北川羌族自治县第二中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北川羌族自治县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪
≤⎨⎪+≤⎩
下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )
A
.(1,1 B
.(1)+∞ C. (1,3) D .(3,)+∞ 2. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <0 3. 设x ,y ∈R
,且满足,则x+y=( )
A .1
B .2
C .3
D .4
4. 点集{(x ,y )|(|x|﹣1)2
+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )
A
. B
. C
. D
.
5.
已知双曲线(a >0,b >0
)的一条渐近线方程为
,则双曲线的离心率为( )
A
.
B
.
C
.
D
.
6. 若直线l
的方向向量为=(1,0,2),平面α
的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥α
C .l ⊂α
D .l 与α相交但不垂直 7.
“
”是“
”的( ) A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
8. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinx
B .y=1g2x
C .y=lnx
D .y=﹣x 3
【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.
【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.
9. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为
36p ,
则正方体棱长为( )
A .2
B .3
C .4
D .5
【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 10.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]
A .10
B .51
C .20
D .30
11.已知f (x )=,则“f[f (a )]=1“是“a=1”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .即不充分也不必要条件
12.由两个1,两个2,两个3组成的6位数的个数为( ) A .45
B .90
C .120
D .360
二、填空题
13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1
e e x x
f x =-,其中e 为自然对数的底数,则不等式()()
2
240f x f x -+-<的解集为________.
14.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3
f x x x =-+的单调增区间是__________.
15.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;
②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;
④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.
16.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .
17.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,
),(3,
),则O 点到直线AB
的距离是 .
三、解答题
18.已知p :,q :x 2﹣(a 2+1)x+a 2
<0,若p 是q 的必要不充分条件,求实数a 的取值范围.
19.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,
5313a b +=.111]
(1)求{}n a ,{}n b 的通项公式; (2)求数列{}n
n
a b 的前项和n S .
20.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2=a 2+bc . (Ⅰ)求A 的大小; (Ⅱ)如果
cosB=,b=2,求a 的值.
21.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;
(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.
22.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,
[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数.
1111]
23.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且
,PA PB AC BC ==.
;
(1)证明:AB PC
(2)证明:平面PAB 平面FGH.
北川羌族自治县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案) 一、选择题
1. 【答案】A 【解析】
考点:线性规划.
【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为
z
m
,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线
z x my =+过点A 时取最大值,⎩⎨
⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m
的范围. 2. 【答案】B
【解析】解:∵函数y=a x
﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,
∴根据图象的性质可得:a >1,a 0
﹣b ﹣1<0,
即a >1,b >0, 故选:B
3. 【答案】D
【解析】解:∵(x ﹣2)3
+2x+sin (x ﹣2)=2, ∴(x ﹣2)3
+2(x ﹣2)+sin (x ﹣2)=2﹣4=﹣2,
∵(y ﹣2)3
+2y+sin (y ﹣2)=6,
∴(y ﹣2)3
+2(y ﹣2)+sin (y ﹣2)=6﹣4=2,
设f (t )=t 3
+2t+sint ,
则f (t )为奇函数,且f'(t )=3t 2
+2+cost >0,
即函数f (t )单调递增.
由题意可知f (x ﹣2)=﹣2,f (y ﹣2)=2,
即f (x ﹣2)+f (y ﹣2)=2﹣2=0, 即f (x ﹣2)=﹣f (y ﹣2)=f (2﹣y ),
∵函数f (t )单调递增 ∴x ﹣2=2﹣y , 即x+y=4, 故选:D . 【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f (t )是解决本题的关键,综合考查了函数的性
质.
4. 【答案】A 【解析】解:点集{(x ,y )|(|x|﹣1)2+y 2
=4}表示的图形是一条封闭的曲线,关于x ,y 轴对称,如图所示.
由图可得面积S==+=+2.
故选:A .
【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.
5.【答案】A
【解析】解:∵双曲线的中心在原点,焦点在x轴上,
∴设双曲线的方程为,(a>0,b>0)
由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,
得=,设b=4t,a=3t,则c==5t(t>0)
∴该双曲线的离心率是e==.
故选A.
【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.
6.【答案】B
【解析】解:∵=(1,0,2),=(﹣2,0,4),
∴=﹣2,
∴∥,
因此l⊥α.
故选:B.
7.【答案】B
【解析】解:,解得或x<0,
∴“”是“”的必要不充分条件.
故选:B.
8.【答案】B
【解析】解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;
y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确;
根据y=lnx 的图象,该函数非奇非偶;
根据单调性定义知y=﹣x 3在(0,+∞)上单调递减. 故选B .
【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.
9. 【答案】C
10.【答案】D 【解析】
试题分析:分段间隔为5030
1500
,故选D. 考点:系统抽样 11.【答案】B
【解析】解:当a=1,则f (a )=f (1)=0,则f (0)=0+1=1,则必要性成立, 若x ≤0,若f (x )=1,则2x+1=1,则x=0,
若x >0,若f (x )=1,则x 2
﹣1=1,则x=
,
即若f[f (a )]=1,则f (a )=0或
,
若a >0,则由f (a )=0或1得a 2﹣1=0或a 2
﹣1=
,
即a 2
=1或a 2=
+1,解得a=1或a=
,
若a ≤0,则由f (a )=0或1得2a+1=0或2a+1=,
即a=﹣,此时充分性不成立,
即“f[f (a )]=1“是“a=1”的必要不充分条件, 故选:B .
