专业课《数学分析》考研大纲和参考书目

合集下载

桂林电子科技大学811数学分析2020年考研专业课初试大纲

桂林电子科技大学811数学分析2020年考研专业课初试大纲
华东师大数学系. 数学分析(上、下册)(第四版)[M]. 北京: 高等教育出版试自命题科目考试大纲
科目代码:811
考试科目:数学分析
本考试大纲由数学与计算科学学院(单位)于 2019 年 8 月 25 日通
过。
一、考试性质
数学分析是为高等院校和科研院所招收数学与应用数学硕士生 设置的具有选拔性质的考试科目,其目的是科学、公平、有效地测 试考生是否具备攻读数学与应用数学硕士所必须的基本素质和专业 能力,选拔有潜力的优秀人才入学,以利于培养职业道德良好、具 有较强专业能力的高层次数学人才。
二、考查目标
测试考生对数学分析基本概念和知识的理解、基本计算和论证 技巧的掌握、以及是否具有综合运用所学知识分析和解决问题的能 力。
三、适用范围
本考试大纲适用于报考我校 007 数学与计算科学学院的 070100 数学专业的硕士研究生招生考试。
四、考试形式和试卷结构
(一)试卷满分及考试时间
试卷满分为 150 分,考试时间 180 分钟。 (二)试卷内容结构
无穷积分的性质与收敛判别、瑕积分的性质与收敛判别。 9.数项级数 级数收敛与和的定义性质、柯西准则、正项级数及其审敛法、 一般级数的绝对收敛与条件收敛、交错级数、莱布尼兹定理、阿贝 尔定理、狄利克雷定理 、绝对收敛与条件收敛级数的性质、无穷乘 积。 10.函数项级数、幂级数 函数项级数与函数列的收敛和一致收敛的概念,一致收敛审敛 法,一致收敛函数列与级数的性质,幂级数的收敛半径、收敛域、 和函数,幂级数的运算,函数展开成幂级数。 11.傅立叶级数 三角级数和三角函数系的正交性,傅立叶级数,函数的傅立叶 级数的展开,收敛性定理及证明。 12.多元函数的极限与连续 平面点集的概念,平面点集的基本定理、二元函数的概念,二 重极限二次极限,二元函数的连续性,有界闭区域上连续函数的性 质。 13.多元函数微分 偏导数与全微分的概念,高阶偏导数和高阶全微分,复合函数 的链式规则,由方程所确定的函数的求导法则,空间曲线的切线和 法平面,曲面的切平面和法线, 方向导数、梯度、泰勒公式。 14.多元函数极值、条件极值 多元函数极值、条件极值。 15.隐函数的存在定理、函数相关 一个方程的情形,方程组的情形,函数行列式的性质,函数相 关。 16.重积分与含参变量非正常积分 二重积分和三重积分的定义和性质,二重积分的计算,三重积 分的计算,重积分的应用,n 重积分,含参量正常积分、欧拉积分。

《数学分析》(604)考研大纲

《数学分析》(604)考研大纲

《数学分析》(604)考研大纲(一)实数与函数考试内容绝对值与不等式,确界原理,函数及性质。

考试要求理解和掌握邻域,有界集,上、下确界,函数,复合函数,反函数,有界函数,单调函数,奇、偶函数,周期函数等概念。

(二)极限与连续考试内容数列极限定义,收敛数列的性质,单调有界原理,柯西准则,函数极限定义(趋于无穷大时的极限,趋于某一定数时的极限),函数极限性质,归结原理,柯西准则,两个重要极限,无穷小量,无穷大量概念,无穷小量阶的比较,连续性概念,连续函数的局部性质,闭区间上连续函数的性质,反函数连续函数,一致连续性,指数函数的连续性,初等函数连续性,实数完备性定理:区间套定理,柯西准则,聚点定理,有限覆盖定理等。

考试要求理解和掌握:数列极限的定义及计算,数列极限性质的原理及推导,单调有界原理,柯西准则及应用,函数极限的定义及计算,函数极限存在的归结原理,两个重要极限的计算,无穷小量,无穷大量概念,无穷小量阶的比较及应用,一致连续性及应用,连续性的定义及其证明,间断点及其分类,连续函数的局部性质,闭区间上连续函数的性质,区间套定理,柯西准则,聚点定理,有限覆盖定理原理及证明,闭区间上的连续函数性质的原理及证明及应用。

(三)导数与微分考试内容导数概念,导函数,导数的四则运算,反函数的导数,复合函数的导数,求导法则与公式,微分概念,微分的运算法则,高阶导数与高阶微分,参数方程的一阶及二阶导数。

考试要求理解和掌握:导数概念,导数的四则运算,反函数的导数,复合函数的导数,求导法则与公式,微分概念,微分的运算法则,高阶导数与高阶微分,参数方程的一阶及二阶导数。

(四)微积分基本定理,不定式极限,导数研究函数考试内容中值定理,洛必达法则,不定式极限,泰勒公式,皮亚诺余项泰勒公式,函数的单调性与极值,函数的凸性,拐点,函数的图象讨论渐进线,作图。

