八年级第二学期5月份月考数学试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图,点P 是正方形ABCD 的对角线BD 上一点(点P 不与点B 、D 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③仅有当∠DAP =45°或67.5°时,△APD 是等腰三角形;④∠PFE =∠BAP :⑤2
2
PD =EC .其中有正确有( )个.
A .2
B .3
C .4
D .5
2.将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =43,P 、Q 分别是AC 、BC 上的动点,当四边形DPBQ 为平行四边形时,平行四边形DPBQ 的面积是( )
A .3
3 B .63
C .
92
D .9 3.如图,在ABCD 中,已知6AB =,8AD =,60B ∠=︒,过BC 的中点
E 作
EF AB ⊥,垂足为F ,与DC 的延长线相交于点H ,则DEF ∆的面积是( )
A .3
B .123
C .143
D .1834.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( )
A .8 与 14
B .10 与 14
C .18 与 20
D .4 与 28
5.如图,P 为ABCD 内一点,过点P 分别作AB ,AD 的平行线,交 ABCD 的四边于E 、F 、G 、H 四点,若BHPE 面积为6,GPFD 面积为4,则APC △的面积为( )
A.2
3
B.
3
2
C.1 D.2
6.在矩形ABCD中,点E、F分别在AB、AD上,∠EFB=2∠AFE=2∠BCE,CD=9,CE=20,则线段AF的长为().
A.32B.11
2
C.19D.4
7.如图,点P在长方形OABC的边OA上,连接BP,过点P作BP的垂线,交射线OC于点Q,在点P从点A出发沿AO方向运动到点O的过程中,设AP=x,OQ=y,则下列说法正确的是()
A.y随x的增大而增大B.y随x的增大而减小
C.随x的增大,y先增大后减小D.随x的增大,y先减小后增大
8.如图,ABCD中,点E是AD上一点,BE⊥AB,△ABE沿BE对折得到△BEG,过点D
作DF∥EG交BC于点F,△DFC沿DF对折,点C恰好与点G重合,则AB
AD
的值为
()
A .
12
B .
33
C .
22
D .
32
9.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连结EF ,则线段EF 的长的最小值是( )
A .2.5
B .2.4
C .2.2
D .2
10.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为
( )
A .2.8
B .22
C .2.4
D .3.5
二、填空题
11.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.
12.如图,某景区湖中有一段“九曲桥”连接湖岸A ,B 两点,“九曲桥”的每一段与AC 平行或BD 平行,若AB =100m ,∠A =∠B =60°,则此“九曲桥”的总长度为_____.
13.如图,正方形ABCD 中,DAC ∠的平分线交DC 于点E ,若P ,Q 分别是AD 和AE 上的动点,则DQ+PQ 能取得最小值4时,此正方形的边长为______________.
14.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.
OABC 的顶点A ,C
分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.
15.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.
16.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形
FHMN 的面积为___________.
17.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的
点H 处,有下列结论:①∠EBG =45°;②S △ABG =
3
2
S △FGH ;③△DEF ∽△ABG ;④AG+DF =FG .其中正确的是_____.(把所有正确结论的序号都选上)
18.如图,矩形纸片ABCD ,AB =5,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则AF 的值为______.
19.在平行四边形 ABCD 中,AE 平分∠BAD 交边 BC 于 E ,DF 平分∠ADC 交边 BC 于 F ,若 AD=11,EF=5,则 AB= ___.
20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.
三、解答题
21.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF . (1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数; (2)求证:四边形AFHD 为平行四边形;
(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .
22.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交
AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .
(1)求证:四边形BEDF 是菱形;
(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长; (3)在(2)的条件下,求四边形BEDF 的面积.
23.如图,ABC 是等腰直角三角形,90,ACB ∠=︒分别以,AB AC 为直角边向外作等腰直角ABD △和等腰直角,ACE G 为BD 的中点,连接,,CG BE ,CD BE 与CD 交于点
F .
(1)证明:四边形ACGD 是平行四边形;
(2)线段BE 和线段CD 有什么数量关系,请说明理由; (3)已知2,BC =
求EF 的长度(结果用含根号的式子表示).
