苏科版八年级数学上 期末测试题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版八年级数学上 期末测试题(Word 版 含答案) 一、选择题
1.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )
A .12+
B .21-
C .2
D .32
2.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E ,若4BD =,7DE =,则线段EC 的长为( )
A .3
B .4
C .3.5
D .2
3.计算3
329a b a b a b a
-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89
ab 4.若分式
12x x -+的值为0,则x 的值为( ) A .1
B .2-
C .1-
D .2 5.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为
( )
A .80︒
B .100︒
C .105︒
D .120︒
6.在-22
7
,-π,0,3.14, 0.1010010001,-3
1
3
中,无理数的个数有 ( )
A.1个B.2个C.3个D.4个
7.点P(3,﹣4)关于y轴的对称点P′的坐标是()
A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(﹣4,3)8.如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA 上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是()
A.1 B.4
3
C.
5
3
D.2
9.如图,若BD为等边△ABC的一条中线,延长BC至点E,使CE=CD=1,连接DE,则DE的长为()
A 3
B3C5D5
10.下列调查中,调查方式最适合普查(全面调查)的是()
A.对全国初中学生视力情况的调查
B.对2019年央视春节联欢晚会收视率的调查
C.对一批飞机零部件的合格情况的调查
D.对我市居民节水意识的调查
二、填空题
11.如图所示的棋盘放置在某个平面直角坐标系内,棋子A的坐标为(﹣2,﹣3),棋子B的坐标为(1,﹣2),那么棋子C的坐标是_____.
12.如图,点C 坐标为(0,1)-,直线334
y x =
+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.
13.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.
14.如果2x -有意义,那么x 可以取的最小整数为______.
15.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.
16.因式分解:24ax ay -=__________.
17.如图,函数3y x =-和4y ax =+的图像相交于点A (m ,3),则不等式34x ax ->+的解集为____.
18.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P 1(x 1 , y 1)、P 2(x 2 , y 2)两点,若x 1>x 2 , 则y 1________y 2(填“>”或“<”).
19.某人一天饮水1679mL ,精确到100mL 是_____.
20.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.
三、解答题
21.已知坐标平面内的三个点(1,3)A ,(3,1)B ,(0,0)O ,把ABO ∆向下平移3个单位再向右平移2个单位后得DEF ∆.
(1)画出DEF ∆;
(2)DEF ∆的面积为 .
22.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30角所对的直角边等于斜边的一半。