考试要求理解和掌握:费马定理,中值定理的原理及应用。

熟练计算不定式极限,熟练掌握泰勒公式,皮亚诺余项泰勒公式原理及应用,函数的单调性与极值,函数的凸性,拐点。

新版齐鲁工业大学数学考研经验考研真题考研参考书

新版齐鲁工业大学数学考研经验考研真题考研参考书

又是一年考研时节,每年这个时候都是考验的重要时刻,我是从大三上学期学习开始备考的,也跟大家一样,复习的时候除了学习,还经常看一些学姐学长们的考研经验,希望可以在他们的经验里找到可以帮助自己的学习方法。

我今年成功上岸啦,所以跟大家分享一下我的学习经验,希望大家可以在我的经历里找到对你们学习有帮助的信息!其实一开始,关于考研我还是有一些抗拒的,感觉考研既费时间又费精力,可是后来慢慢的我发现考研真的算是一门修行,需要我用很多时间才能够深入的理解它,所谓风雨之后方见才害怕难过,所以在室友们的鼓励和支持下,我们一起踏上了考研之路。

虽然当时不知道结局是怎样,但是既然选择了,为了不让自己的努力平白的付出,说什么都要坚持下去!因为是这一路的所思所想,所以这篇经验贴稍微有一些长,字数上有一些多,分为英语和政治以及专业课备考经验。

看书确实是需要方法的,不然也不会有人考上有人考不上,在借鉴别人的方法时候,一定要融合自己特点。

注:文章结尾有彩蛋,内附详细资料及下载,还劳烦大家耐心仔细阅读。

齐鲁工业大学数学的初试科目为:(101)思想政治理论(201)英语一(623)数学分析或(624)微积分和(924)高等代数或(925)线性代数参考书目为:1.《数学分析》,华东师范大学数学系编,高等教育出版社,第四版2.《微积分》,吴传生编,高等教育出版社(第二版)先说说英语复习心得一.词汇词汇的复习流程其实都比较熟悉了,就是反复记忆。

考研要求掌握5500的词汇量,这是一个比较大的工,我建议考研词汇复习的参考书至少要有两本,一本是比较流行的按乱序编排的书,另一本是按考试出现频率编排的书,也就是所谓的分级词汇或分频词汇,我使用的是木糖的单词和真题,很精练,适合后期重点巩固使用,工作量也不是很大。

为什么要使用分级词汇书呢,因为我们掌握词汇是服务于阅读的,题做多了就会发现,考研阅读考来考去大部分也就是那2000多个词,到后期一定要发现规律,把握重点。

贵州大学623数学分析2020年考研专业课初试大纲

贵州大学623数学分析2020年考研专业课初试大纲

贵州大学硕士研究生招生考试大纲
科目代码及名称:623 /数学分析
一、考试基本要求
本科目考试着重考核学生掌握《数学分析》基本概念、基本理论、基本技能及其应用的情况。

要求考生熟练掌握数学分析的基本概念、基本理论,基本技能,并能综合运用数学分析基本思想方法分析与解决一些数学分析问题。

2、适用范围
适用于数学类各专业。

三、考试形式
闭卷,180分钟。

四、考试内容和考试要求
考试内容:实数系基本定理;极限概念、性质与计算(包括数列极限,函数极限、累次极限);无穷大量与无穷小量的阶;函数的连续性与一致连续性;连续函数的性质;一元函数的导数与微分、多元函数的偏导数和全微分(包括隐函数),导数的应用(包括偏导数在几何上的应用,多元函数的极植与条件极值);微分中值定理、积分中值定理、Taylor公式及其应用;不定积分、定积分的概念、性质及计算;定积分存在的条件;定积分在几何计算中的应用;重积分的概念、性质及计算;数项级数敛散性判别法(包括条件收敛和绝对收敛);函数列、函数项级数的一致收敛性及其判别法;一致收敛函数列与函数项级数的性质;幂级数与函数的幂级数展开;初步掌握反常积分、含参变量积分、曲线积分和曲面积分的概念、性质与计算。

考试要求:要求考生熟练掌握数学分析的基本概念、基本理论;要求考生
第 1 页共 2 页。

湖南师范大学数学分析考研大纲

湖南师范大学数学分析考研大纲

湖南师范大学硕士研究生入学考试自命题考试大纲考试科目代码:723 考试科目名称:数学分析一、试卷结构1) 试卷成绩及考试时间本试卷满分为150分,考试时间为180分钟。

