杭州市春蕾中学九年级数学下册第二十九章《投影与视图》经典复习题(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()
A.主视图B.俯视图C.左视图D.俯视图和左视图2.如图,左图是由4个大小相同的正方体组合而成的几何体,其主视图是()
A.B.C.D.
3.由7个相同的棱长为1的小立方块拼成的几何体如图所示,它的表面积为()
A.23B.24C.26D.28
4.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )
A.22个B.19个C.16个D.13个
5.下列各立体图形中,自己的三个视图都全等的图形有()个
①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.
A.1个B.2个C.3个D.4个
6.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )
A.11个B.14个C.13个D.12个
7.如图所示立体图形,从上面看到的图形是()
A.B.C.D.
8.如图所示几何体的主视图是()
A.B.C.D.
9.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()
A.始终不变B.越来越远C.时近时远D.越来越近
10.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()
A.3个B.4个C.5个D.6个
11.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )
A.7 B.8 C.9 D.10
12.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()
A.B.C.D.
13.如图,用八个同样大小的小立方体粘成一个大正方体,得到的几何体从正面、从左面和从上面看到的形状图如图,若小明从八个小立方体中取走若干个,剩余小立方体保持位置不动,并使得到的新几何体从三个方向看到的形状图不变,则他取走的小立方体最多可以是()
A.0个B.1个C.4个D.3个
14.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()
A.B.C.D.
15.如图的几何体由6个相同的小正方体搭成,它的主视图是()
A.B.C.D.
二、填空题
16.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:
碟子的个数碟子的高度(单位:cm)
12
22+1.5
32+3
42+4.5
……
现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.
17.在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.
18.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.
19.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.
20.如图是某几何体的三视图,则该几何体左视图的面积为_________.
AB CD,21.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,//
=,点P到CD的距离为2.7m,则AB与CD间的距离是CD m
1.5
AB m
=, 4.5
________m.
22.甲同学的身高为1.5m,某一时刻它的影长为1m,此时一塔影长为20m,则该塔高为____________m。
23.一个几何体由几个大小相同的小正方体搭成,这个几何体的俯视图和左视图如图所示,则这个几何体中小正方体的个数最少是________个.
24.由若干个相同的小正方体搭成的一个几何体从正面和从左面看到的形状图如图所示,则所需的小正方体的个数最多是______个.
25.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.
26.如图,墙角处有6个棱长为1分米的正方体纸盒,露在外面的面积之和是_____平方分米.
三、解答题
27.阅读材料,解决下面的问题:
(1)如图2,连接正六面体中相邻面的中心,可得到一个柏拉图体.
①它是正面体,有个顶点,条棱;
②已知该正多面体的体积与原正方体体积的比为1:6,若原正方体的棱长为3cm,该正多面体的体积为 cm3;
(2)如图3,用6个棱长为1的小正方体搭成一个几何体.小明要再用一些完全相同的小正方体搭一个几何体.若要使新搭的几何体恰好能与原几何体拼成一个无空隙的正六面体,则小明至少需要个小正方体,他所搭几何体的表面积最小是;
(3)小华用4个棱长为1的小正四面体搭成一个如图4所示的造型,可以看做是一个不完整的大四面体.小华发现此造型中间空缺部分也是一个柏拉图体!请写出该柏拉图体的名称:.
28.如图,王乐同学在晩上由路灯A走向路灯B.当他行到P处时发现,他往路灯B下的影长为2m,且恰好位于路灯A的正下方,接着他又走了6.5m到Q处,此时他在路灯A下的影孑恰好位于路灯B的正下方(已知王乐身高1.8m,路灯B高9m).
(1)王乐站在P处时,在路灯B下的影子是哪条线段?
(2)计算王乐站在Q处时,在路灯A下的影长;
(3)计算路灯A的高度.
29.用5个棱长为1的正方体,组成如图所示的几何体.
(1)该几何体的体积是立方单位;
(2)请在所给的方格纸中,用实线画出它的三个视图.
30.画图,探究:
(1)一个正方体组合图形的主视图、左视图(如图1)所示.
①这个几何体可能是(图2)甲、乙中的;
②这个几何体最多可由个小正方体构成,请在图3中画出符合最多情况的一个俯视图.
(2)如图,已知一平面内的四个点A、B、C、D,根据要求用直尺画图.
①画线段AB,射线AD;
②找一点M,使M点即在射线AD上,又在直线BC上;
③找一点N,使N到A、B、C、D四个点的距离和最短.。