线性代数试卷-8开A卷 (3)

合集下载

线性代数考试试卷及参考答案(A卷)

线性代数考试试卷及参考答案(A卷)

,,t α是AX t t c α++仍t c ++= .满足条件3.m n ⨯矩阵A ()12,,,n ααα=,方程组=AX B 有解的充要条件是( ).()A 12,,,n ααα线性无关; ()B 12,,,,n B ααα线性相关; ()C 12,,,,n B ααα线性无关; ()D 12,,,n ααα与12,,,,n αααB 等价.4. 设A 是n n ⨯矩阵,则下列结论错误的是( ).()A AX =B 无解时,0=A ; ()B AX =B 有无穷多个解时,0=A ;()C 若0=A ,则AX =B 无解; ()D AX =B 有惟一解时,0≠A .5.二次型2122213212x x x x )x ,x ,x (f -+=的矩阵是( ).(A )⎥⎦⎤⎢⎣⎡-1021; (B )⎥⎦⎤⎢⎣⎡--1111;(C )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-000010021;(D )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--000011011.三.计算下列各题(本题满分为55分)1. 已知行列式512345222113124527,1112243150D == 求414243A A A ++和4445A A +. 其中4(1,2,3,4,5)j A j =为5D 中第4行第j 列元素的代数余子式.(本题满分为10分);2.(本题满分为15分)已知矩阵1111222233334444⎛⎫⎪⎪= ⎪⎪⎝⎭A ,求100A ...3.(本题满分为15分)问a b 、取何值时123423423412340221(3)223231x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩无解?有唯一解?有无穷多解?并在有无穷多解时求出通解..4.(本题满分为15分)已知20000101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与20000001B y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦相似, (1)求x 与y ;(2)求一个满足1P AP B -=的可逆阵P .四.证明(本题满分为10分)设A 是n 阶矩阵,证明:对于任意的B ,=AX B 都有解的充分必要条件是0≠A .线性代数试题答案与评分标准一、填空题1、62、-1283、(),i j E4、15、0k > 二、选择题1、B2、B3、D4、C5、D 三、计算题1、由已知条件得 41424344454142434445(111)(22)27,(222)(11)0.A A A A A A A A A A ⋅+⋅+⋅+⋅+⋅=⎧⎨⋅+⋅+⋅+⋅+⋅=⎩ ………………(5分)解方程得41424344459;18.A A A A A ++=-+= ………………(10分)2.将A 写成两个矩阵的乘积,即()11111222221111,3333344444⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A ……(5分) 故 ()()()100111222111111111111.333444⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A ………………(10分) 由于()12111110,34⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭则 ()10099999911111222221011111010.3333344444⎛⎫⎛⎫⎪ ⎪⎪ ⎪=== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭A A ……(15分)………………(15分)3、11110111100122101221(/)012(3)2002(2)01323100210B A b a b a b a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==→⎢⎥⎢⎥----+⎢⎥⎢⎥--⎣⎦⎣⎦111101111001221012210021000210002(2)01000(1)(2)1a a a b a a b ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥--⎢⎥⎢⎥-+---+⎣⎦⎣⎦(5分) 2,1a b =≠-且无解;2a ≠有唯一解;2,1a b ==-且有无穷多解。

线性代数试题线性代数试卷及答案大全(173页大合集)

线性代数试题线性代数试卷及答案大全(173页大合集)
由 ,得 的特征值 ,
属于 对应的特征向量为 ,单位化: ,
属于 对应的特征向量为 ,单位化: ,
取 ,则有 。
八、(本题8分)证明:由
得 的特征值 ,

故 的最大特征值是 。
试卷2
闭卷考试时间:100分钟
一、填空题(本题15分,每小题3分)
1、若n阶行列式零元素的个数超过n(n-1)个,则行列式为。
三、(本题8分)解:从第一行开始,每行乘 后逐次往下一行加,再按最后一行展开得:
原式= 。
四、(本题12分)解:由 ,得: ,
可逆,故 ;
由于 , 。
五、(本题14分)解:(1)令 , ,
则 线性无关,故 是向量组 的一个极大无关组;
(2)由于4个3维向量 线性相关,
若 线性无关,则 可由 线性表示,与题设矛盾;
A:矩阵A必没有零行
B:矩阵A不一定是阶梯形矩阵
C:矩阵A必有零行
D:矩阵A的非零行中第一个不等于零的元素都是1
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A b)的秩都等于3,A是3×4矩阵,则▁▁▁。【A】
A:方程组有无穷多解
B:无法确定方程组是否有解
C:方程组有唯一解
D:方程组无解
试卷1
4、若 阶实方阵 , 为 阶单位矩阵,则( )。
(A) (B)
(C) (D)无法比较 与 的大小
5、设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )。
(A) ( B) (C) (D)
三、(10分)计算 阶行列式 , 的主对角线上的元素都为 ,其余位置元素都为 ,且 。
四、(10分)设3阶矩阵 、 满足关系: ,且 ,求矩阵 。
B:Ax=0的基础解系中的解向量的个数不可能为n-r