2)答题方式:闭卷、笔试3)试卷内容结构数学分析4)题型结构a: 填空题,10小题,每小题7分,共70分b: 讨论题,3小题,每小题10分,共30分c: 解答题(包括证明题),5小题,每小题10 分,共50分二、考试内容与考试要求1、极限论考试内容①各种极限的计算;②单调有界收敛原理、致密性定理、确界原理、Cauchy收敛原理等实数基本理论的灵活应用;③连续函数特别是闭区间上连续函数性质的运用;④极限定义的熟练掌握等.考试要求(1)能熟练计算各种极限,包括单变量和多变量情形.(2)能熟练利用六个实数基本定理尤其是单调有界收敛原理、致密性定理、确界原理、Cauchy收敛原理进行各种理论证明.(3)能熟练掌握单变量连续函数特别是闭区间上连续函数的各种性质,并能利用这些性质进行计算和证明;掌握多变量连续函数的性质尤其是有界闭域上连续函数的性质,能利用这些性质进行计算和证明.(4)熟练掌握各种极限的定义,并能用逻辑术语进行理论证明.2、单变量微分学考试内容①微分中值定理(包括Roll定理、Lagrange中值定理、Cauchy中值定理等)的灵活运用(包括单调性讨论、极值的求取、凸凹性问题、等式和不等式的证明等);②Talor公式的灵活运用(包括用Lagrange余项形式证不等式、用Peano余项形式估计阶以及求极限等);③各种形式导数的计算;④导数的定义和运用等.考试要求(1)熟练掌握微分中值定理,包括Roll定理、Lagrange中值定理、Cauchy 中值定理的条件和结论,能熟练利用这些定理进行理论证明或计算,包括函数单调性讨论、极值的求取、凸凹性问题的讨论、等式和不等式的证明等.(2)熟练掌握Talor公式的条件和结论,并能做到灵活运用,尤其是利用Lagrange余项形式证不等式、Peano余项形式估计阶以及求极限等.(3)熟练掌握复合函数导数的计算和高阶导数的计算.(4)熟练掌握导数的定义和性质,能用逻辑语言进行理论证明,熟练掌握利用导数定义进行证明或计算.3、单变量积分学考试内容①各种不定积分和定积分的熟练计算,尤其是计算中的处理技巧;②广义积分的计算和敛散性判别;③定积分的定义和性质的灵活运用等.考试要求(1)熟练计算各种不定积分、定积分,熟练掌握凑微分法、换元法、分部积分法以及常用的计算技巧,熟练掌握奇偶函数、周期函数的积分特点.(2)熟练掌握广义积分的计算,熟练掌握区间无限型、函数无界型以及混合型广义积分的敛散性判别,并能进行理论证明.(3)熟练掌握定积分的定义,能利用定积分的定义进行极限的计算,熟练掌握定积分的性质,并能利用这些性质进行理论证明,掌握常用可积函数类.4、级数论考试内容①各种数项级数尤其是正项级数的敛散性判别;②数项级数的性质③函数列和函数项级数的一致收敛性判别,给定函数Fourier级数的展开和特殊点的收敛性;④函数列和函数项级数一致收敛性质的灵活运用;⑤幂级数的收敛性和展开等知识的熟练掌握.考试要求(1)熟练掌握级数的敛散性判别,尤其是正项级数和交错级数敛散性判别.(2)掌握数项级数的一些常用性质,尤其是绝对收敛级数与条件收敛结束的常规性质.(3)熟练掌握函数列和函数项级数一致收敛性的判别,尤其是用定义、优级数判别法、Abel判别法、Dirichlet判别法判别函数项级数的一致收敛性,熟练掌握给定函数的Fourier展开,能给出Fourier级数在特殊点的收敛性.(4)熟练掌握函数列和函数项级数一致收敛性的性质运用,包括连续性、可积性和可微性,能利用这些性质进行理论证明.(5)熟练掌握幂级数收敛区间的求法,熟练掌握常规函数的幂级数展开,并掌握一些特殊幂级数和函数的求法.5、多变量微分学和参变量积分考试内容①可微的定义;②求复合函数以及隐函数的偏导数;③多元函数极值理论;④参变量积分的一致收敛性判别;⑤参变量积分的计算;⑥参变量积分一致收敛性质的运用等.考试要求(1)掌握多元函数可微的定义,能熟练利用定义证明某些常规函数的可微性,掌握多元函数可微、连续、可求偏导之间的关系.(2)熟练掌握多元函数复合函数求偏导数尤其是高阶偏导数,掌握方程或方程组确定的隐函数偏导的计算.(3)熟练掌握多元函数极值的计算,并能计算有界闭域上连续函数的最值..(4)熟练掌握含参变量广义积分一致收敛性的判别.(5)熟练掌握含参变量常义积分和广义积分的计算.(6)熟练掌握含参变量常义积分和广义积分的连续性、可积性和可导性,并能利用这些性质进行计算和证明..6、多元积分学考试内容①二重积分、三重积分的计算;②格林公式、高斯公式的灵活运用;③两类曲线积分、两类曲面积分的计算;④各种积分之间的相互关系等考试要求(1)熟练掌握二重积分、三重积分的计算,熟练掌握降维、换元法,尤其是极坐标、球坐标变换.(2)熟练掌握Gree公式、Gauss公式的条件和结论.(3)熟练掌握第一类和第二类曲线积分和曲面积分的计算.(4)掌握平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,熟练掌握利用Gree公式求第二类曲线积分、利用Gauss公式求第二类曲面积分、利用Stokes公式求空间第二类曲线积分..三、参考书目[1]复旦大学数学系编. 数学分析. 高等教育出版社, 1979[2]华东师范大学数学系编. 数学分析高等教育出版社, 2001[3] 张学军、王仙桃等编. 数学分析选讲. 湖南师范大学出版社,2012。