24.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,
①求证:CH CG ⊥. ②求证:GFC 是等腰三角形.
(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = . 25.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由; (2)求证:CP AE =;
(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.
26.在正方形
中,连接
,为射线
上的一个动点(与点不重合),连接,
的垂直平分线交线段于点,连接
,
.
提出问题:当点运动时,的度数是否发生改变?
探究问题:
(1)首先考察点的两个特殊位置:
①当点与点重合时,如图1所示,____________
②当
时,如图2所示,①中的结论是否发生变化?直接写出你的结论:
__________;(填“变化”或“不变化”)
(2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)
(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.
27.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .
(1)求出直线BC 的解析式;
(2)若动点M 从点C 出发,沿线段CB 以每分钟10个单位的速度运动,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.
28.如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D(0,0),B(3,4),矩形ABCD 沿直线EF 折叠,点B 落在AD 边上的G 处,E 、F 分别在BC 、AB 边上且F(1,4). (1)求G 点坐标 (2)求直线EF 解析式
(3)点N 在坐标轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,直接写出M 点坐标;若不存在,请说明理由
29.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。
(1)证明平行四边形ECFG 是菱形;
(2)若ABC 120︒∠=,连结BG CG DG 、、,①求证:DGC BGE ≌;②求BDG ∠的度数;
(3)若ABC 90︒∠=,8AB =,14AD =,M 是EF 的中点,求DM 的长。
30.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.
(1)如图1,当点E与点D重合时,AG=;
(2)如图2,当点E在线段CD上时,DE=2,求AG的长;
,请直接写出此时DE的长.
(3)若AG=517
2
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
过P作PG⊥AB于点G,根据正方形对角线的性质及题中的已知条件,证明△AGP≌△FPE 后即可证明①AP=EF;④∠PFE=∠BAP;在此基础上,根据正方形的对角线平分对角的性质,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得DP=2EC,得出⑤正确,即可得出结论.
【详解】
过P作PG⊥AB于点G,如图所示:
∵点P是正方形ABCD的对角线BD上一点,
∴GP=EP,
在△GPB中,∠GBP=45°,
∴∠GPB=45°,
∴GB=GP,
同理:PE=BE , ∵AB=BC=GF ,
∴AG=AB-GB ,FP=GF-GP=AB-GB , ∴AG=PF , 在△AGP 和△FPE 中,
90AG PF AGP FPE PG PE ⎧⎪
⎨⎪∠∠⎩
︒====, ∴△AGP ≌△FPE (SAS ), ∴AP=EF ,①正确,∠PFE=∠GAP , ∴∠PFE=∠BAP ,④正确; 延长AP 到EF 上于一点H , ∴∠PAG=∠PFH , ∵∠APG=∠FPH , ∴∠PHF=∠PGA=90°, ∴AP ⊥EF ,②正确,
∵点P 是正方形ABCD 的对角线BD 上任意一点,∠ADP=45°, ∴当∠PAD=45°或67.5°时,△APD 是等腰三角形, 除此之外,△APD 不是等腰三角形,故③正确. ∵GF ∥BC , ∴∠DPF=∠DBC , 又∵∠DPF=∠DBC=45°, ∴∠PDF=∠DPF=45°, ∴PF=EC ,
∴在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2, ∴
EC ,
即
2
PD=EC ,⑤正确. ∴其中正确结论的序号是①②③④⑤,共有5个. 故选D . 【点睛】
本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.
2.D
解析:D 【解析】 【分析】
由于四边形DPBQ 为平行四边形,则BC ∥DP ,即DP ⊥AC ,P 为AC 中点,作出平行四边
形,再利用平行线的距离相等可知:PC 就是□DPBQ 的边PD 所对应的高,代入面积公式求出面积即可.求得面积.
【详解】
当点P 运动到边AC 中点(如图),即CP =3时,
以D ,P ,B ,Q 为顶点的平行四边形的顶点Q 恰好在边BC 上.
∵四边形DPBQ 为平行四边形,
∴BC ∥DP ,
∵∠ACB =90°,
∴∠DPC =90°,即DP ⊥AC .