《线性代数》模拟试卷(A)卷

《线性代数》模拟试卷(A)卷

厦门大学网络教育2008-2009学年第一学期《线性代数》模拟试卷( A )卷一、单项选择题(每小题3分,共24分).1. 若111221226a a a a =,则121122212020021a a a a --的值为( ). A .12; B. -12; C. 18; D. 0. 2. 设A B 、为同阶方阵,则下面各项正确的是( ).A.若0AB =, 则0A =或0B =;B.若0AB =,则0A =或0B =;C.22()()A B A B A B -=-+;D.若A B 、均可逆,则111()AB A B ---=.3. 若方程组12312302403690x t x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 的基础解系含有两个解向量,则 t =( ). A .2; B .4; C .6; D .8.4. 已知方程组A x b =对应的齐次方程组为0Ax =,则下列命题正确的是( ).A .若0Ax =只有零解,则Ax b =一定有唯一解;B .若0Ax =有非零解,则Ax b =一定有无穷解;C .若Ax b =有无穷解,则0Ax =一定有非零解;D .若Ax b =有无穷解,则0Ax =一定只有零解.5. 设12, u u 是非齐次线性方程组Ax b =的两个解,则以下结论正确的是( ).A .12u u +是Ax b =的解;B .12u u -是Ax b =的解;C .1ku 是Ax b =的解(1k ≠);D .12u u -是0Ax =的解. 6. 设123,,a a a 线性相关,则以下结论正确的是( ).A .12,a a 一定线性相关;B .13,a a 一定线性相关;C .12,a a 一定线性无关;D .存在不全为零的数123,,k k k ,使得1122330k a k a k a ++=.7. 若20000101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与200010001B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦相似,则x =( ). A .-1; B .0; C .1; D .2.8. 二次型f(x 1,x 2,x 3)=32232221x x 12x 3x 3x +++是( ).A. 正定的;B. 半正定的;C. 负定的;D. 不定的.二、填空题(每小题4分,共24分)1. 设802020301A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,*A 为A 的伴随矩阵,则*A =_________. 2. 非齐次线性方程组m n A x b ⨯=有唯一解的充分必要条件是_________.3. 设方程组123131232 1 2 53(8)8x x x x x x x a x ++=⎧⎪+=⎨⎪+++=⎩,当a 取__________时,方程组无解.4. 设向量组1(1,3,)a k =-,2(1,0,0)a =,3(1,3,2)a =-线性相关,则k =_________.5. 二次型3231212322213214225),,(x x x x x tx x x x x x x f +-+++=为正定二次型,则t 的取值范围是_____________.6. 3阶方阵A 的特征值分别为1,-2,3,则21()A -的特征值为_________.三、计算题(共38分).1. (10分) 计算行列式 3112513420111533D ---=---.2. (10分) 求123221343A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的逆矩阵1A -.3. (10分)求向量组)11,9,5,8(),2,1,1,3(),10,7,1,1(),1,1,1,2(4321=--=-==αααα的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.4. (8分)已知111131111A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求A 的特征值. 四、证明题(每小题7分,共14分).1. 设列矩阵12(,,,)T n X x x x = 满足1T X X =,E 为n 阶单位阵,2T H E XX =-,证明: H 是对称阵,且T HH E =.2. 证明二次型22256444f x y z xy xz =---++是负定的.答案:一.1.A 1211121112111112222122212221212220220(1)22122021a a aa a a a a a a a a a a a a =-=-==--2. B 由矩阵的理论可得选项B3. C 基础解系含有两个解向量3()2()1r A r A ⇒-=⇒=,12312324006369000A t t ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,6t =时,()1r A =4. C 当()()r A r A =时,Ax b =有解5. D 1212()2A u u Au Au b b b +=+=+=,因此12u u +不是Ax b =的解, 下面的选项类似讨论6. D 由线性相关的定义可得选项D7. B 相似矩阵具有相同的特征值8.D f 的矩阵是100036063A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,A 的各阶主子式为:1110a =>,103003=>,10003613366270063A ==⋅⋅-⋅=-<,因此f 为不定的 二.1.16 8022016124301A ==-=, 33***416A A A E A AA A ====⇒=2. n A r =)( 由方程组解的理论可得3. 0 方程组无解可得()(,)r A r A b ≠11211121112110120111011153880223001a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→--→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--⎣⎦⎣⎦⎣⎦,(,)3r A b =,当0a =时,()2r A =。

全校各专业《线性代数》课程试卷及答案A卷

全校各专业《线性代数》课程试卷及答案A卷

全校各专业《线性代数》课程试卷及答案A 卷试卷 A 考试方式 闭卷 考试时间(120分钟)一、选择题(本题共4小题,每小题4分,满分16分。

每小题给出的四个选项中,只有一项符合题目要求) 1、设A ,B 为n 阶方阵,满足等式0=AB,则必有( ) (A)0=A 或0=B ; (B)0=+B A ; (C )0=A 或0=B ; (D)0=+B A 。

2、A 和B 均为n 阶矩阵,且222()2A B A AB B +=++,则必有( ) (A) A E =; (B)B E =; (C ) A B =. (D) AB BA =。

3、设A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是( )(A) A 的列向量线性无关; (B) A 的列向量线性相关; (C ) A 的行向量线性无关; (D) A 的行向量线性相关. 4、 n 阶矩阵A 为奇异矩阵的充要条件是( ) (A) A 的秩小于n ; (B) 0A ≠;(C) A 的特征值都等于零; (D) A 的特征值都不等于零; 二、填空题(本题共4小题,每题4分,满分16分)5、若4阶矩阵A 的行列式5A =-,A *是A 的伴随矩阵,则*A = 。

6、A 为n n ⨯阶矩阵,且220A A E --=,则1(2)A E -+= 。

7、已知方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+43121232121321x x x a a 无解,则a = 。

8、二次型2221231231213(,,)2322f x x x x x tx x x x x =++++是正定的,则t 的取值范围是 。

三、计算题(本题共2小题,每题8分,满分16分)9、计算行列式1111111111111111x x D y y+-=+-10、计算n 阶行列式121212333n n n n x x x x x x D x x x ++=+四、证明题(本题共2小题,每小题8分,满分16分。

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。

(下面的r(A),r(B)分别表示矩阵A,B的秩)。

A) r(A)。

r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。

A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。

3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。

(B) B的每个行向量都是齐次线性方程组AX=O的解。

(C) BA=O。

(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。

5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。

11;(C) -1;(D)。

(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。

A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。

1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。

(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。

线性代数试题(附参考答案)

线性代数试题(附参考答案)

《 线性代数 》课程试题(附答案)一、 填空。

(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 22.设⎪⎪⎪⎭⎫⎝⎛=003020100A ,则=-1A3.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A 4.设CB A ,,为n 阶方阵,若0≠A ,且C AB =,则=B 5.矩阵A 可逆的充要条件为6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂ (填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有 个解向量。

二、 计算行列式的值。

(10分)321103221033210=D三、 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求1-A 。

(10分)四、 设矩阵⎪⎪⎭⎫ ⎝⎛=1112A ,求矩阵X ,使E A AX 2+=。

(10分)五、 问K 取什么值时下列向量组线性相关(10分) T k )1,2,(1=α,T k )0,,2(2=α,T )1,1,1(3-=α。

六、 设A ,B 为n 阶矩阵且2B B =,E B A +=,证明A 可逆并求其逆(6分)七、 设矩阵⎪⎪⎪⎭⎫⎝⎛----=979634121121112A ,求矩阵A 的列向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示。