浙江海洋大学806数学分析2021年考研专业课初试大纲

浙江海洋大学806数学分析2021年考研专业课初试大纲

806《数学分析》一、考查目标1、系统、正确地理解数学分析的基本概念和基本理论,掌握解决数学分析中问题的基本思维方法和证明方法。

2、具有抽象思维能力和逻辑推理能力,掌握熟练的演算技巧,具备初步的应用能力和较强的分析问题和解决问题的综合能力。

二、试卷结构1、题型结构填空题(48分)、计算题(70分)、证明题(32分),共计150分。

2、内容结构函数极限与连续性(15%)、一元函数的微积分(40%)、多元函数的微积分(30%)、级数理论(15%)。

三、考试内容及要求1、实数集与函数实数:实数概念及性质;绝对值与不等式。

数集确界原理:区间与邻域;有界集与无界集;上确界与下确界,确界原理。

函数概念:函数定义;函数的表示方法;函数的四则运算;复合函数;反函数;初等函数。

具有某些特征的函数:有界函数,无界函数;单调函数,单调递增(减)函数,严格单调函数,单调函数与反函数;奇函数与偶函数;周期函数。

2、数列极限极限概念:数列极限定义,数列的敛散性;无穷小数列。

收敛数列的性质:唯一性;有界性;保号性;保不等式性;迫敛性;四则运算;归结原则。

数列极限存在的条件:单调有界定理;柯西收敛准则。

3、函数极限函数极限的概念:函数极限的几种形式;左、右极限。

函数极限的性质:唯一性;局部有界性;局部保号性;保不等式性;迫敛性;四则运算函数极限存在的条件:归结原则;柯西准则。

两个重要极限:1sin lim 0=→x x x ;e x xx =⎪⎭⎫ ⎝⎛+∞→11lim 。

无穷小量与无穷大量:无穷小量与阶的比较、高阶无穷小量、同阶无穷小量、等价无穷小量;无穷大量;曲线的渐近线(斜渐近线、水平渐近线与垂直渐近线)。

4、函数连续函数连续性概念:函数的点连续性、左(右)连续性的概念及相互关系;间断点及类型;区间上的连续函数。

连续函数的性质:连续函数的局部性质,包括局部有界性、局部保号性、四则运算、复合函数的连续性;有界闭区间上连续函数的基本性质,包括有界性定理、最值定理、介值性定理、根的存在定理、一致连续性定理;反函数的连续性。

天津理工大学803数学分析2021年考研专业课初试大纲

天津理工大学803数学分析2021年考研专业课初试大纲
学院研究生招生领导小组组长签字:
1、函数项级数的收敛和一致收敛。
2、幂级数的收敛区间,和函数。
3、将函数展成幂级数。
基本要求:(1)掌握函数项级数的一致收敛性的概念,会判断一致收敛。
(2)掌握一致收敛的函数项级数的三个分析性质:逐项微分、逐项积分、函数的连续性。
(3)会求幂级数的收敛半径,收敛区域。
(4)会求和函数以及将函数展成幂级数。
第十二章 傅里叶级数
1、函数展成 Fourier 级数。2、Fourier 级数的收敛性。
基本要求:
(1)会求周期为 2T 的函数的 Fourier 级数。
(2)会将定义于[O、T]的函数展成正弦级数或余弦级数。
(3)掌握函数 f(x)的 Fourier 级数的收敛性定理。
第十三章 多元函数的极限与连续
1、平面点集。2、多元函数的极限。
3、多元函数的连续。
基本要求:
(1)熟悉距离,邻域,聚点、内点、开集、闭集、区域的概念。
(2)了解平面点集连续性定理。
(3)掌握多元函数极限的概念(主要是二元函数的极限),熟悉重极限与累次极限的关系。
(4)熟悉多元函数连续的概念,掌握极限的运算法则,连续函数的局部性质。
(4)会求方向导数和梯度。
第十五章 极值和条件极值
1、极值与最值的求法。
2、条件极值的求法(拉格朗日乘子法)。
第十七章 含参变量的积分
第十八章 含参变量的反常积分
1、含参变量的定积分。
2、含参变量的无穷限积分。
3、含参变量的无界函数的积分。
基本要求:
(1)掌握含参量定积分的分析性质。
(2)掌握含参变量反常积分的一致收敛性的概念,一致收敛性的判别法,魏尔斯特拉斯判别法。

数学分析考研大纲

数学分析考研大纲

《数学分析》考试大纲本《数学分析》考试大纲适用于宁波大学数学相关专业硕士研究生入学考试。

一、本考试科目简介:《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。

是从事数学理论及其应用工作的必备知识。

本大纲制定的的依据是①根据教育部颁发《数学分析》教学大纲的基本要求。

②根据我国一些国优教材所讲到基本内容和知识点。

要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。

二、考试内容及具体要求:第1章实数集与函数(1)了解实数域及性质(2)掌握几种主要不等式及应用。

(3)熟练掌握领域,上确界,下确界,确界原理。

(4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。

第2章数列极限(1)熟练掌握数列极限的定义。

(2)掌握收敛数列的若干性质(惟一性、保序性等)。

(3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。

第3章函数极限(1)熟练掌握使用“ε-δ”语言,叙述各类型函数极限。

(2)掌握函数极限的若干性质。

(3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。

(4)熟练应用两个特殊极限求函数的极限。

(5)牢固掌握无穷小(大)的定义、性质、阶的比较。

第4章函数连续性(1)熟练掌握在X0点连续的定义及其等价定义。

(2)掌握间断点定以及分类。

(3)了解在区间上连续的定义,能使用左右极限的方法求极限。

(4)掌握在一点连续性质及在区间上连续性质。

(5)了解初等函数的连续性。

第5章导数与微分(1)熟练掌握导数的定义,几何、物理意义。

(2)牢固记住求导法则、求导公式。

(3)会求各类的导数(复合、参量、隐函数、幂指函数、高阶导数(莱布尼兹公式))。

国内数学分析主要参考书目_数学分析书籍

国内数学分析主要参考书目_数学分析书籍

国内数学分析主要参考书⽬_数学分析书籍花了半天时间,对国内部分⼤学所编数学分析(/⾼等数学/微积分)教材做了个汇总,发于此,肯定有很多遗漏,(期待有兴趣的⾍友帮我⼀起补充,补充格式:⼤学名,精确书名,编写作者....)。