小明同学对以上结论作了进一步探究.如图1,在Rt ABC ∆中,190,2
ACB AC AB ∠==,则:30ABC ∠=. 探究结论:(1)如图1,CE 是AB 边上的中线,易得结论:ACE ∆为________三角形. (2)如图2,在Rt ABC ∆中,190,,2ACB AC AB CP ∠==
是AB 边上的中线,点D 是边CB 上任意一点,连接AD ,在AB 边上方作等边ADE ∆,连接BE .试探究线段BE 与DE 之间的数量关系,写出你的猜想加以证明.
拓展应用:如图3,在平面直角坐标系中,点A 的坐标为(3,1)-,点B 是x 轴正半轴上的一动点,以AB 为边作等边ABC ∆,当点C 在第一象内,且(2,0)B 时,求点C 的坐标.
23.某工厂计划生产A、B两种产品共50件,已知A产品成本2000元/件,售价2300元/件;B种产品成本3000元/件,售价3500元/件,设该厂每天生产A种产品x件,两种产品全部售出后共可获利y元.
(1)求出y与x的函数表达式;
(2)如果该厂每天最多投入成本140000元,那么该厂生产的两种产品全部售出后最多能获利多少元?
24.如图,正方形网格中每个小正方形的边长为1,格点△ABC的顶点A(2,3)、B(﹣1,2),将△ABC平移得到△A′B′C′,使得点A的对应点A′,请解答下列问题:
(1)根据题意,在网格中建立平面直角坐标系;
(2)画出△A′B′C′,并写出点C′的坐标为.
25.如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.
(1)求证:△ADE≌△BEC;
(2)若AD=3,AB=9,求△ECD的面积.
四、压轴题
26.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P 在线段 AB 上以
1/
cm s的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为t(s).
(1)若点 Q 的运动速度与点 P 的运动速度相等,当t=1 时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段 PC 和线段 PQ 的位置关系;
(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他
条件不变.设点 Q 的运动速度为x/
cm s,是否存在实数x,使得△ACP 与△BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
27.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.
(1)如图,当点D在线段OB的延长线上时,
①若D点的坐标为(﹣5,0),求点E的坐标.
②求证:M为BE的中点.
③探究:若在点D运动的过程中,OM
BD
的值是否是定值?如果是,请求出这个定值;如
果不是,请说明理由.
(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).
28.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).
(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;
(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分
别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数;
(3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .
29.阅读下列材料,并按要求解答.
(模型建立)如图①,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于点D ,过B 作BE ⊥ED 于点E .求证:△BEC ≌△CDA .
(模型应用)
应用1:如图②,在四边形ABCD 中,∠ADC =90°,AD =6,CD =8,BC =10,AB 2=200.求线段BD 的长.
应用2:如图 ③,在平面直角坐标系中,纸片△OPQ 为等腰直角三角形,QO =QP ,P (4,m ),点Q 始终在直线OP 的上方.
(1)折叠纸片,使得点P 与点O 重合,折痕所在的直线l 过点Q 且与线段OP 交于点M ,当m =2时,求Q 点的坐标和直线l 与x 轴的交点坐标;
(2)若无论m 取何值,点Q 总在某条确定的直线上,请直接写出这条直线的解析式 .
30.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒).
(1)用含t 的代数式表示线段PC 的长度;
(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?
(4)若点Q 以(3)中的运动速度从点C 出发,点v 以原来的运动速度从点B 同时出发,都顺时针沿三边运动,求经过多长时间,点P 与点Q 第一次在ABC 的哪条边上相遇?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.
【详解】
22
2,
11
∴点A2.
故选C.
【点睛】
本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.2.A
解析:A
【解析】
【分析】
根据△ABC中,∠ABC和∠ACB的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.
【详解】
解:∵∠ABC和∠ACB的平分线相交于点F,
∴∠DBF=∠FBC ,∠ECF=∠BCF,
∵DF//BC,交AB 于点D,交AC 于点E.
∴∠DFB=∠DBF ,∠CFE=∠BCF ,
∴BD=DF=4,FE=CE,
∴CE=DE-DF=7-4=3.
故选:A.
【点睛】
本题考查了平行线的性质和角平分线的性质,解决本题的关键是正确理解题意,熟练掌握平行线和角平分线的性质,能够找到相等的量.
3.A
解析:A
【解析】
【分析】
23a b a a
b a ⨯⨯即可求解.
【详解】
解:∵a >0,b >0,
23a b a a
b a ⨯⨯=故选:A .
【点睛】
本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.
4.A
解析:A
【解析】
【分析】
根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.
【详解】
根据题意得,1-x=0且x+2≠0,
解得x=1且x≠-2,
所以x=1.
故选:A .
【点睛】
本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
5.B
解析:B
【解析】
【分析】
延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.
【详解】
延长AO交BC于D.
∵点O在AB的垂直平分线上.
∴AO=BO.
同理:AO=CO.
∴∠OAB=∠OBA,∠OAC=∠OCA.
∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.
∴∠BOD=2∠OAB,∠COD=2∠OAC.
∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.
∵∠A=50°.
∴∠BOC=100°.
故选:B.
【点睛】
此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.6.A
解析:A
【解析】
【分析】
根据无理数的定义进行求解.
【详解】
解:无理数有:−π,共1个.
故选:A.
【点睛】
本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
7.A
解析:A
【解析】
试题解析:∵点P(3,-4)关于y轴对称点P′,
∴P′的坐标是:(-3,-4).
故选A.
8.C
解析:C
【解析】
【分析】
先根据勾股定理求出EC的长,进而可得出OE的长,在Rt△DOE中,由DE=AD及勾股定理可求出AD的长.
【详解】
解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,
设AD=x,则DE=x,DO=3-x
∴=4,
∴OE=1,
在Rt△DOE中,DO2+OE2=DE2,
解得x=5
3