(15分)八、 求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解。

(15分)《线性代数》课程试题参考答案一、 填空。

(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 2482.设⎪⎪⎪⎭⎫ ⎝⎛=003020100A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001021031003.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A ⎪⎪⎭⎫ ⎝⎛--1324 4.设C B A ,,为n 阶方阵,若0≠A ,且C AB =,则=B C A 1- 5.矩阵A 可逆的充要条件为0≠A6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为n A r <)(7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂线性无关(填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有r n -个解向量。

(完整版)专接本(成人大专)线性代数试卷

(完整版)专接本(成人大专)线性代数试卷

专接本(成人大专)《线性代数(经管类)》试卷(期终试卷)班级: 姓名: 学号: 成绩:一、单项选择题:(20×2分=20分)1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233332332332a a a a a a a a a a a a ------=( ).A. 6B. -6C. 18D. -18 2. 设A 为3阶方阵,且|A |=2,则|2A -1|=( ). A. -4 B. -1 C. 1 D. 43. 设A 、B 均为n 阶方阵,则必有 ( ).A. A B A B +=+B. AB BA =C. AB BA =D. T T AB A B =4. 已知向量组123410000,1,0,20010αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 下列选项为该向量组的一个极大无关组的是 ( ).A. 12,ααB. 23,ααC. 123,,αααD. 1234,,,αααα 5. 设A 是n m ⨯矩阵,齐次线性方程组Ax =0有非零解的充要条件是 ( ). A. ()r A n = B. ()r A n < C. 0A = D. m n > 6. 设向量组4321,,,αααα线性相关,则向量组中( ). A .必有一个向量可以表为其余向量的线性组合 B .必有两个向量可以表为其余向量的线性组合 C .必有三个向量可以表为其余向量的线性组合 D .每一个向量都可以表为其余向量的线性组合7. 设3阶实对称矩阵A 的特征值为λ1=λ2=0,λ3=2,则秩(A )=( ). A .0 B .1 C .2D .38. 设A 与B 是两个相似n 阶矩阵,则下列说法错误的是( ). A. ||||A B = B.秩(A )=秩(B )C. 存在可逆阵P ,使1P AP B -= D. E A E B λλ-=- 9. 下列向量中与(1,1,1)α=-正交的向量是( ).A. 1(1,1,1)α=B. 2(1,1,1)α=-C. 3(1,1,1)α=-D. 4(0,1,1)α=- 10. 二次型正定的充要条件是为实对称阵)(A Ax x T =f ( ).A. A 可逆B.|A |>0C. A 的特征值之和大于0D. A 的特征值全部大于0 二、填空题(20×2分=20分)11.设(1234)A =,1234B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,则AB =_________________.12. 矩阵A =⎪⎪⎭⎫⎝⎛--1111的伴随矩阵A *=______________. 13. 已知某个3元非齐次线性方程组Ax=b 的增广矩阵A 经初等行变换化为:⎪⎪⎪⎭⎫ ⎝⎛-----→1)1(0021201321a a a A ,若方程组无解,则a 的取值为____________.14.设向量(Tb α=为单位向量,则数b =______________. 15. 设A 为5阶方阵,且r (A )=3,则由A 的列向量张成的线性空间的维数是______________.16. ⎪⎪⎪⎭⎫ ⎝⎛=300041003A ,则 =--1)2(E A .17. 若A 、B 为5阶方阵,且Ax =0只有零解,且r (B )=3,则r (AB )=_________________.18. 二次型3121232221321332),,(x x x x x x x x x x f -+-+=对应的对称矩阵是____________________.19. 已知1(1,0,1)TX =-, 2(3,4,5)TX =是3元非齐次线性方程组Ax =b 的两个解向量,则对应齐次线性方程组Ax =0有一个非零解向量ξ=__________________.20. 已知A 有一个特征值-2,则22B A E =+必有一个特征值____________.三、计算题(6×9分=54分)21. 计算文字行列式abac ae bdcd de bf cfef---.22. 设100110111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111111B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求矩阵X 使得AX B =.23. 求非齐次线性方程组123412341234245373642748171121x x x x x x x x x x x x -++=⎧⎪-++=⎨⎪-++=⎩的通解.24. 向量组123451122102151,,,,2031311041ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.求:(1) 该向量组的秩.(2) 该向量组的一个极大无关组.25. 求矩阵200021012A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的所有特征值和最小的特征值对应的所有特征向量.26. 求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=08022120111601152033B 的秩.四、证明题(本大题共1小题,6分)27. 任给向量1234,,,αααα,证明12233441,,,αααααααα++++线性相关.专接本(成人大专)《线性代数(经管类)》试卷(期终试卷参考答案)一、单项选择题(本大题共10小题,每小题2分,共20分) 1-5 ADBCB 6-10 ABDDD 二、填空题(本大题共10小题,每小题2分,共20分)11. 30 12. 1111⎛⎫⎪--⎝⎭13. 0 14. 0 15. 3 16. 1001/21/20001⎛⎫ ⎪- ⎪ ⎪⎝⎭ 17. 3 18. 11/23/21/2203/203-⎛⎫ ⎪ ⎪⎪--⎝⎭19. (2,4,6)T或(2,4,6)T--- (此题答案不唯一,是此向量的非零倍均可) 20. 8三、计算题(本大题共6小题,每小题9分,共54分)21. 1111114111abac ae b c e bdcd de adf b c e abcdef abcdef bfcfefbce----=-=-=---22. 1X A B -=, (2分)100111001111011010001111100100⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, (8分) 110000X ⎛⎫⎪= ⎪ ⎪⎝⎭. (9分)23. 245371211036427~24537481711211213914----⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭1分12110~0075700141014---⎛⎫ ⎪⎪ ⎪⎝⎭3分2120175~0011700000-⎛⎫- ⎪⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭6分 方程的解为:12243422/7110105/70010x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭9分 24. 112211122111221021510215102151203130215100000110410022200222⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪---⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪---- ⎪ ⎪⎪-----⎝⎭⎝⎭⎝⎭ 11221021510022200000⎛⎫ ⎪- ⎪→ ⎪-- ⎪⎝⎭, (6分) 该向量组的秩为3, (7分) 极大无关组为123,,ααα(或124,,ααα或125,,ααα). (9分)25. 200021012A E λλλλ-⎛⎫⎪-=- ⎪ ⎪-⎝⎭, (1)(2)(3)A E λλλλ-=----, (3 分)特征值为1231,2,3λλλ===. (5 分) 最小特征值为1,100100011011011000⎛⎫⎛⎫ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, (7分) 123330x x x x x ==-= 特征向量为01,0.1k k ⎛⎫⎪-≠ ⎪ ⎪⎝⎭ (9分)26. 33025110211121110611106100042110213302500042220802208000042B ------⎛⎫⎛⎫⎛⎫ ⎪⎪⎪--⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪------ ⎪⎪⎪--⎝⎭⎝⎭⎝⎭ 11021000420000000000--⎛⎫⎪⎪→⎪⎪⎝⎭(7分)初等变换成行阶梯型后 有两行非零行,所以秩R(B)=2. (9分)四、证明题(本大题共1小题,6分)27. 设112223334441()()()()0k k k k αααααααα+++++++=, (3分)令12341,1,1,1k k k k ==-==-,则上式一定成立. (3分) 所以12233441,,,αααααααα++++线性相关.。