国内部份⼤学常⽤数学分析(⾼数,微积分)教材总汇清华⼤学《数学分析教程》常庚哲.史济怀.《数学分析》(三册).何琛史济怀徐森林《数学分析》(三册).徐森林,.⾦亚东,.薛春华《数学分析讲义》(三册).陈天权《数学分析习题课讲义》谢惠民等北京⼤学《数学分析》沈燮昌著第⼀册,⽅企勤著第⼆册,廖可⼈、李正元著第三册《数学分析习题课教材》(第⼀版)《数学分析解题指南》(第⼆版)林源渠,⽅企勤《数学分析习题集》林源渠,⽅企勤等《数学分析新讲》张筑⽣(三册)《数学分析简明教程》邓东翱,尹⼩铃著《数学分析上、下册》彭⽴中、谭⼩江著复旦⼤学《数学分析》《数学分析》陈传璋,⾦福临,朱学炎,欧阳光中著第⼆版《数学分析》欧阳光中,朱学炎,⾦福临,陈传璋著第三版《数学分析》陈纪修等著《数学分析》欧阳光中,姚允龙著同济⼤学《⾼等数学》(同济⼤学数学系第六版,上、下册)《⾼等数学讲义》樊映川等编..华东师范⼤学《数学分析》华东师范⼤学数学系著《数学分析精读讲义》华东师范⼤学数学系著《数学分析习题精解》吴良森,⽑⽻辉等?中国科学技术⼤学《数学分析教程》常庚哲,史济怀著《简明微积分》龚昇《⾼等数学引论》华罗庚《数学分析》徐森林著《数学分析的⽅法及例题选讲》徐利治南开⼤学《数学分析上、下册》李成章,黄⽟民《在南开⼤学的演讲》陈省⾝南京⼤学《数学分析讲义》梅加强《数学分析教程》许绍浦等北京师范⼤学《简明数学分析(第⼀版)》王昆扬《简明数学分析(第⼆版)》郇中丹,刘永平,王昆扬《微积分学讲义(第⼆版)》邝荣⾬武汉⼤学《⾼等数学上、下册》(⾼等教育出版社,齐民友主编)《重温微积分》齐民友著吉林⼤学《数学分析》东北师范⼤学《数学分析讲义》刘⽟琏,傅沛仁著天津⼤学《⾼等数学上、下册》蔡⾼厅叶宗泽《⾼等数学试题精选与解答》(蔡⾼厅等编)内蒙古⼤学《微积分学简明教程》曹之江等著[ Last edited by hylpy on 2014-9-15 at 12:38 ]国内数学分析主要参考书⽬[1].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(上),第四版.北京:⾼等教育出版社,2003.[2].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(下),第四版.北京:⾼等教育出版社,2003.[3].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(上),第⼆版,北京:⾼等教育出版社.2003.[4].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(下),第⼆版,北京:⾼等教育出版社.2003.[5].华东师范⼤学数学系编.数学分析(上),第三版.北京:⾼等教育出版社,2002.[6].华东师范⼤学数学系编.数学分析(下),第三版.北京:⾼等教育出版社,2002.[7].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(上).北京:⾼等教育出版社.2004.[8].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(下).北京:⾼等教育出版社.2004.[9].吴良森,⽑⽻辉编著.数学分析习题精解(单变量部分).北京:科学出版社.2002.[10].吴良森,⽑⽻辉编著.数学分析习题精解(多变量部分).北京:科学出版社.2003.[11].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(上).北京:北京师范⼤学出版社,1985.[12].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(下).北京:北京师范⼤学出版社,1987.[13].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(上).北京:⾼等教育出版社,2004.[14].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(下).北京:⾼等教育出版社,2004.[15].徐利治,王兴华.数学分析的⽅法与例题选讲.北京:⾼等教育出版社,2002.[16].钱吉林等主编.数学分析解题精粹.武汉:崇⽂书局,2003.[17].裴礼⽂.数学分析中的典型问题与⽅法,第⼆版.北京: ⾼等教育出版社,2006.[18].周民强编著.数学分析习题演练(第⼀册).北京:科学出版社,2006.[19].周民强编著.数学分析习题演练(第⼆册).北京:科学出版社,2006.[20].裘兆泰.王承国,章仰⽂编.数学分析学习指导.北京:科学出版社,2004.[21].孙涛编.数学分析经典习题解析.北京:⾼等教育出版社,2004.[22].胡晓敏,李承家编著.数学分析考研教案,第⼆版.西安:西北⼯业⼤学出版社, 2006.[23].孙本旺,汪浩主编.数学分析中的典型例题和⽅法.长沙:湖南科学技术出版社,1983.[24].⽑⽻辉编著.数学分析选论.北京:科学出版社,2003.[25].王昆扬编.数学分析专题研究.北京:⾼等教育出版社,2001.[26].胡适耕,姚云飞编著.