而在Rt △ABC 中,AB 3,BC 3
∴根据勾股定理得:AC =6,
∵△DAC 为等腰直角三角形,
∴DP =CP =
12
AC =3, ∵BC ∥DP , ∴PC 是平行四边形DPBQ 的高,
∴S 平行四边形DPBQ =DP •CP =33⨯=9.
故选D .
【点睛】
本题是四边形的综合题,考查了一副三角板所形成的四边形的边和角的关系;根据动点P 的运动路线确定其所形成的边和角的关系,利用三角函数和勾股定理求边和角的大小,得出结论.
3.A
解析:A
【分析】
根据平行四边形的性质得到6AB CD ==,8AD BC ==,求出BE 、BF 、EF ,根据()BFE CHE ASA 得出2CH =,23EH ,根据三角形的面积公式求DFH ∆的面积,即可求出答案. 【详解】
解:四边形ABCD 是平行四边形,
8AD BC ∴==,//AB CD ,6AB CD ==,
E 为BC 中点,
4BE CE ∴==,
60B ∠=︒,EF AB ⊥,
30FEB ∴∠=︒,
2BF ∴=, 由勾股定理得:23EF =, //AB CD ,
B
ECH , 在BFE ∆和CHE ∆中, B
ECH BE
CE BEF
CEH ,
()BFE CHE ASA , 23EF EH ,2CH BF ,
∴111
622323163222DHF S
DH FH DC CH FE HE , 1832DEF DHF S S .
故选:A .
【点睛】
本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.
4.C
解析:C
【分析】
如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,在△BDF 中,利用三角形三边关系可得到x+y 与x -y 的取值范围,从而得到结论.
【详解】
如下图,将平行四边形ABCD 向上平移,得到平行四边形ADEF ,使得BC 与AD 重合,连接BD ,DF
根据题意,设AB=12,BD=x ,DF=y
则AF=AB=12,BF=24
∴在△BDF 中,BD+FD >BF ,即:x+y >24
在△BDF中,BD-FD<BF,即:x-y<24
满足条件的只有C选项
故选:C
【点睛】
本题考查三角形三边关系,解题关键是将题干中已知线段和需要求解的线段转化到同一个三角形中去.
5.C
解析:C
【分析】
根据平行四边形的性质得到四个平行四边形,且S△ AEP=S△ AGP,S△PHC=S△ PFC,S△ABC= S△ADC,利用面积比较的关系即可求出答案.
【详解】
由题意知:四边形BHPE、四边形AEPG、四边形HCFP、四边形GPFD均为平行四边形,∴S△ AEP=S△ AGP,S△PHC=S△ PFC,S△ABC= S△ADC,
又S△ABC=S△AEP+S四边形BHPE+S△PHC-S△APC①,
S△ADC=S△AGP+S四边形GPFD+S△PFC+S△APC②,
②-①得,0=S四边形BHPE -S四边形GPFD+2S△APC,
即2S△APC=6-4=2,
S△APC=1.
故选:C.
【点睛】
此题考查平行四边形的性质,平行四边形一条对角线将平行四边形的面积平分.
6.C
解析:C
【分析】
如图,取CE的中点H,连接BH,设∠EFB=2∠AFE=2∠ECB=2a,则∠AFB=3a,进而求出BH=CH=EH=10,∠HBC=∠HCB=a,再根据AD∥BC求出EF∥BH,进而得出△EFG和△BGH 均为等腰三角形,则BF=EH=10,再根据勾股定理即可求解.
【详解】
如图,取CE的中点H,连接BH,设∠EFB=2∠AFE=2∠ECB=2a,则∠AFB=3a,
∵在矩形ABCD中有AD∥BC,∠A=∠ABC=90°,
∴△BCE为直角三角形,
∵点H 为斜边CE 的中点,CE=20,
∴BH=CH=EH=10,∠HBC=∠HCB=a ,
∵AD ∥BC ,
∴∠AFB=∠FBC=3a ,
∴∠GBH=3a-a=2a=∠EFB ,
∴EF ∥BH ,
∴∠FEG=∠GHB=∠HBC+∠HCB=2a=∠EFB=∠GBH ,
∴△EFG 和△BGH 均为等腰三角形,
∴BF=EH=10,
∵AB=CD=9, ∴222210919AF BF AB =
-=-=.