∴AD=5
3

故选C.
【点睛】
本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答.
9.B
解析:B
【解析】
【分析】
由等边三角形的性质及已知条件可证BD=DE,可知BC长及BD⊥AC,在Rt△BDC中,由勾股定理得BD长,易知DE长.
【详解】
解:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,AB=BC,
∵BD为中线,
∴∠DBC=1
2
∠ABC=30°,
∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB,
∴∠E=30°=∠DBC,
∴BD=DE,
∵BD是AC中线,CD=1,
∴AD=CD=1,
∵△ABC是等边三角形,
∴BC=AC=1+1=2,且BD⊥AC,
在Rt△BDC中,由勾股定理得:BD==
即DE=BD
故选:B.
【点睛】
本题主要考查了等边三角形的性质,灵活利用等边三角形三线合一及三个角都是60度的性质是解题的关键.
10.C
解析:C
【解析】
【分析】
根据普查和抽样调查的特点解答即可.
【详解】
解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;
B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;
C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;
D.对我市居民节水意识的调查,适合用抽样调查,不合题意;
故选:C.
【点睛】
本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题
11.(2,1)
【解析】
【分析】
先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.
【详解】
解:由点A、B坐标可建立如图所示的平面直角坐标系,
则棋子C的坐标为(2,1).
故答案为:(2,
解析:(2,1)
【解析】
【分析】
先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.
【详解】
解:由点A、B坐标可建立如图所示的平面直角坐标系,
则棋子C的坐标为(2,1).
故答案为:(2,1).
【点睛】
本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.12.【解析】
【分析】
过点C作直线AB的垂线段CD,利用三角形的面积即可求出CD的长. 【详解】
连接AC,过点C作CD⊥AB,则CD的长最短,如图,
对于直线令y=0,则,解得x=-4,令x=0
解析:16 5
【解析】
【分析】
过点C作直线AB的垂线段CD,利用三角形的面积即可求出CD的长.【详解】
连接AC,过点C作CD⊥AB,则CD的长最短,如图,
对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,
∴A(-4,0),B(0,3),
∴OA=4,OB=3,
在Rt △OAB 中,222AB OA OB =+
∴AB=22
435 ∵C (0,-1),
∴OC=1,
∴BC=3+1=4,
∴1122ABC S BC AO AB CD ==,即1144=522
CD ⨯⨯⨯⨯, 解得,165CD =
. 故答案为:
165
. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.
13.【解析】
【分析】
过A 作AC ⊥直线y=x 于C ,过C 作CD ⊥OA 于D ,当B 和C 重合时,线段AB 最短,推出AC=OC ,求出AC 、OC 长,根据三角形面积公式求出CD ,推出CD=OD ,即可求出B 的坐标.
解析:(1,1)--
【解析】
【分析】
过A 作AC ⊥直线y=x 于C ,过C 作CD ⊥OA 于D ,当B 和C 重合时,线段AB 最短,推出AC=OC ,求出AC 、OC 长,根据三角形面积公式求出CD ,推出CD=OD ,即可求出B 的坐标.
【详解】
解:过A 作AC ⊥直线y=x 于C ,过C 作CD ⊥OA 于D ,当B 和C 重合时,线段AB 最短,
∵直线y=x ,
∴∠AOC=45°,
∴∠OAC=45°=∠AOC,
∴AC=OC,
由勾股定理得:2AC2=OA2=4,
∴,
由三角形的面积公式得:AC×OC=OA×CD,
=2CD,
∴CD=1,
∴OD=CD=1,
∴B(-1,-1).
故答案为:(-1,-1).
【点睛】
本题考查的是一次函数的性质,涉及到垂线段最短,等腰直角三角形的判定与性质,勾股定理等知识点的应用,关键是得出当B和C重合时,线段AB最短,题目比较典型,主要培养了学生的理解能力和计算能力.
14.2
【解析】
【分析】
根据被开方数大于等于0列式求解即可.
【详解】
根据题意得,x-2≥0,
解得x≥2,
∴x可以取的最小整数为2.
故填:2.
【点睛】
本题考查了二次根式有意义的条件,根据
解析:2
【解析】
【分析】
根据被开方数大于等于0列式求解即可.
【详解】
根据题意得,x-2≥0,
解得x≥2,
∴x可以取的最小整数为2.
故填:2.
【点睛】
本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.15.(-1,-3)
【解析】
【分析】
让点A 的横坐标减4,纵坐标减2即可得到平移后的坐标.
【详解】
点A (2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标
解析:(-1,-3)
【解析】
【分析】
让点A 的横坐标减4,纵坐标减2即可得到平移后的坐标.
【详解】
点A (2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),
故填:(-1,-3).
【点睛】
本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.
16.【解析】
【分析】
运用提公因式法求解,公因式是2a.
【详解】
故答案为:
【点睛】
考核知识点:因式分解.掌握提公因式法是关键.
解析:()22a x y -
【解析】
【分析】
运用提公因式法求解,公因式是2a.
【详解】
()2422ax ay a x y -=-
故答案为:()22a x y -
【点睛】
考核知识点:因式分解.掌握提公因式法是关键.
17.x <-1.
【解析】
由图象可知,在点A 的左侧,函数的图像在的图像的上方,即,所以求出点A 的坐标后结合图象即可写出不等式的解集.
【详解】
解:∵和的图像相交于点A (m ,3),