海南大学2012-2013《线性代数》 试题(A卷)

海南大学2012-2013《线性代数》 试题(A卷)

海南大学2012-2013学年度第二学期试卷科目:(工科类)《线性代数》试题(A 卷)姓名: 学 号: 学院: 专业班级:时限: 120 分钟 考试形式:闭卷笔试所有试卷均配有答题纸,考生应将答案写在答题纸上,写在试卷上一律无效大题号 一 二 三 四 五 六 七 八 总分 得分一、选择题:(每题3分,共15分)1.行列式0100002000034000=_____-24_____2. 设4阶方阵A 的秩为2,则其伴随矩阵A *的行列式为0___3. 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,若m n >,则AB =____0___4.若n 元齐次线性方程组AX O =有n 个线性无关的解向量,则A =O5. 设三阶方阵A 有三个特征值1232,3,λλλ==,若 A =24,则3λ=4二、填空题(每题3分,共15分)1. 设A 为n 阶方阵,且AX O =有非零解,则矩阵A 必有一个特征值为( C )(A) 1 (B) -1 (C) 0 (D) 无法确定得分 阅卷教师得分 阅卷教师2. 设矩阵A 、B 都为n 阶方阵A =2,B =-3,则13A B *-=( D )(A) 6 (B) 6n (C) -6 (D) 16n --3.若可逆方阵A 满足2A A = ,则 A =( A )(A)1 (B) 0 (C) -1 (D)无法确定4. 设三阶行列式D 的第三行元素依次是1、-1、1,它们的代数余子式依次是2、8、-5,则D =( B ) (A ) 11 (B) -11 (C) 5 (D)-55. n 元非齐次线性方程组AX β=有解,其中A 为(1)n n +⨯的矩阵,则A β=( A )(A) 0 (B) 1 (C) -1 (D) 无法确定三 、计算题(14分)求非齐次线性方程组1234123412343133445980x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩的通解。

XXXX大学《线性代数》模拟试卷答案(A卷)

XXXX大学《线性代数》模拟试卷答案(A卷)

RAb RA 2 4,故原方程组有无穷多个解.………………………6 分
导出组的基础解系为
ξ1
112
;
0
0
1
1
ξ2
2 0
,原方程组的一个 特解为
η
2 0
0
0
1
0
所以,原方程组的通解可表示为:
x t1ξ1 t2ξ2 η,其中t1和t2为任意常数. ………………………………12 分
第 1 页共 4 页
2 111
2.
求 n阶行列式
Dn
1
2
1
1.
1 112
1 1 1 1
解:
1 Dn [2 (n 1)]
2
1
1 ……………………………………6 分
1 1 1 2
1 1 1 1
n
1
0
21
0
0
0 0 0 21
(n 1) 1n n 1 ……………………………………………12 分
2 2
.
3 3
0
作正交变换 x py 把原二次型化为标准型 f 3 y12 3 y32 .……………12 分
四.证明题(共 1 小题,共 10 分)
已知向量组, , 线性无关,证明向量组 , , 2 3 也线 性无关.
证:令 k1 k2( ) k3 2 3 0
1 2
3 0
0
2 1 1 3 2 3 3 3
1
2 2
可得特征值: 1 3, 2 0, 3 3 .……………………………………6 分
对于特征值
1
3
,由 A
3E x
0 得其特征向量为1

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]