故选C.
【点睛】
本题考查直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,解题的关键是根据题意正确作出辅助线. 7.C
解析:C
【分析】
连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到
222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.
【详解】
解,如图,连接BQ ,
由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,
在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则
OP=a x -,CQ b y =-,
由勾股定理,得:
222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,
∵222
PQ PB BQ +=,
∴222222()()y a x x b a b y +-++=+-,
整理得:2by x ax =-+,
∴2
21()24a a y x b b
=--+, ∵10b
-<, ∴当2a x =时,y 有最大值24a b
; ∴随x 的增大,y 先增大后减小;
故选择:C.
【点睛】
本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.
8.B
解析:B
【分析】
根据平行线的性质和轴对称的性质,利用SAS 证明BEG DEG ≅,进而得到
ADG 90∠=︒
,设AB=x ,则AG=2x ,CD=x ,,即可求解.
【详解】
解:在ABCD 中
∵DF ∥EG
∴∠DEG=∠DFB
∵△ABE 沿BE 对折得到△BEG
∴∠DEG =2∠A
∵∠DFB =∠C +∠CDF
∠A=∠C
∴∠CDF=∠A
∵△DFC 沿DF 对折
∴∠BGE=∠DGE
BG=DG
EG=EG
∴
BEG DEG ≅
∵BE⊥AB
∴ADG 90∠=︒
设AB=x ,则AG=2x ,CD=x ,=
∴
AB AD ==故选:B .
【点睛】
此题主要考查平行线的性质、轴对称的性质、全等三角形的判断和性质、勾股定理,熟练
运用平行线的性质和轴对称的性质证明BEG DEG
≅是解题关键.
9.B
解析:B
【分析】
连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
如图,连结CD.
∵∠ACB=90°,AC=3,BC=4,
∴AB=22
AC BC
+=5.
∵DE⊥AC,DF⊥BC,∠ACB=90°,
∴四边形CFDE是矩形,∴EF=CD.
由垂线段最短可得CD⊥AB时,线段EF的长最小,
此时,S△ABC=1
2
BC·AC=
1
2
AB·CD,
即1
2
×4×3=
1
2
×5·CD,
解得CD=2.4,∴EF=2.4.
故选B.
【点睛】
本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.
10.B
解析:B
【分析】
延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-
BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.
【详解】
解:如图,延长BG交CH于点E,
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=CD=10,
∵AG=8,BG=6,
∴AG2+BG2=AB2,
∴∠AGB=90°,
∴∠1+∠2=90°,
又∵∠2+∠3=90°,
∴∠1=∠3,
同理:∠4=∠6,
在△ABG和△CDH中,
AB=CD=10
AG=CH=8
BG=DH=6
∴△ABG≌△CDH(SSS),
∴∠1=∠5,∠2=∠6,
∴∠2=∠4,
在△ABG和△BCE中,
∵∠1=∠3,AB=BC,∠2=∠4,
∴△ABG≌△BCE(ASA),
∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,
∴GE=BE-BG=8-6=2,
同理可得HE=2,
在Rt△GHE中,
GH===
故选:B.
【点睛】
本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.
二、填空题
11.2
【分析】
由题意根据三角形的中位线的性质得到EF=1
2
PD,得到C△CEF=CE+CF+EF=CE+
1
2
(CP+PD)
=1
2
(CD+PC+PD)=
1
2
C△CDP,当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值
最小时,△CEF的周长最小;并作D关于AB的对称点D′,连接CD′交AB于P,进而分析即可得到结论.
【详解】
解:∵E为CD中点,F为CP中点,
∴EF=1
2 PD,
∴C△CEF=CE+CF+EF=CE+1
2
(CP+PD)=
1
2
(CD+PC+PD)=
1
2
C△CDP
∴当△CDP的周长最小时,△CEF的周长最小;
即PC+PD的值最小时,△CEF的周长最小;
如图,作D关于AB的对称点T,连接CT,则PD=PT,
∵AD=AT=BC=2,CD=4,∠CDT=90°,
∴2222
4442
CT CD DT
++=
∵△CDP的周长=CD+DP+PC=CD+PT+PC,
∵PT+PC≥CT,
∴PT+PC≥42
∴PT+PC的最小值为2,
∴△PDC的最小值为4+42
∴C△CEF=1
2
C△CDP=222.