解析:x <-1.
【解析】
【分析】
由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,即34x ax ->+,所以求出点A 的坐标后结合图象即可写出不等式34x ax ->+的解集.
【详解】
解:∵3y x =-和4y ax =+的图像相交于点A (m ,3),
∴33m =-
∴1m =-
∴交点坐标为A (-1,3),
由图象可知,在点A 的左侧,函数3y x =-的图像在4y ax =+的图像的上方,
即34x ax ->+
∴不等式34x ax ->+的解集为x <-1.
故答案是:x <-1.
【点睛】
此题主要考查了一次函数与一元一次不等式的关系,用图象法解不等式的关键是找到y 相等时的分界点,观察分界点左右图象的变化趋势,即可求出不等式的解集,重点要掌握利用数形结合的思想.
18.<
【解析】
【分析】
根据一次函数的性质,当k <0时,y 随x 的增大而减小进行判断即可.
【详解】
解:∵一次函数y=-2x+1中k=-2<0,
∴y 随x 的增大而减小,
∵x1>x2,
∴y1<y2
解析:<
【解析】
根据一次函数的性质,当k<0时,y随x的增大而减小进行判断即可.
【详解】
解:∵一次函数y=-2x+1中k=-2<0,
∴y随x的增大而减小,
∵x1>x2,
∴y1<y2.
故答案为<.
【点睛】
此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
19.7×103ml
【解析】
【分析】
先用科学记数法表示,再根据精确度求解.
【详解】
解:1679mL=1.679×103mL,所以1679mL精确到100mL是1.7×103mL.
故答案为:1.
解析:7×103ml
【解析】
【分析】
先用科学记数法表示,再根据精确度求解.
【详解】
解:1679mL=1.679×103mL,所以1679mL精确到100mL是1.7×103mL.
故答案为:1.7×103mL.
【点睛】
本题考查了近似数和有效数字,属于基本题型,掌握求解的方法是解题关键.
20.−1<x<2.
【解析】
【分析】
根据x轴上方的图象的y值大于0进行解答.
【详解】
如图所示,x>−1时,y>0,
当x<2时,y>0,
∴使y、y的值都大于0的x的取值范围是:−1<x<2.
解析:−1<x<2.
【解析】
根据x 轴上方的图象的y 值大于0进行解答.
【详解】
如图所示,x>−1时,y 1>0,
当x<2时,y 2>0,
∴使y 1、y 2的值都大于0的x 的取值范围是:−1<x<2.
故答案为:−1<x<2.
【点睛】
此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的y 值大于0
三、解答题
21.(1)见详解;(2)4.
【解析】
【分析】
(1)根据点的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可以直接算出A 、B 、O 三个对应点D 、E 、F 的坐标,然后画出图形即可;
(2)把△DEF 放在一个矩形中,利用矩形的面积减去周围多余三角形的面积即可.
【详解】
解:(1)∵点A (1,3),B (3,1),O (0,0),
∴把△ABO 向下平移3个单位再向右平移2个单位后A 、B 、O 三个对应点D (1+2,3-3)、
E (3+2,1-3)、
F (0+2,0-3),
即D (3,0)、E (5,-2)、F (2,-3);如图:
(2)△DEF 的面积:11133131322=9 1.5 1.52=4222
⨯-⨯⨯-⨯⨯-⨯⨯---. 【点睛】
此题主要考查了坐标与图形的变化,解题的关键是掌握平移后点的变化规律.
22.(1)等边;(2)ED EB =,证明详见解析;(3)123(,)C +
.
【解析】
【分析】
(1)易证,60AC AE A ︒=∠=,因此ACE ∆是等边三角形;
(2)连接PE ,结合,ACP ADE ∆∆等边三角形的性质,利用SAS 可证CAD PAE ∆≅∆, 由全等的性质知90ACD APE ∠=∠=,结合等腰三角形三线合一的性质可得
EA EB =,
等量代换即得ED EB =; 拓展应用:作AH x ⊥轴于,H CF OB ⊥于F ,连接OA ,易知AO 、AH 长,由题中结论可得30AOH ∠=,结合(2)中结论,利用HL 定理可证ABH OCF ∆≅∆,可知CF 长,易得点C 坐标.
【详解】
解:(1)190,2
ACB AC AB ∠== 30ABC ∴∠=
60A ∴∠=
CE 是AB 边上的中线
12
AE AB ∴= AE AC ∴=
ACE ∴∆是等边三角形.
(2)结论:ED EB =.
理由:连接PE .
∵,ACP ADE ∆∆都是等边三角形 ,
,,60AC AD DE AD AE CAP DAE ∴===∠=∠=,
CAD PAE ∴∠=∠,
()CAD PAE SAS ∴∆≅∆,
90ACD APE ∴∠=∠=,
EP AB ∴⊥,
∵PA PB =,
EA EB ∴=,
∵DE AE =,
ED EB ∴=
拓展应用:作AH x ⊥轴于,H CF OB ⊥于F ,连接OA .
∵(3,1),22,30A AO AH AOH -∴==∴∠=,
由(2)可知,,CO CB OC AC =∴=
∵,1CF OB OF FB ⊥∴==,
,()AH OF ABH OCF HL ∴=∴∆≅∆
23CF BH ∴==+
(1,23)C ∴.
【点睛】