线性代数试题A答案[大全5篇]第一篇:线性代数试题A答案2006-2007学年第二学期线性代数试题A卷参考答案及评分标准一.填空题(本题满分12分,每小题3分)⎛1-20 0 -25 -111、1;2、-3;3、A=00 3 1 00-3⎝0⎫⎪0⎪2⎪;4、2 ⎪3⎪1⎪⎪3⎭二、选择题(本题满分12分,每小题3分,.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.C;2.C;3.A;4、B 三.计算行列式(本题满分6分)解 1 10Dn=001-110010Λ00-111000-11=100010100200Λ03ΛΛ1Λ00Λ0100Λ00n3-1ΛΛ011ΛΛΛΛΛΛΛΛΛΛΛΛ分Λn-1=n3分解2 10Dn=001-110010Λ00-111000=Dn-1+13分-1ΛΛ011ΛΛΛΛΛΛΛΛ-11=n3分四.(本题满分12分)解:⑴ 由等式A+B=AB,得A+B-AB+E=E,即(A-E)(B-E)=E3分因此矩阵A-E可逆,而且(A-E)=B-E.2分-1⑵ 由⑴知,A-E=(B-E),即A=(B-E)+E-1-1A=(B-E)+E或A=B(B-E)-12分-1⎛0-10-30100⎛⎫⎛⎫⎪⎪1=200⎪+010⎪=-3 001⎪001⎪0⎝⎭⎝⎭⎝⎛1 1=-3 0 ⎝1210⎫0⎪⎪0⎪ 2分⎪2⎪⎪⎭1200⎫0⎪100⎫⎪⎛⎪0⎪+010⎪3分⎪⎪1⎪⎝001⎭⎪⎭五.(本题满分14分)解:110⎤⎡1⎡11⎢01⎥⎢0221⎥→⎢A=⎢⎢0-1a-3-2b⎥⎢0⎢⎥⎢321a-1⎣⎦⎣01110⎤1221⎥⎥4分0a-10b+1⎥⎥00a-10⎦所以,⑴ 当a≠1时,rA=r(A)=4,此时线性方程组有唯一解.2分⑵ 当a=1,b≠-1时,r(A)=2,rA=3,此时线性方程组无解.2分⑶ 当a=1,b=-1时,rA=r(A)=2,此时线性方程组有无穷多组解.2分此时,原线性方程组化为()()()⎧x1+x2+x3+x4=0 ⎨⎩x2+2x3+2x4=1因此,原线性方程组的通解为⎧x1=x3+x4-1⎪x=-2x-2x+1⎪234 ⎨x=x3⎪3⎪x4⎩x4=或者写为⎡x1⎤⎡1⎤⎡1⎤⎡-1⎤⎢x⎥⎢-2⎥⎢-2⎥⎢1⎥2⎢⎥=k⎢⎥+k⎢⎥+⎢⎥4分⎢x3⎥1⎢1⎥2⎢0⎥⎢0⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣0⎦⎣1⎦⎣0⎦⎣x3⎦六.(本题满分12分)3-λ解 A-λE=-101202-λ1=(2-λ)(3-λ),2分03-λ所以得特征值λ1=2,λ2=λ3=32分⎛101⎫⎪对λ1=2,解方程组(A-2E)x=0,由A-2E=-101⎪,得特征向量001⎪⎝⎭⎛0⎫⎪ξ1=1⎪0⎪⎝⎭⎛0⎫⎪所以对应λ1=2的全部特征向量为c1 1⎪,c1≠03分0⎪⎝⎭⎛0 1对λ2=λ3=3,解方程组(A-3E)x=0,由A-3E=-0⎝01⎫1⎛10⎪r 1-1⎪−−→0 0100⎪0 ⎭⎝00⎫⎪⎪,⎪⎭⎛1⎫⎛1⎫⎪⎪得特征向量ξ2=-1⎪,全部特征向量为c2 -1⎪,c2≠03分0⎪0⎪⎝⎭⎝⎭A没有三个线性无关的特征向量,所以不能对角化.2分七.(本题满分12分)⎛1λ解:f的矩阵为A=λ4 -12⎝-1⎫⎪2⎪.…………2分 4⎪⎭因此,二次型f为正定二次型.⇔矩阵A为正定矩阵.⇔矩阵A的各阶顺序主子式全大于零.…………2分而矩阵A的各阶顺序主子式分别为D1=1>0,D2=1λ=4-λ2,…………2分λ41D3=A=λλ-12=-4(λ-1)(λ+2).…………2分 44-12所以,二次型f 为正定二次型.⇔D2=4-λ2>0,且D3=-4(λ-1)(λ+2)>0由 D2=4-λ2>0,得-2<λ<2 .由 D3=-4(λ-1)(λ+2)>0,得-2<λ<1 .因此,得-2<λ<1 .即,二次型f为正定二次型.⇔-2<λ<1…………4分八.(本题满分8分)已知三维向量空间的一组基为α1=(1,1,0),α2=(1,0,1),α3=(0,1,1)求向量β=(2,0,0)在上述基下的坐标.解:设向量β在基(α1,α2,α3)下的坐标为(x1,x2,x3),则有x1α1+x2α2+x3α3=β,2分写成线性方程组的形式,有⎛1⎫⎛1⎫⎛0⎫⎛2⎫⎪⎪⎪⎪x1 1⎪+x2 0⎪+x3 1⎪=0⎪2分 0⎪1⎪1⎪0⎪⎝⎭⎝⎭⎝⎭⎝⎭即⎧x1+x2=2⎪⎨x1+x3=0,⎪x+x=03⎩2得唯一解x1=1,x2=1,x3=-1,3分,1,-1).1分因此所求坐标为(1九.(本题满分12分)证法1:记A=(α1,α2,Λ,αm),B=(α1,α2,Λ,αm,β),显然r(A)≤r(B).1°因为α1,α2,Λ,αm线性无关,知r(A)=m1分2°因为α1,α2,Λ,αm,β线性相关,知r(B)<m+1 1分因此r(B)=m,1分Ax=(α1,α2,Λ,αm)x=b有解且唯一。

《线性代数》期末考试试题(A卷)及评分标准

《线性代数》期末考试试题(A卷)及评分标准

《线性代数》期末考试试题(A 卷)及评分标准一.单项选择题(每小题3分,共30分)1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。

()A ()()r A r B <; ()B ()()r A r B =;()C ()()r A r B >; ()D 无法判定()r A 与()r B 之间的关系。

2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。

()A A 中有一行元素全为零; ()B A 有两行(列)元素对应成比例; ()C A 中必有一行为其余行的线性组合; ()D A 的任一行为其余行的线性组合。

3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( )() ;A A O B O ==或()AX B B 的每个行向量都是齐次线性方程组=O 的解.();C BA O = ()()().D R A R B n +≤4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( )()A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠; ()B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++=12(),,...,s C ααα的秩等于s ;12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示5.设n 阶矩阵(3)n ≥1...1................1a aa a aa A a a a ⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭,若矩阵A 的秩为1n -,则a 必为( )。

()A 1; ()B 11n-;()C 1-; ()D 11n -.6.四阶行列式112233440000000a b a b b a b a 的值等于( )。

线性代数考试题及答案3

线性代数考试题及答案3

2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。

2、闭卷考试。

评阅人:_____________ 总分人:______________ 一、单项选择题。

(每小题3分,共24分) 【 】1.行列式 (A ) (B ) (C ) (D) 【 】2.设为阶方阵,数,,则 (A) (B ) (C) (D) 【 】3.已知为阶方阵,则下列式子一定正确的是 (A ) (B) (C ) (D) 【 】4。

设为阶方阵, ,则 (A ) (B) (C ) (D) 【 】5。

设矩阵与等价,则有 (A ) (B) (C ) (D ) 不能确定和的大小 【 】6。

设元齐次线性方程组的系数矩阵的秩为,则有非零解的充分必要条件是 (A ) (B ) (C ) (D ) 【 】7。

向量组线性相关的充分必要条件是 (A ) 中至少有一个零向量 (B) 中至少有两个向量成比例 (C) 中每个向量都能由其余个向量线性表示 (D ) 中至少有一个向量可由其余个向量线性表示 【 】8. 阶方阵与对角阵相似的充分必要条件是(A) (B)有个互不相同的特征值 (C )有个线性无关的特征向量 (D)一定是对称阵 二、填空题。