故答案为:222.
【点睛】
本题考查轴对称-最短距离问题以及三角形的周长的计算等知识,解题的关键是学会利用轴对称解决最值问题.
12.200m
【分析】
如图,延长AC、BD交于点E,延长HK交AE于F,延长NJ交FH于M,则四边形EDHF,四边形MNCF,四边形MKGJ是平行四边形,△ABC是等边三角形,由此即可解决问题.【详解】
如图,延长AC、BD交于点E,延长HK交AE于F,延长NJ交FH于M
由题意可知,四边形EDHF ,四边形MNCF ,四边形MKGJ 是平行四边形
∵∠A =∠B =60°
∴18060E A B ∠=-∠-∠=
∴△ABC 是等边三角形
∴ED =FM+MK+KH =CN+JG+HK ,EC =EF+FC =JN+KG+DH
∴“九曲桥”的总长度是AE+EB =2AB =200m
故答案为:200m .
【点睛】
本题考查了平行四边形、等边三角形、三角形内角和的知识;解题的关键是熟练掌握平行四边形、等边三角形、三角形内角和的性质,从而完成求解.
13.2【分析】
作P 点关于线段AE 的对称点P ',根据轴对称将DQ PQ +转换成DP ',然后当DP AC '⊥的时候DP '是最小的,得到DP '长,最后求出正方形边长DC .
【详解】
∵AE 是DAC ∠的角平分线,
∴P 点关于线段AE 的对称点一定在线段AC 上,记为P '
由轴对称可以得到PQ P Q '=,
∴DQ PQ DQ P Q DP ''+=+=,
如图,当DP AC '⊥的时候DP '是最小的,也就是DQ PQ +取最小值4,
∴4DP '=,
由正方形的性质P '是AC 的中点,且DP P C ''=,
在Rt DCP '中,2222443242DC DP P C ''=
+=+== 故答案是:2
【点睛】
本题考查轴对称的最短路径问题,解题的关键是能够分析出DQ PQ +取最小值的状态,并将它转换成DP '去求解.
14.5
【分析】
过点B 作BD ⊥l 2,交直线l 2于点D ,过点B 作BE ⊥x 轴,交x 轴于点E .则22OE BE +OABC 是平行四边形,所以OA=BC ,又由平行四边形的性质可推得∠OAF=∠BCD ,则可证明△OAF ≌△BCD ,所以OE 的长固定不变,当BE 最小时,OB 取得最小值,从而可求.
【详解】
解:过点B 作BD ⊥l 2,交直线x=4于点D ,过点B 作BE ⊥x 轴,交x 轴于点E ,直线l 1与OC 交于点M ,与x 轴交于点F ,直线l 2与AB 交于点N .
∵四边形OABC 是平行四边形,
∴∠OAB=∠BCO ,OC ∥AB ,OA=BC ,
∵直线l 1与直线l 2均垂直于x 轴,
∴AM ∥CN ,
∴四边形ANCM 是平行四边形,
∴∠MAN=∠NCM ,
∴∠OAF=∠BCD ,
∵∠OFA=∠BDC=90°,
∴∠FOA=∠DBC ,
在△OAF 和△BCD 中,
FOA DBC OA BC
OAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△OAF ≌△BCD (ASA ),
∴BD=OF=1,
∴OE=4+1=5,
∴22OE BE +.
由于OE 的长不变,所以当BE 最小时(即B 点在x 轴上),OB 取得最小值,最小值为OB=OE=5.
故答案为:5.