【点评】本题主要考查充分条件和必要条件的判断,根据分段函数的表达式解方程即可.
12.【答案】B
【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,
所以由分步计数原理有:C 62C 42C 22
=90个不同的六位数,
故选:B .
【点评】本题考查了分步计数原理,关键是转化,属于中档题.
二、填空题
13.【答案】()32-,
【解析】∵()1e ,e x x f x x R =-
∈,∴()()11x
x x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝
⎭,即函数()f x 为奇函数,又∵()0x
x
f x e e
-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为
()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()
2240f x f x -+-<的解集为
()32-,
,故答案为()32-,.
14.【答案】(
【解析】()2
310f x x x ⎛=-+>⇒∈ ⎝'⎭ ,所以增区间是⎛ ⎝⎭
15.【答案】 ①③④
【解析】解:①“p ∧q 为真”,则p ,q 同时为真命题,则“p ∨q 为真”,
当p 真q 假时,满足p ∨q 为真,但p ∧q 为假,则“p ∧q 为真”是“p ∨q 为真”的充分不必要条件正确,故①正确; ②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,
③设正三棱锥为P ﹣ABC ,顶点P 在底面的射影为O ,则O 为△ABC 的中心,∠PCO 为侧棱与底面所成角
∵正三棱锥的底面边长为3,∴CO=
∵侧棱长为2,∴
在直角△POC 中,tan ∠PCO=
∴侧棱与底面所成角的正切值为
,即侧棱与底面所成角为30°,故③正确,
④如图,设动圆P 和定圆B 内切于M ,则动圆的圆心P 到两点,即定点A (﹣2,0)和定圆的圆心B (2,0)的距离之和恰好等于定圆半径, 即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|. ∴点P 的轨迹是以A 、B 为焦点的椭圆, 故动圆圆心P 的轨迹为一个椭圆,故④正确, 故答案为:①③④
16.【答案】∃x0∈R,都有x03<1.
【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x∈R,都有x3≥1”的否定形式为:命题:“∃x0∈R,都有x03<1”.
故答案为:∃x0∈R,都有x03<1.
【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.
17.【答案】.
【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,
)、(﹣,),
故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,
所以O点到直线AB的距离是=,
故答案为:.
【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.三、解答题
18.【答案】
【解析】解:由p :
⇒﹣1≤x <2,
方程x 2﹣(a 2+1)x+a 2=0的两个根为x=1或x=a 2
,
若|a|>1,则q :1<x <a 2,此时应满足a 2
≤2,解得1<|a|≤
,
当|a|=1,q :x ∈∅,满足条件, 当|a|<1,则q :a 2
<x <1,此时应满足|a|<1,
综上﹣.
【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决
本题的关键.
19.【答案】(1)2,2==q d ;(2)1
23
26-+-=n n n S . 【解析】
(2)121
2--=n n n n b a ,………………6分 12212
1
223225231---+-++++=n n n n n S ,①
n n n n n S 2
12232252321211321-+-++++=- .②……………8分 ①-②得n n n n n S 2122222222212`1221--+++++=-- 2311222221
12
22222n
n n n S --=++++- ,…………10分
所以1
23
26-+-
=n n n S .………………12分 考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.
【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;(2)数列}a {
n
n
b 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S . 20.【答案】
【解析】解:(Ⅰ)∵b 2+c 2=a 2+bc ,即b 2+c 2﹣a 2
=bc ,
∴cosA=
=,
又∵A ∈(0,π),
∴A=
;
(Ⅱ)∵cosB=,B ∈(0,π),
∴sinB=
=
,
由正弦定理=,得a===3.
【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.
21.【答案】(1)2
()243f x x x =-+;(2)1
02
a <<
;(3)1m <-.
试
题解析:
(1)由已知,设2()(1)1f x a x =-+,
由(0)3f =,得2a =,故2()243f x x x =-+.
(2)要使函数不单调,则211a a <<+,则102
a <<. (3)由已知,即2243221x x x m -+>++,化简得2
310x x m -+->,
设2()31g x x x m =-+-,则只要min ()0g x >, 而min ()(1)1g x g m ==--,得1m <-. 考点:二次函数图象与性质.
【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:
()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为
()()()2
0f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为
()()()()120f x a x x x x a =--≠.
22.【答案】(1)0.0075x =;(2)众数是230,中位数为224. 【解析】
试题分析:(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数.1
试题解析:(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=, ∴0.0075x =.
考点:频率分布直方图;中位数;众数.
23.【答案】(1)证明见解析;(2)证明见解析. 【解析】
考点:平面与平面平行的判定;空间中直线与直线的位置关系.。