数学分析:定理问题⽅法.北京:科学出版社,2007.[27].徐利治编著.数学分析的⽅法及例题选讲:分析学的思想、⽅法与技巧.⼤连:⼤连理⼯⼤学出版社,2007.[28].沈燮昌.数学分析纵横谈.北京:北京⼤学出版社,1991.[29].G.波利亚.数学分析中的问题和定理(第⼀卷).上海:上海科技出版社,1981.[30].舒斯会编著.数学分析选讲.北京:北京⼤学出版社,2007.[31].刘三阳,于⼒,李⼴民编.数学分析选讲.北京:科学出版社,2007.[32].李克典,马云苓编著.数学分析选讲.厦门:厦门⼤学出版社,2007.[33].⾟钦著.数学分析⼋讲.武汉:武汉⼤学出版社,1999.[34].[美]克莱鲍尔著.数学分析.上海:上海科技出版社,1981.[35].朱时编著.数学分析札记.贵阳:贵州教育出版社,1994.[36].[苏]B.Π.吉⽶多维奇.数学分析习题集.北京:⾼等教育出版社,1985.[37].林源渠.数学分析习题集.北京:⾼等教育出版社,1986.[38].吕通庆编.数学分析中⼀些重要概念及其⽭盾概念.北京:⼈民教育出版社,1979.[39].赵显曾著.数学分析拾遗.南京:东南⼤学出版社,2006.[40].强⽂久,李元章,黄雯荣.数学分析的基本概念与⽅法.北京:⾼等教育出版社,1989.[41].⽅企勤,林源渠编著.数学分析习题课教材.北京:北京⼤学出版社,1990.[42].王向东主编.数学分析的概念与⽅法(上).上海:上海科学技术⽂献出版社,1989.[43].王向东主编.数学分析的概念与⽅法(下).上海:上海科学技术⽂献出版社,1989.[44].朱匀华,周健伟.数学分析选讲.⼴州:⼴东科技出版社,1995.[45].明清河.数学分析的思想与⽅法.济南:⼭东⼤学出版社,2004.[46].李惜雯.数学分析例题解析及难点注释(上).西安:西安交通⼤学出版社,2004.[47].李惜雯.数学分析例题解析及难点注释(下).西安:西安交通⼤学出版社,2004.[48].宋国柱编.分析中的基本定理和典型⽅法.北京:科学出版社,2004.[49].周忠群主编.数学分析⽅法选讲.重庆:西南师范⼤学出版社,1990.[50].王⼽平编.数学分析选讲.徐州:中国矿业⼤学出版社,2002.[51].林安浩,张国杰,王智青编演.数学分析(1983-1984全国⾼等院校硕⼠研究⽣⼊学试题解答).天津:天津科学技术出版社,1985.[52].皱节铣,陈强编.数学试题选解(1980-1985全国招考研究⽣).长沙:湖南科学技术出版社,1986.[53].庄亚栋,⽅洪锦,姚林编.基础数学试题选解(研究⽣⼊选考试).苏州:江苏科技术学出版社,1986.[54].蔡林,张继昌编著.研究⽣数学⼊学考试精编,第三版.杭州:浙江⼤学出版社,1999.[55].牟俊霖,李青吉主编.洞穿考研数学.北京:航空⼯业出版社,2003.[56].刘光祖,卢恩双主编.⼤学数学辅导与考研指导.北京:科学出版社,2002.[57].西安交通⼤学⼗教授考研班主编.考研数学成功指南,第三版.西安:世界图书出版公司西安公司,2004.[58].余长安主编.⼤学数学考研题型精讲与解题技巧集粹.北京:科学出版社,2005.[59].邵剑,陈维新,张继昌,何勇编著.⼤学数学考研专题复习.北京:科学出版社,2001.[60].李沛恒主编.考研数学新编考试参考书.北京:中国⼈民⼤学出版社,2004.[61].龚冬宝(保)主编.数学考研教程,第三版.西安:西北交通⼤学出版社,2004.[62].龚怀云,胡清徽,杨泽⾼,张可村.研究⽣⾼等数学⼊学考试指南.西安:西北交通⼤学出版社,1985.[63].陈⽂灯,莫先开主编.数学复习指南.北京:世界图书出版公司北京公司,2002.[64].齐民友主编.微积分学习指导.武汉:武汉⼤学出版社,2004.[65].汪林.数学分析中的问题和反例.昆明:云南科技出版社,1990.[66].汪林,戴正徳,杨富春,郑喜印.数学分析问题与研究评注.北京:科学出版社,1995.[67].陈纪修,於崇华,⾦路.数学分析(上).北京:⾼等教育出版社,2000.[68].陈纪修,於崇华,⾦路.数学分析(下).北京:⾼等教育出版社,2000[69].王晓敏,李晓奇,惠兴杰主编.数学分析学习⽅法与解题指导.沈阳:东北⼤学出版社,2005.[70].赵焕光,林长盛编著.数学分析(上).成都:四川⼤学出版社,2006.[71].赵焕光,林长盛编著.数学分析(下).成都:四川⼤学出版社,2006.[72].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(上),第⼆版.北京:⾼等教育出版社,1983.[73].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(下),第⼆版.北京:⾼等教育出版社,1983.[74].⽅企勤编.数学分析(1).北京:⾼等教育出版社,1986.[75].沈燮昌编.数学分析(2).北京:⾼等教育出版社,1986.[76].廖可⼈,李正元编.数学分析(3).北京:⾼等教育出版社,1986.[77].许绍溥,姜东平,宋国柱,任福贤.数学分析教程(上).南京:南京⼤学出版社,1990.[78].宋国柱,任福贤,许绍溥,姜东平.