【点睛】
本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质,以及勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
15.8
3
或
4
43
3
-
【分析】
连接AC交BD于O,由菱形的性质可得AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,
AO=CO,可证四边形BEGF是菱形,可得∠ABG=30°,可得点B,点G,点D三点共线,由直角三角形性质可求BD=43,AC=4,分两种情况讨论,利用等腰三角形的性质可求解.【详解】
如图,连接AC交BD于O,
∵菱形ABCD的边长是4,∠ABC=60°,
∴AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,
∵EG∥BC,FG∥AB,
∴四边形BEGF是平行四边形,
又∵BE=BF,
∴四边形BEGF是菱形,
∴∠ABG=30°,
∴点B,点G,点D三点共线,
∵AC⊥BD,∠ABD=30°,
∴AO=1
2
AB=2,2222
4223
AB AO
--=
∴BD=3AC=4,
同理可求BG=3BE ,即BE=3, 若AD=DG'=4时, ∴BG'=BD-DG'=434-,
∴BE'43443433
-==-; 若AG''=G''D 时,过点G''作G''H ⊥AD 于H ,
∴AH=HD=2,
∵∠ADB=30°,G''H ⊥AD ,
∴DG''=2HG'',
∵222HD HG''DG''+=,
解得:HG''23=,DG''=2HG''43=, ∴BG''=BD-DG''=43834333-
=, ∴BE''=83
, 综上所述:BE 为
83或4343-. 【点睛】
本题考查了菱形的性质,含30度角的直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.
16.1382+
【分析】
如图所示,延长CD 交FN 于点P ,过N 作NK ⊥CD 于点K ,延长FE 交CD 于点Q ,交NS 于点R ,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR 是矩形得出QR=NK=2,进一步可得2221382FN FR NR =+=+,再延长NS 交ML 于点Z ,利用全等三角形性质与判定证明四边形FHMN 为正方形,最后进一步求解即可.
【详解】
如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,
∵ABCD为正方形,
∴∠CDG=∠GDK=90°,
∵正方形ABCD面积为1,
∴AD=CD=AG=DQ=1,
∴DG=CT=2,
∵四边形DEFG为菱形,
∴DE=EF=DG=2,
同理可得:CT=TN=2,
∵∠EFG=45°,
∴∠EDG=∠SCT=∠NTK=45°,
∵FE∥DG,CT∥SN,DG⊥CT,
∴∠FQP=∠FRN=∠DQE=∠NKT=90°,
∴FQ=FE+EQ=2+
∵∠NKT=∠KQR=∠FRN=90°,
∴四边形NKQR是矩形,
∴,
∴FR=FQ+QR=2+,NR=KQ=DK−11
=,
∴22213
FN FR NR
=+=+
再延长NS交ML于点Z,易证得:△NMZ≅△FNR(SAS),
∴FN=MN,∠NFR=∠MNZ,
∵∠NFR+∠FNR=90°,
∴∠MNZ+∠FNR=90°,
即∠FNM=90°,
同理可得:∠NFH=∠FHM=90°,
∴四边形FHMN为正方形,
∴正方形FHMN的面积=213
FN=+
故答案为:13+
【点睛】
本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.
17.①②④.
【分析】
利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到
∠EBG=1
2
∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则
DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)
2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用
相似比得到
4
3
DE AF
DF AB
==,而
6
2
3
AB
AG
==,所以
AB DE
AG DF
≠,所以△DEF与△ABG不相
似,于是可对③进行判断.
【详解】
解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,
∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,
∴∠EBG=∠EBF+∠FBG=1
2
∠CBF+
1
2
∠ABF=
1
2
∠ABC=45°,所以①正确;
在Rt△ABF中,AF=8,
∴DF=AD﹣AF=10﹣8=2,
设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,
∵GH2+HF2=GF2,
∴x2+42=(8﹣x)2,解得x=3,
∴GF=5,
∴AG+DF=FG=5,所以④正确;
∵△BCE沿BE折叠,点C恰落在边AD上的点F处,
∴∠BFE=∠C=90°,
∴∠EFD+∠AFB=90°,
而∠AFB+∠ABF=90°,
∴∠ABF=∠EFD,
∴△ABF∽△DFE,
∴AB
DF
=
AF
DE
,
∴DE
DF
=
AF
AB
=
8
6
=
4
3
,
而AB
AG
=
6
3
=2,
∴AB
AG
≠
DE
DF
,
∴△DEF与△ABG不相似;所以③错误.