本题主要考查了等边三角形的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,直角三角形的特殊判定,等腰三角形的性质,属于三角形的综合探究题,灵活利用等边三角形及直角三角形的性质是解题的关键.
23.(1)y =﹣200x +25000;(2)该厂生产的两种产品全部售出后最多能获利23000元.
【解析】
【分析】
(1)根据题意,可以写出y 与x 的函数关系式;
(2)根据该厂每天最多投入成本140000元,可以列出相应的不等式,求出x 的取值范围,再根据(1)中的函数关系式,即可求得该厂生产的两种产品全部售出后最多能获利多少元.
【详解】
(1)由题意可得:
y =(2300﹣2000)x +(3500﹣3000)(50﹣x )=﹣200x +25000,
即y 与x 的函数表达式为y =﹣200x +25000;
(2)∵该厂每天最多投入成本140000元,
∴2000x +3000(50﹣x )≤140000,
解得:x ≥10.
∵y =﹣200x +25000,
∴当x =10时,y 取得最大值,此时y =23000,
答:该厂生产的两种产品全部售出后最多能获利23000元.
【点睛】
本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
24.(1)见解析;(2)(﹣3,﹣4)
【解析】
【分析】
(1)根据点A 和点B 的坐标可建立平面直角坐标系;
(2)利用平移变换的定义和性质可得答案.
【详解】
解:(1)如图所示,
(2)如图所示,△A ′B ′C ′即为所求,其中点C ′的坐标为(﹣3,﹣4),
故答案为:(﹣3,﹣4).
【点睛】
本题考查的知识点是作图-平移变换,找出三角形点A 的平移规律是解此题的关键.
25.(1)见解析;(2)
452
【解析】
【分析】
(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由已知我们可求得BE 、AE 的长,再利用勾股定理求得ED 的长,利用三角形面积公式解答即可.
【详解】
(1)∵AD ∥BC ,∠A =90°,∠1=∠2,
∴∠A =∠B =90°,DE =CE .
∵AD =BE ,
在Rt △ADE 与Rt △BEC 中 AD BE DE CE =⎧⎨=⎩
, ∴Rt △ADE ≌Rt △BEC (HL )
(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .
∴∠AED +∠BEC =∠BCE +∠BEC =90°.
∴∠DEC =90°.
又∵AD =3,AB =9,
∴BE =AD =3,AE =9﹣3=6.
∵∠1=∠2,
∴ED =EC
∴△CDE 的面积
=
14522
⨯=. 【点睛】 此题主要考查全等三角形的判定与性质的运用,熟练掌握,即可解题.
四、压轴题
26.(1)全等,垂直,理由详见解析;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩
【解析】
【分析】
(1)在t =1的条件下,找出条件判定△ACP 和△BPQ 全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;
(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.
【详解】
(1)当t=1时,AP= BQ=1, BP= AC=3,
又∠A=∠B= 90°,
在△ACP 和△BPQ 中,
{AP BQ
A B AC BP
=∠=∠=
∴△ACP ≌△BPQ(SAS).
∴∠ACP=∠BPQ ,
∴∠APC+∠BPQ=∠APC+∠ACP = 90*.
∴∠CPQ= 90°,
即线段PC 与线段PQ 垂直;
(2)①若△ACP ≌△BPQ ,
则AC= BP ,AP= BQ ,
34t t xt =-⎧⎨=⎩
解得11t x =⎧⎨=⎩
; ②若△ACP ≌△BQP ,
则AC= BQ ,AP= BP ,
34
xt t t =⎧⎨=-⎩
解得:232
t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232
t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】
本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.
27.(1)①E (3,﹣2)②见解析;③
12
OM BD =,理由见解析;(2)OD+OA =2AM 或OA ﹣OD =2AM
【解析】
【分析】
(1)①过点E 作EH ⊥y 轴于H .证明△DOA ≌△AHE (AAS )可得结论.
②证明△BOM ≌△EHM (AAS )可得结论.
③是定值,证明△BOM ≌△EHM 可得结论.
(2)根据点D 在点B 左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.
【详解】
解:(1)①过点E 作EH ⊥y 轴于H .
∵A (0,3),B (﹣3,0),D (﹣5,0),
∴OA =OB =3,OD =5,
∵∠AOD =∠AHE =∠DAE =90°,
∴∠DAO+∠EAH =90°,∠EAH+∠AEH =90°,
∴∠DAO =∠AEH ,
∴△DOA ≌△AHE (AAS ),
∴AH =OD =5,EH =OA =3,
∴E(3,﹣2).
②∵EH⊥y轴,
∴∠EHO=∠BOH=90°,
∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),
∴BM=EM.
③结论:OM
BD

