单纯形法习题详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单纯形法应用实例
某工厂生产1,11两种商品,已知生产单位商品所需要的设备台时,A、B两种原材料的消耗、设备使用台时限额以及原材料的限额如下表所示。

该工厂生产一件商品I可获利3元,每生产一件商品II 可获利4元。

写出使该工厂所获利润最大的线性规划模型,并用单纯型法求解。

产品1 产品II 限额设备 2 1 40台时
原材料 1 3 30KG
用单纯形法求解该线性规划问题
maxz 2x 1 x 2
x 1,x 2 0
s.t
5x 2 15
6x 1 2x 2 24
X i X 2
首先列出表格,先确定正检验数最大值所在列为主列,然后用b除以主列上对应的同行数字。

除出来所得值最小的那一行为主行,根据主行和主列可以确定主元(交点)。

接着把主元化为1
并把X4换成X1.
这时进行初等行列变换,把主列换单位向量,主元为1。

也就是X5所在行减去X1所在行。

并且重新计算检验数。

再次确定主元。

为4/6。

然后把X5换成X2。

并且把主元化成1
然后再用X1行减去2/6倍的X2行,X3行减去5倍的X2行并且重新计算检验数。

最后得到的表格中检验数这一行无正数则所得解为最优解。

本题最优解为X=(7/2,3/2,15/2,0,0)
目标函数值Z=8.5。

相关文档
最新文档