∵S△ABG=1
2
×6×3=9,S△GHF=
1
2
×3×4=6,
∴S△ABG=3
2
S△FGH,所以②正确.
故答案是:①②④.
【点睛】
本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.
18.207
【分析】
根据折叠的性质可得出DC=DE 、CP=EP ,由“AAS”可证△OEF ≌△OBP ,可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=5-x 、BF=PC=3-x ,进而可得出AF=2+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,即可得AF 的长.
【详解】
解:∵将△CDP 沿DP 折叠,点C 落在点E 处,
∴DC =DE =5,CP =EP .
在△OEF 和△OBP 中,
90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=⎨⎪=⎩
, ∴△OEF ≌△OBP (AAS ),
∴OE =OB ,EF =BP .
设EF =x ,则BP =x ,DF =DE -EF =5-x ,
又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,
∴AF =AB -BF =2+x .
在Rt △DAF 中,AF 2+AD 2=DF 2,
∴(2+x )2+32=(5-x )2,
∴x =67
∴AF =2+67=207
故答案为:
207 【点睛】
本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
19.8或3
【分析】
根据AE和DF是否相交分类讨论,分别画出对应的图形,根据平行四边形的性质、平行线的性质、角平分线的定义和等角对等边即可得出结论.
【详解】
解:①当AE和DF相交时,如下图所示
∵四边形ABCD为平行四边形,AD=11,EF=5,
∴BC=AD=11,AD∥BC,AB=CD
∴∠DAE=∠BEA,∠ADF=∠CFD
∵AE 平分∠BAD,DF 平分∠ADC
∴∠DAE=∠BAE,∠ADF=∠CDF
∴∠BEA=∠BAE,∠CFD=∠CDF
∴BE=AB,CF=CD
∴BE=AB= CD= CF
∵BE+CF=BC+EF
∴2AB=11+5
解得:AB=8;
②当AE和DF不相交时,如下图所示
∵四边形ABCD为平行四边形,AD=11,EF=5,
∴BC=AD=11,AD∥BC,AB=CD
∴∠DAE=∠BEA,∠ADF=∠CFD
∵AE 平分∠BAD,DF 平分∠ADC
∴∠DAE=∠BAE,∠ADF=∠CDF
∴∠BEA=∠BAE,∠CFD=∠CDF
∴BE=AB,CF=CD
∴BE=AB= CD= CF
∵BE+CF+EF =BC
∴2AB+5=11
解得:AB=3
综上所述:AB=8或3
故答案为:8或3.
【点睛】
此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的性质,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.
20.2
【分析】
分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.
【详解】
解:如图,分别延长AE,BF交于点H,
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE
∴四边形EPFH为平行四边形,
∴EF与HP互相平分,
∵点G为EF的中点,
∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,
∴G的运动轨迹为△HCD的中位线MN,
∵CD=6-1-1=4,
∴MN=1
2
CD=2,
∴点G移动路径的长是2,
故答案为:2.
【点睛】
本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.
三、解答题
21.(1)50°;(2)见解析;(3)见解析
【分析】
(1)由平行四边形的性质和平行线的判定和性质得出答案即可;
(2)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,得出
BC∥FG,BC=1
2
FG,证出AD∥FH,AD∥FH,由平行四边形的判定方法即可得出结论;
(3)连接EH,CH,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.
【详解】
明:(1)∵四边形ABCD是平行四边形,
∴∠BAE=∠BCD=70°,AD∥BC,
∵∠DCE=20°,
∵AB∥CD,
∴∠CDE=180°﹣∠BAE=110°,
∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;
(2)∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∠BAE=∠BCD,
∵BF=BE,CG=CE,
∴BC是△EFG的中位线,
∴BC∥FG,BC=1
2 FG,
∵H为FG的中点,
∴FH=1
2 FG,
∴BC∥FH,BC=FH,
∴AD∥FH,AD∥FH,
∴四边形AFHD是平行四边形;(3)连接EH,CH,
∵CE=CG,FH=HG,
∴CH=1
2
EF,CH∥EF,
∵EB=BF=1
2 EF,
∴BE=CH,
∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,
∵OC=OH,
∴OE=OB=OC=1
2 BC,
∴△BCE是直角三角形,
∴∠FEG=90°,
∴EF⊥EG.