(每小题3分,共15分) 1。

已知阶行列式的第行元素分别为,它们的余子式分别为,则 。

2.设矩阵方程,则 .__________________系__________专业___________班级姓名_______________学号_______________………………………………(密)………………………………(封)………………………………(线)………………………………3.设是非齐次线性方程组的一个特解,为对应齐次线性方程组的基础解系,则非齐次线性方程组的通解为 .4。

设矩阵的秩,则元齐次线性方程组的解集的最大无关组的秩 .5.设是方阵的特征值,则 是的特征值三、计算题(每小题8分,共40分). 1.计算行列式. 2.已知矩阵,求其逆矩阵。

(完整版)线性代数试题套卷及答案

(完整版)线性代数试题套卷及答案

(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T为正定矩阵的(A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 无关条件。

2.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2321-==βαααB ,则行列式 =+B A(A) 40; (B) 16-; (C) 3-; (D) 40-。

3.设向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线 性表示,则以下结论中不能成立的是(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α,向量组s j ββα,,,2线性相关; (C) 存在一个j α,向量组s j ββα,,,2线性无关; (D) 向量组s ααα,,,21与向量组s βββ,,, 21等价。

4.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是(A) 若A 的列向量组线性无关,则0=Ax 有非零解; (B) 若A 的行向量组线性无关,则0=Ax 有非零解; (C) 若A 的列向量组线性相关,则0=Ax 有非零解; (D) 若A 的行向量组线性相关,则0=Ax 有非零解。

5.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则√√(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;(C) 111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。

二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6. 列向量⎪⎪⎪⎭⎫ ⎝⎛-=111α 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量. 则λ= ,a = ,b = 。

《线性代数》期末试卷A(含答案)

《线性代数》期末试卷A(含答案)

《线性代数》期末试卷 (综合卷)一、填空与选择题(本题满分30分,每空3分)1. 如果矩阵1232636A x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭正定,则x 的取值范围是( 9x > ).2. 设3阶方阵11133112k -⎛⎫ ⎪= ⎪ ⎪-⎝⎭A ,若存在3阶非零方阵B ,使得=0AB ,则k =( 3- ),方阵B 的秩()R =B ( 1 ),=B ( 0 ).3. 行列式10010010a bab a b ab a b aba b++=++( 432234a a b a b ab b ++++ ).4. 已知线性方程组()12312312321232320x x x x x a x x ax x ++=⎧⎪+++=⎨⎪+-=⎩无解,则=a ( -1 ).5. 设3阶方阵A 相似于方阵B ,若A 有特征值1,1,2,-,则+=B E ( -4 ).6. 已知123,,ααα线性相关,而234,,ααα线性无关,则1234,,,αααα中 (4α )不能用另外3个向量线性表示.7. 如果123,,ξξξ是向量组A 的极大无关组,则:( A )也是向量组A 的极大无关组. (A )122331,,ξξξξξξ+++ (B )1223321,,2ξξξξξξξ++++ (C )1213321,,23ξξξξξξξ++++ (D )1323321,,32ξξξξξξξ++++ 8. 123,,,αααβ线性无关,而123,,,αααγ线性相关,则( D ).(A) 123,,,αααβγ+c 线性相关. (B) 123,,,αααβγ+c 线性无关. (C) 123,,,αααβγ+c 线性相关. (D)123,,,αααβγ+c 线性无关.二、 (本题满分10分) 已知矩阵430210001⎛⎫⎪= ⎪ ⎪-⎝⎭A ,3阶方阵B 满足()1*--=-B E A E ,求1-B . 解:()()()()1*---=--B E B E B E A E ,()()**---=B A E E A E E ,()**-=B A E A ,()**-=B A A EA A A ,()-=B A E A A E ,又2=A ,于是()22-=B E A E ,()122-=BE A E ,从而 ()131021112102223002-⎛⎫-- ⎪⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭B E A E A =。

