的方程组即可求解。

三、解答题
19、(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。

20、(5分)如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,
不写作法和证明)
理由是:▲.
【答案】解:垂线段最短。

【考点】垂线段最短
【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。

所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。

21、(5分)如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP =∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.
【答案】解:过点P作PE∥CD交AD于E,则∠DPE=∠α.
∵AB∥CD,∴PE∥AB.
∴∠CPE=∠B,即∠DPE+∠β=∠α+∠β=∠B.故不论点P在BC上怎样运动,总有∠α+∠β=∠B
【考点】平行公理及推论,平行线的性质
【解析】【分析】过点P作PE∥CD交AD于E,根据平行线性质得∠DPE=∠α,由平行的传递性得PE∥AB,根据平行线性质得∠CPE=∠B,从而即可得证.
22、(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.
23、(5分)在数轴上表示下列数(要准确画出来),并用“<”把这些数连接起来.-(-4),-|
-3.5|,,0,+(+2.5),1
【答案】解:如图,
-|-3.5|<0< <1 <+(+2.5)< -(-4)
【考点】数轴及有理数在数轴上的表示,有理数大小比较,实数在数轴上的表示,实数大小的比较
【解析】【分析】将需化简的数进行化简;带根号的无理数,需要在数轴上构造边长为1的正方形,其对
角的长度为;根据每个数在数轴上的位置,左边的数小于右边的数.
24、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
25、(14分)为了解某县2014年初中毕业生的实验成绩等级的分布情况,随机抽取了该县若干名学生的实验成绩进行统计分析,并根据抽取的成绩绘制了如图所示的统计图表:
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有________名;
(2)表中x,y和m所表示的数分别为:x=________,y=________,m=________;
(3)请补全条形统计图;
(4)若将抽取的若干名学生的实验成绩绘制成扇形统计图,则实验成绩为D类的扇形所对应的圆心角的度数是多少.
【答案】(1)200
(2)100;30;5%
(3)解:补全的条形统计图如右图所示;
(4)解:由题意可得,实验成绩为D类的扇形所对应的圆心角的度数是:×360°=18°,
即实验成绩为D类的扇形所对应的圆心角的度数是18°
【考点】统计表,条形统计图
【解析】【解答】解:⑴由题意可得,本次抽查的学生有:60÷30%=200(名),
故答案为:200;
⑵由⑴可知本次抽查的学生有200名,
∴x=200×50%=100,y=200×15%=30,m=10÷200×100%=5%,
故答案为:100,30,5%
【分析】(1)根据人数除以百分比可得抽查的学生人数;
(2)根据(1)中的学生人数乘以百分比可得对应的字母的值;
(3)根据(2)得到B、C对应的人数,据此补全条形统计图即可;
(4)先计算D类所占的百分比,然后乘以360°可得圆心角的度数.
26、(5分)初中一年级就“喜欢的球类运动”曾进行过问卷调查,每人只能报一项,结果300人回答的情况如下表,请用扇形统计图表示出来,根据图示的信息再制成条形统计图。

【答案】解:如图:
【考点】扇形统计图,条形统计图
【解析】【分析】由统计表可知,喜欢排球、篮球、乒乓球、足球、其他的人数分别为25、50、75、100、50,据此可画出条形统计图;同时可得喜欢排球、篮球、乒乓球、足球、其他的所占比,从而可算出各扇形圆心角的度数,据此画出扇形统计图。

27、(5分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.
【答案】解:∵AE平分∠BAD,
∴∠1=∠2.
∵AB∥CD,∠CFE=∠E,
∴∠1=∠CFE=∠E.
∴∠2=∠E.
∴AD∥BC
【考点】平行线的判定与性质
【解析】【分析】根据角平分线的定义得∠1=∠2,由平行线的性质和等量代换可得∠2=∠E,根据平行线的判定即可得证.。

相关文档
最新文档