【点睛】
本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.22.(1)见解析;(2)3+1;(3)2
【分析】
(1)由线段垂直平分线的性质可得BE=DE,BF=DF,可得∠EBD=∠EDB,∠FBD=∠FDB,由角平分线的性质可得∠EBD=∠BDF=∠EDB=∠DBF,可证BE∥DF,DE∥BF,可得四边形DEBF是平行四边形,即可得结论;
(2)由菱形的性质和外角性质可得∠DFC=30°,由直角三角形的性质可求CF的长;
(3)过点D作BC的垂线,垂足为H,根据菱形的性质得出∠DFH=∠ABC=30°,从而得到DH的长度,再利用底乘高得出结果.
【详解】
解:证明:(1)∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵EF垂直平分BD,
∴BE=DE,BF=DF,
∵∠EBD=∠EDB,∠FBD=∠FDB,
∴∠EBD=∠BDF,∠EDB=∠DBF,
∴BE∥DF,DE∥BF,
∴四边形DEBF是平行四边形,且BE=DE,
∴四边形BEDF是菱形;
(2)过点D作DH⊥BC于点H,
∵四边形BEDF是菱形,
∴BF=DF=DE=2,
∴∠FBD=∠FDB=∠BDE=15°,
∴∠DFH=30°,且DH⊥BC,
∴DH=1
2
DF=1,FH=3DH=3,
∵∠C=45°,DH⊥BC,
∴∠C=∠CDH=45°,
∴DH=CH=1,
∴FC=FH+CH=3+1;
(3)过点D作BC的垂线,垂足为H,
∵四边形BEDF是菱形,∠BDE=15°,
∴∠DBF=∠BDF=∠ABD=15°,
∴∠DFH=∠ABC=30°,
∵DE=DF=2,
∴DH=1,
∴菱形BEDF的面积=BF×DH=2×1=2.
【点睛】
本题考查了菱形的判定和性质,线段垂直平分线的性质,直角三角形的性质等知识,掌握菱形的判定方法是本题的关键.
23.(1)见解析;(2)BE=CD,理由见解析;(3)EF 3
10 5
【分析】
(1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD为平行四边形;
(2)利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得
∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.
(3)先证明△DBF是直角三角形,再利用勾股定理进行计算,即可求出答案.
【详解】
解:(1)∵△ABC和△ABD都是等腰直角三角形
∴∠CAB=∠ABD= 45°,BD2AB22BC=2BC=2AC
∴AC∥BD
又∵G为BD的中点,
∴BD=2DG,
∴AC=DG,AC∥DG
∴四边形ACGD为平行四边形;
(2)BE =CD ,理由如下
∵△AEC 和△ABD 都是等腰直角三角形AE =AC ,AB =AD
∠EAB =∠EAC +∠CAB =90°+45°=135°,
∠CAD =∠DAB +∠BAC =90°+45°=135°,
∴∠EAB =∠CAD ,
在△DAC 与△BAE 中,
AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩
,
∴△DAC ≌△BAE ,
∴BE =CD ;
(3) ∵△DAC ≌△BAE
∴∠AEB=∠ACD
又∵∠EAC=90°
∴∠EFC=∠DFB=90°
∴ △DBF 是直角三角形
∵BC
,
∴BD
根据勾股定理得CD
, ∴
11••22CD BF BC BD = ∴1
2=1
2
•
∴BF
∴EF =BE -BF =CD -BF
【点睛】
本题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键.
24.(1)①见解析;②GFC 是等腰三角形,证明见解析;(2)
4+4﹣
【分析】
(1)①只要证明△DAH ≌△DCH ,即可解决问题;
②只要证明∠CFG=∠FCG ,即可解决问题;
(2)分两种情形解决问题:①当点F 在线段CD 上时,连接DE .②当点F 在线段DC 的延长线上时,连接DE .分别求出EC 即可解决问题.
【详解】
(1)①证明:∵四边形ABCD 是正方形,。