2022年线性代数试卷及答案6套

2022年线性代数试卷及答案6套

线性代数试卷及答案6套.试卷(一): 一. 填空题(每小题4分,共20分)1.已知正交矩阵P 使得⎪⎪⎪⎭⎫ ⎝⎛--=200010001AP P T ,则.________)(2006=+P A E A P T2.设A 为n 阶方阵,n λλ,,1 为A 的n 个特征值,则 ._________)det(2=A 3.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有无数多个解的充分必要条件是:._________4.若向量组T T T t )3,2,(,)1,3,2(,)2,4,0(===γβα的秩为2,则._____=t5.,27859453251151)(32--=x x x x D 则0)(=x D 的全部根为:_________.二. 选择题 (每小题4分,共20分)1.行列式001010100 ---的值为( ).A. 1B. -1C. 2)1()1(--n n D. 2)1()1(+-n n2. 对矩阵n m A ⨯施行一次行变换相当于( ).A. 左乘一个m 阶初等矩阵B. 右乘一个m 阶初等矩阵C. 左乘一个n 阶初等矩阵D. 右乘一个n 阶初等矩阵 3. 若A 为n m ⨯矩阵,{},,0|,)(n R X AX X M n r A r ∈==<= 则( ). A. M 是m 维向量空间 B. M 是n 维向量空间 C. M 是r m -维向量空间 D. M 是r n -维向量空间 4. 若n 阶方阵A 满足,,02=A 则下列命题哪一个成立 ( ).A. 0)(=A rB. 2)(n A r =C. 2)(n A r ≥D. 2)(nA r ≤5. 若A 是n 阶正交矩阵,则下列命题哪一个不成立( ). A. 矩阵T A 为正交矩阵 B. 矩阵1-A 为正交矩阵 C. 矩阵A 的行列式是1± D. 矩阵A 的特征值是1±三. 解下列各题(每小题6分,共30分)1. 若A 为3阶正交矩阵, *A 为A 的伴随矩阵, 求).det(*A2. 计算行列式.111111111111aa a a 3. 设,,100002020B A AB A -=⎪⎪⎪⎭⎫ ⎝⎛=求矩阵.B4. 求向量组,)2,1,2,1(1T =α,)2,1,0,1(2T =α,)0,0,1,1(3T =αT )4,2,1,1(4=α的一个 最大无关组.5. 求向量T )1,2,1(=ω在基,)1,1,1(T =α,)1,1,0(T =βT )1,1,1(-=γ下的坐标. 四. (12分) 求方程组⎪⎩⎪⎨⎧=+--+=+++-=++-+631052372322543215432154321x x x x x x x x x x x x x x x的通解(用基础解系与特解表示).五.(12分) 用正交变换化下列二次型为标准型, 并写出正交变换矩阵3123222132122),,(x x x x x x x x x f -++= 六. 证明题(6分)设r ξξξβ ,,,021≠是线性方程组β=AX 对应的齐次线性方程组的一个 基础解系,η是线性方程组β=AX 的一个解, 求证ηηξηξηξ,,,,21+++r 线性无关.试卷(二):一.计算下列各题:(每小题6分,共30分)(1),180380162176380162225379162(2)求,3222E A A ++其中⎪⎪⎭⎫⎝⎛-=3112A(3)已知向量组T T T t ),2,1(,)3,3,2(,)3,2,0(321-===ααα线性相关,求.t (4) 求向量T )4,2,1(-=α在基T T T )1,2,1(,)1,1,0(,)1,0,1(321-===ααα下的坐标.(5) 设⎪⎪⎭⎫⎝⎛=5321A , 求A 的特征值.二.(8分) 设⎪⎪⎪⎭⎫ ⎝⎛=200002130A ,且,B A AB T +=求矩阵B.三. (8分) 计算行列式: 100200300321x c b a四. (8分) 设有向量组,)6,0,2,3,3(,)7,2,0,1,1(,)5,2,1,0,1(,)3,2,1,1,0(4321T T T T -=--===αααα 求该向量组的秩以及它的一个最大线性无关组.五. (8分) 求下列方程组的通解以及对应的齐次方程组的一个基础解系.⎪⎩⎪⎨⎧=--+=+-+-=-+-+.18257,432,1042354315432154321x x x x x x x x x x x x x x六. (8分) 求出把二次型323121232221222)(x x x x x x x x x a f -++++=化为标准形的正交变换,并求出使f 为正定时参数a 的取值范围.七. (10分) 设三阶实对称矩阵A 的特征值为3(二重根)、4(一重根),T )2,2,1(1=α是A 的属于特征值4的一个特征向量,求.A 八. (10分) 当b a ,为何值时,方程组⎪⎩⎪⎨⎧=++=++=++,233,1032,4321321321x bx x x bx x x x ax 有惟一解、无穷多解、无解?九.(10分) (每小题5分,共10分) 证明下列各题(1) 设A 是可逆矩阵, ,~B A 证明B 也可逆, 且.~11--B A (2) 设βα,是非零1⨯n 向量,证明α是n n ⨯矩阵T αβ的特征向量.试卷(三):一. 填空题(共20分)1. 设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有唯一解的充分必要条件是:2. 已知E 为单位矩阵, 若可逆矩阵P 使得11223,P AP P A P E --+= 则当E A -可逆时, 3A =3. 若t 为实数, 则向量组α=(0,4,t ),β=(2,3,1),γ=(t ,2,3+t )的秩为:4. 若A 为2009阶正交矩阵,*A 为A 的伴随矩阵, 则*A =5. 设A 为n 阶方阵,12,,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则1ni i i i E A λ=-∑ =二. 选择题(共20分)1. 如果将单位矩阵E 的第i 行乘k 加到第j 行得到的矩阵为)),(,(k i j P 将矩阵n m A ⨯的第i 列乘k 加到第j 列相当于把A :A, 左乘一个));(,(k j i P B ,右乘一个));(,(k j i PC . 左乘一个));(,(k i j PD ,右乘一个)).(,(k i j P2. 若A 为m ×n 矩阵,B 是m 维非零列向量,()min{,}r A r m n =<。

2022年线性代数试卷试卷及答案AB卷

2022年线性代数试卷试卷及答案AB卷

线 性 代 数 试 卷(A)一、选择题(每题3分,共15分)1._____________,2)(2101210211的值为则的秩若矩阵a A r a a A =⎪⎪⎪⎭⎫ ⎝⎛---=11-(D)1-(C)1-0(B)0(A)或者或2._____________,1||*=-=A A A 则,且为正交矩阵设3.设βα,是n 维列向量,0≠βαT,n 阶方阵T E A αβ+=,3≥n ,则在A 的 n 个特征值中,必然______________(A) 有n 个特征值等于1 (B) 有1-n 个特征值等于1 (C) 有1个特征值等于1 (D) 没有1个特征值等于14.______________,)()(,则阶方阵,且秩相等,既为设B r A r n B A =B)(A)(B),r(A (D)r(A)2B),r(A (C)r(A)2B)(A (B)0B)r(A (A)r r r +≤==+=-5._____________,)(b Ax n A r A n m ==⨯则非齐次线性方程组的秩设矩阵 )(A 一定无解 )(B 可能有解)(C 一定有唯一解 )(D 一定有无穷多解二、填空题(每题3分,共15分)1.设*A 是n 阶方阵A 的伴随矩阵,行列式2||=A ,则|2|*A =_____________2. D 中第二行元素的代数余子式的和∑=412j jA=__________ ,其中D =1111111*********---3. 已知实二次型321123122132,12224),(x x x ax x x x x x x f ++++=正定,则实常数a 的取值范围为________________A- D ) •A(C) A -A (A) T T (B)4. 2n 阶行列式 ________________=A B BA ,其中n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=a a a A 0000000 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=000000 b b b B5. 设A=,⎪⎪⎪⎭⎫ ⎝⎛101020101而n ≥2为正整数,则______21=--n n A A 三、计算题(每题9分,共54分) 1. 计算n 阶行列式•m x x x x x x m x x x x x m x •D n nnn ---=3213213212. 求矩阵X 使⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-==-+--120210006,100010002,011B A BX A BA AX ,其中3. 设非齐次线性方程组⎪⎩⎪⎨⎧=-++=++-=+++3432211244332114433213222dx x x c x c d x b x b x x d x a x a x x 有三个解向量 1η=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1211, 2η=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1112, 3η=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2423求此方程组系数矩阵的秩,并求其通解(其中tk j i d c b a ,,,为已知常数)4. 已知实二次型 ),,(321x x x f =)0(233232232221>+++λλx x x x x 经过正交变换QY X =,化为标准形23222152y y y ++,求实参数λ及正交矩阵Q5. 设线性方程组为 ⎪⎪⎩⎪⎪⎨⎧=-+-=+++=+++=+++b x x x x x x a x x x x x x x x x x 432143214321432131723153203,问a ,b 各取何值时,线性方程组无解,有唯一解,有无穷多解?在有无穷多解时求出其通解6. 在四元实向量构成的线性空间4R 中,求a 使4321,,,ββββ为4R 的基,并求由基43214321,,,,,,ββββαααα到的过渡矩阵P ,其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00011α ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00112α ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=01113α ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11114α ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1111a β ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=12112a β ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00113β ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00014β四、证明题(每题8分,共16分)1. 设 321,,ααα 是欧氏空间V 的标准正交基,证明:112321233123111(22)(22)(22)333βαααβαααβααα=+-=-+=--也是V 的标准正交基2. 设=f AX X T是n 元实二次型,有n 维实列向量21,X X ,使11AX X T0>,22AX X T0<, 证明:存在n 维列实向量00≠X ,使00AX X T=0线性代数考试A 参考答案一、选择题1.(A)2.(B)3.(B)4.(D)5.(B) 二、填空题1. 12*2|2|-=n A ;2. 0;3.27||<a ; 4.nb a )(22-; 5.0A 2A 1n n =--三、计算题1. 解 各列加到第一列,提出公因式•mx x x m x x x •m x D n n n ni i n ---=∑=2221111)( =•m m x x •m x n ni i ---∑=001)(218分=)()1(111m x mni i n n --∑=-- 9分2. 11)(--=-BA X A B A 3分⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120210003020200001X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=12/102/110003X 9分3. 由题设条件知1η,2η,3η是b AX =的三个解,因此3η-1η=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1612, 3η-2η=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1331 是对应的齐次线性方程组的线性无关解向量,因此,系数矩阵A 的秩)(A r ≤2 又A 中有二阶子式052112≠-=-,)(A r ≥2,因此)(A r =23分因此3η-1η,3η-2η为其导出组的基础解系。