数学分析教程(下).南京:南京⼤学出版社,1990.[79].武汉⼤学数学系编.数学分析(上).北京:⼈民教育出版社,1978.[80].武汉⼤学数学系编.数学分析(下).北京:⼈民教育出版社,1978.[81].吉林⼤学数学系编.数学分析(上).北京:⾼等教育出版社,1979.[82].吉林⼤学数学系编.数学分析(中).北京:⾼等教育出版社,1979.[83].吉林⼤学数学系编.数学分析(下).北京:⾼等教育出版社,1979.[84].常庚哲,史济怀编.数学分析教程(上).北京:⾼等教育出版社,2003.[85].常庚哲,史济怀编.数学分析教程(下).北京:⾼等教育出版社,2003.[86].复旦⼤学数学系编.数学分析(上).上海:上海科学技术出版社,1978.[87].复旦⼤学数学系编.数学分析(下).上海:上海科学技术出版社,1978.[88].邓东皋,尹⼩玲编著.数学分析简明教程(上).北京:⾼等教育出版社,1999.[89].邓东皋,尹⼩玲编著.数学分析简明教程(下).北京:⾼等教育出版社,1999.[90].欧阳光中编.数学分析(上).上海:上海科学技术出版社,1982.[91].欧阳光中编.数学分析(下).上海:上海科学技术出版社,1982.[92].周性伟.数学分析(上).天津:南开⼤学出版社,1982.[93].周性伟.数学分析(下).天津:南开⼤学出版社,1982.[94].彭⽴中,谭⼩江编著.数学分析(第1册).北京:⾼等教育出版社,2005.[95].严⼦谦,尹景学,张然编著.数学分析(第⼀册).北京:⾼等教育出版社,2004.[96].马富明,⾼⽂杰编著.数学分析(第⼆册).北京:⾼等教育出版社,2005.[97].徐森林,薛春华编著.数学分析(第⼆册).北京:清华⼤学出版社,2006.[98].王慕三,庄亚栋.数学分析(上).北京:⾼等教育出版社,1990.[99].王慕三,庄亚栋.数学分析(中).北京:⾼等教育出版社,1990.[100].王慕三,庄亚栋.数学分析(下).北京:⾼等教育出版社,1990.[101].邓东皋,尹⼩玲编撰.数学分析简明教程.北京:⾼等教育出版社,1997.[102].李成章,黄⽟明编.数学分析(上).北京:科学出版社,2004.[103].李成章,黄⽟明编.数学分析(下).北京:科学出版社,2004.[104].张筑⽣.数学分析新讲(第⼀册).北京:北京⼤学出版社,1999.[105].张筑⽣.数学分析新讲(第⼆册).北京:北京⼤学出版社,1999.[106].张筑⽣.数学分析新讲(第三册).北京:北京⼤学出版社,1999.[107].朱永庚.数学分析(上).西安:陕西师范⼤学出版社,1989.[108].朱永庚.数学分析(下).西安:陕西师范⼤学出版社,1989.[109].东北师⼤等校数学系编.数学分析(上).北京:⾼等教育出版社,1983.[110].东北师⼤等校数学系编.数学分析(下).北京:⾼等教育出版社,1983.[111].吴传⽣,张⼩柔主编.数学分析(下册)习题精解.合肥:中国科学技术⼤学出版社,2007. [112].吴传⽣,张⼩柔主编.数学分析(下册)习题精解).合肥:中国科学技术⼤学出版社,2007. [113].郑英元.数学分析习题课教程(上).北京:⾼等教育出版社,1991.[114].郑英元.数学分析习题课教程(下).北京:⾼等教育出版社,1991.[115].郑美元.数学分析中的习题课教程(上).北京:⾼等教育出版社,1991.[116].郑美元.数学分析中的习题课教程(下).北京:⾼等教育出版社,1991.[117].邵漪漪.⾼等数学选择题集.上海:上海科学技术出版社,1989.[118].孟繁铎.微积分标准化试题库.⼤连:⼤连理⼯⼤学出版社,1989.[119].李承家,胡晓敏编.数学分析导教•导学•导考.西安:西北⼯业⼤学出版社,2003. [120].贺⾃树等编.数学分析习题课选讲.重庆:重庆⼤学出版社,2007.[ Last edited by hylpy on 2018-9-2 at 18:39 ][121].李忠⽅丽萍编.数学分析教程上,2008.[122].李忠⽅丽萍编.数学分析教程下,2008.[123].梅加强编.《数学分析》⾼等教育出版社,2011.07.[124].邹应编.数学分析.上册.⾼等教育出版社.1995.[125].邹应编.数学分析.下册.⾼等教育出版社.1995.[126].郭⼤钧等编著.数学分析(上册)(第2版),2002.[127].郭⼤钧等编著.数学分析(下册)(第2版),2002.[128].沐定夷.数学分析(上),1993.[129].沐定夷.数学分析(下),1993.[130].欧阳光中,姚允龙,周渊编著.数学分析(上册),2003.[131].欧阳光中,姚允龙,周渊编著.数学分析(下册),2003.[132].数学分析-卷I-秦曾复、朱学炎-⾼等教育出版社1991.[133].数学分析-卷Ⅱ-秦曾复、朱学炎-⾼等教育出版社1991.[134].数学分析-卷Ⅲ-秦曾复、朱学炎-⾼等教育出版社1991.[ Last edited by hylpy on 2018-9-5 at 19:19 ][135].数学分析1-徐森林,.薛春华.清华⼤学出版社,2005.[136].数学分析2-徐森林,薛春华.