1
2

理由:∵△DOA≌△AHE,∴OD=AH,
∵OA=OB,
∴BD=OH,
∵△BOM≌△EHM,
∴OM=MH,
∴OM=1
2
OH=
1
2
BD.
(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,
∵△BOM≌△EHM,△DOA≌△AHE
∴OM=MH,OD=AH
∴OH=2OM,OD-OB=AH-OA
∴BD=OH
∴BD=2OM,
∴OD﹣OA=2(AM﹣AO),
∴OD+OA=2AM.
当点D在点B右侧时,过点E作EH⊥y轴于点H
∵∠AOD=∠AHE=∠DAE=90°,
∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,
∵AD=AE
∴△DOA≌△AHE(AAS),
∴EH=AO=3=OB,OD=AH
∴∠EHO=∠BOH=90°,
∵∠BMO=∠EMH,OB=EH=3,
∴△BOM≌△EHM(AAS),
∴OM=MH
∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)
整理可得OA﹣OD=2AM.
综上:OA+OD=2AM或OA﹣OD=2AM.
【点睛】
此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.
28.(1)8;(2)145°;(3)详见解析.
【解析】
【分析】
(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;
(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出
∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;
(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.
【详解】
解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,
∵A(﹣2,2)、B(4,4),
∴AD=OD=2,BE=OE=4,DE=6,
∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=1
2
×(2+4)×6﹣
1
2
×2×2﹣
1
2
×4×4=8;
(2)作CH // x轴,如图2,
∵D(0,﹣4),M(4,﹣4),
∴DM // x轴,
∴CH // OG // DM,
∴∠AOG=∠ACH,∠DEC=∠HCE,
∴∠DEC+∠AOG=∠ACB=90°,
∴∠DEC=90°﹣55°=35°,
∴∠CEF=180°﹣∠DEC=145°;
(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,
而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,
∴∠NEC=∠HEC,
∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,
∵∠HEC=90°﹣∠AOG,
∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.
【点睛】
本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.
29.模型建立:见解析;应用1:652:(1)Q(1,3),交点坐标为(5
2
,0);
(2)y=﹣x+4
【解析】
【分析】
根据AAS证明△BEC≌△CDA,即可;
应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;
应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出
Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.
【详解】
如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,
∴∠ADC=∠BEC=90°,
∴∠ACD+∠DAC=∠ACD+∠BCE=90°,
∴∠DAC=∠BCE,
∵AC=BC,
∴△BEC≌△CDA(AAS);
应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,
∵∠ADC=90°,AD=6,CD=8,
∴AC=10,
∵BC=10,AB2=200,
∴AC2+BC2=AB2,
∴∠ACB=90°,
∵∠ADC=∠BHC=∠ACB=90°,
∴∠ACD=∠CBH,
∵AC=BC=10,
∴△ADC≌△CHB(AAS),
∴CH=AD=6,BH=CD=8,
∴DH=6+8=14,
∵BH⊥DC,
∴BD=
应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,
由题意易:△OKQ≌△QHP(AAS),
设H(4,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=4﹣KQ=6﹣y,
又∵OK=y,
∴6﹣y=y,y=3,
∴Q(1,3),
∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,
∴点M是OP的中点,
∵P(4,2),
∴M(2,1),
设直线Q M的函数表达式为:y=kx+b,
把Q(1,3),M(2,1),代入上式得:
21
3
k b
k b
+=