考研数学一(线性代数)-试卷3

考研数学一(线性代数)-试卷3

考研数学一(线性代数)-试卷3(总分:58.00,做题时间:90分钟)一、选择题(总题数:8,分数:16.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

(分数:2.00)__________________________________________________________________________________________ 解析:2.设n维列向量组α1,α2,…,αm (m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为 ( )(分数:2.00)A.向量组α1,α2,…,αm可由向量组β1,β2,…,βm线性表出B.向量组β1,β2,…,βm可由向量组α1,α2,…,αm线性表出C.向量组α1,α2,…,αm与向量组β1,β2,…,βm等价D.矩阵A=[α1,α2,…,αm ]与矩阵B=[β1,β2,…,βm ]等价√解析:解析:A=[α1,α2,…,αm ],β=[β1,β2,…,βn ]等价r(α1,αm )=r(β1,…,βmβ1,β2,…,βm线性无关(已知α1,α2,…,αm线性无关时).3.要使都是线性方程组AX=0的解,只要系数矩阵A为(分数:2.00)A. √B.C.D.解析:解析:因[2,1,1]ξ1 =0,[-2,1,1]ξ2 =0.4.A,若存在3阶矩阵B≠O,使得AB=O,则 ( )(分数:2.00)A.λ=-2且|B|=0B.λ=-2且|B|≠0C.λ=1且|B|=0 √D.λ=1且|B|≠0解析:解析:B≠O,AB=O,故AX=0有非零解,|A|=0A≠O,故B不可逆,故λ=1,且|B|=0.5.齐次线性方程组的系数矩阵A 4×5 =[β1,β2,β3,β4,β5 ]经过初等行变换化成阶梯形矩阵为则 ( )(分数:2.00)A.β1不能由β3,β4,β5线性表出B.β2不能由β1,β3,β5线性表出C.β3不能由β1,β2,β5线性表出D.β4不能由β1,β2,β3线性表出√解析:解析:βi能否由其他向量线性表出,只须将βi视为是非齐次方程的右端自由项(无论它原在什么位置)有关向量留在左端,去除无关向量,看该非齐次方程是否有解即可.由阶梯形矩阵知,β4不能由β1,β2,β3线性表出.6.设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是 ( )(分数:2.00)A.A的列向量线性无关√B.A的列向量线性相关C.A的行向量线性无关D.A的行向量线性相关解析:解析:A唯一零解,是充要条件,当然也是充分条件.7.设A为n阶实矩阵,则对线性方程组(Ⅰ)AX=0和(Ⅱ)A T AX=0,必有 ( )(分数:2.00)A.(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解√B.(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解C.(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解D.(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解解析:解析:方程AX=0和A T AX=0是同解方程组.8.已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k 1,k 2是任意常数,则AX=b的通解是(分数:2.00)A.B. √C.D.解析:解析:(A),(C)中没有非齐次特解,(D)中两个齐次解α1与β1 -β2是否线性无关未知,而(B)中因α1,α2是基础解系,故α1,α1 -α2仍是基础解系,仍是特解.二、填空题(总题数:5,分数:10.00)9.方程组x 1 +x 2 +x 3 +x 4 +x 5 =0的基础解系是 1(分数:2.00)填空项1:__________________ (正确答案:正确答案:ξ1 =[1,-1,0,0,0] T,ξ2 =[1,0,-1,0,0] T,ξ3 =[1,0,0,-1,0] T,ξ4 =[1,0,0,0,-1] T)解析:10. 1(分数:2.00)填空项1:__________________ (正确答案:正确答案:k[1,1,1,1] T,其中k是任意常数)解析:11. 1(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])12.设线性方程组有解,则方程组右端(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:其中k 1,k 2,k 3是任意常数,方程组有解,即[k 1,k 2,k 3 ] T.或说是方程组左端系数矩阵的列向量的线性组合时,方程组有解.13.已知非齐次线性方程组 A 3×4X=b ① 有通解k 1 [1,2,0,-2] T +k 2 [4,-1,-1,-1] T +[1,0,-1,1] T,则满足方程组①且满足条件x 1 =x 2,x 3 =x 4的解是 1(分数:2.00)填空项1:__________________ (正确答案:正确答案:[2,2,-1,-1] T)解析:解析:方程组①的通解为由题设x 1 =x 2,x 3 =x 4得k 1 =1,k 2 =0,代入通解得满足①及x 1 =x 2,x 3 =x 4的解为[2,2,-1,-1] T三、解答题(总题数:15,分数:32.00)14.解答题解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档