+=

,解得:
2
5
k
b
=-


=

∴直线l的函数表达式为:y=﹣2x+5,
∴该直线l与x轴的交点坐标为(5
2
,0);
(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,
设Q(x,y),
∴KQ=x,OK=HQ=y,
∴x+y=KQ+HQ=4,
∴y=﹣x+4,
∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+4,
故答案为:y=﹣x+4.
【点睛】
本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.
30.(1)6-2t;(2)全等,理由见解析;(3)
8
3
;(4)经过24s后,点P与点Q第一
次在ABC的BC边上相遇
【解析】
【分析】
(1)根据题意求出BP,由PC=BC-BP,即可求得;
(2)根据时间和速度的关系分别求出两个三角形中,点运动轨迹的边长,由∠B=∠C,利用SAS判定BPD
△和CQP全等即可;
(3)根据全等三角形的判定条件探求边之间的关系,得出BP=PC,再根据路程=速度×时间公式,求点P的运动时间,然后求点Q的运动速度即得;
(4)求出点P、Q的路程,根据三角形ABC的三边长度,即可得出答案.
【详解】
(1)由题意知,BP=2t ,则
PC=BC-BP=6-2t,
故答案为:6-2t;
(2)全等,理由如下:
∵p Q
V V
=,t=1,
∴BP=2=CQ,
∵AB=8cm,点D 为AB的中点,
∴BD=4(cm),
又∵PC=BC-BP=6-2=4(cm),
在BPD
△和CQP中
BD PC
B C
BP CQ
=


∠=∠

⎪=

∴BPD △≌CQP (SAS )
故答案为:全等.
(3)∵p Q V V ≠,
∴BP CQ ≠,
又∵BPD △≌CPQ ,∠B=∠C ,
∴BP=PC=3cm ,CQ=BD=4cm ,
∴点,P Q 运动时间322
BP t ==(s ), ∴48332
Q CQ V t
===(cm/s ), 故答案为:83
; (4)设经过t 秒时,P 、Q 第一次相遇,
∵2/p V cm s =,8/3Q V cm s =
, ∴2t+8+8=83t ,
解得:t=24
此时点Q 走了824643⨯=(cm ),
∵ABC 的周长为:8+8+6=22(cm ),
∴6422220÷=,
∴20-8-8=4(cm ),
经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇,
故答案为:24s ,在 BC 边上相遇.
【点睛】
考查了全等三角形的判定和性质,路程,速度,时间的关系,全等三角形中的动点问题,动点的追及问题,熟记三角形性质和判定,熟练掌握全等的判定依据和动点的运动规律是解题的关键,注意动点中追及问题的方向.。

相关文档
最新文档