清华⼤学出版社,2007.[137].数学分析3-徐森林,⾦亚东,薛春华.清华⼤学出版社,2007.[138].数学分析精选习题全解(上)-薛春华,徐森林,2009.[139].数学分析精选习题全解(下)-薛春华,徐森林,2010.[ Last edited by hylpy on 2018-9-7 at 18:06 ][140].伍胜健.数学分析第⼆版,(第⼀册),北京⼤学数学教学系列丛书,2009.[141].伍胜健.数学分析第⼆版,(第⼆册),北京⼤学数学教学系列丛书,2009.[142].伍胜健.数学分析第⼆版,(第三册),北京⼤学数学教学系列丛书,2009.国内数学分析主要参考书⽬本帖隐藏的内容[1].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(上),第四版.北京:⾼等教育出版社,2003.[2].刘⽟琏,傅沛仁,林玎,苑德馨,刘宁编.数学分析讲义(下),第四版.北京:⾼等教育出版社,2003.[3].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(上),第⼆版,北京:⾼等教育出版社.2003.[4].刘⽟琏,扬奎元,吕风编.数学分析讲义学习辅导书(下),第⼆版,北京:⾼等教育出版社.2003.[5].华东师范⼤学数学系编.数学分析(上),第三版.北京:⾼等教育出版社,2002.[6].华东师范⼤学数学系编.数学分析(下),第三版.北京:⾼等教育出版社,2002.[7].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(上).北京:⾼等教育出版社.2004.[8].吴良森,⽑⽻辉,韩⼠安,吴畏编著.数学分析学习指导书(下).北京:⾼等教育出版社.2004.[9].吴良森,⽑⽻辉编著.数学分析习题精解(单变量部分).北京:科学出版社.2002.[10].吴良森,⽑⽻辉编著.数学分析习题精解(多变量部分).北京:科学出版社.2003.[11].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(上).北京:北京师范⼤学出版社,1985.[12].薛宗慈,曾昭著,邝荣⾬,陈平尚编.数学分析习作课讲义(下).北京:北京师范⼤学出版社,1987.[13].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(上).北京:⾼等教育出版社,2004.[14].谢惠民,恽⾃求,易法槐,钱定边编.数学分析习题课讲义(下).北京:⾼等教育出版社,2004.[15].徐利治,王兴华.数学分析的⽅法与例题选讲.北京:⾼等教育出版社,2002.[16].钱吉林等主编.数学分析解题精粹.武汉:崇⽂书局,2003.[17].裴礼⽂.数学分析中的典型问题与⽅法,第⼆版.北京: ⾼等教育出版社,2006.[18].周民强编著.数学分析习题演练(第⼀册).北京:科学出版社,2006.[19].周民强编著.数学分析习题演练(第⼆册).北京:科学出版社,2006.[20].裘兆泰.王承国,章仰⽂编.数学分析学习指导.北京:科学出版社,2004.[21].孙涛编.数学分析经典习题解析.北京:⾼等教育出版社,2004.[22].胡晓敏,李承家编著.数学分析考研教案,第⼆版.西安:西北⼯业⼤学出版社, 2006.[23].孙本旺,汪浩主编.数学分析中的典型例题和⽅法.长沙:湖南科学技术出版社,1983.[24].⽑⽻辉编著.数学分析选论.北京:科学出版社,2003.[25].王昆扬编.数学分析专题研究.北京:⾼等教育出版社,2001.[26].胡适耕,姚云飞编著.数学分析:定理问题⽅法.北京:科学出版社,2007.[27].徐利治编著.数学分析的⽅法及例题选讲:分析学的思想、⽅法与技巧.⼤连:⼤连理⼯⼤学出版社,2007.[28].沈燮昌.数学分析纵横谈.北京:北京⼤学出版社,1991.[29].G.波利亚.数学分析中的问题和定理(第⼀卷).上海:上海科技出版社,1981.[30].舒斯会编著.数学分析选讲.北京:北京⼤学出版社,2007.[31].刘三阳,于⼒,李⼴民编.数学分析选讲.北京:科学出版社,2007.[32].李克典,马云苓编著.数学分析选讲.厦门:厦门⼤学出版社,2007.[33].⾟钦著.数学分析⼋讲.武汉:武汉⼤学出版社,1999.[34].[美]克莱鲍尔著.数学分析.上海:上海科技出版社,1981.[35].朱时编著.数学分析札记.贵阳:贵州教育出版社,1994.[36].[苏]B.Π.吉⽶多维奇.数学分析习题集.北京:⾼等教育出版社,1985.[37].林源渠.数学分析习题集.北京:⾼等教育出版社,1986.[38].吕通庆编.数学分析中⼀些重要概念及其⽭盾概念.北京:⼈民教育出版社,1979.[39].赵显曾著.数学分析拾遗.南京:东南⼤学出版社,2006.[40].强⽂久,李元章,黄雯荣.数学分析的基本概念与⽅法.北京:⾼等教育出版社,1989.[41].⽅企勤,林源渠编著.数学分析习题课教材.北京:北京⼤学出版社,1990.[42].王向东主编.数学分析的概念与⽅法(上).上海:上海科学技术⽂献出版社,1989.[43].王向东主编.数学分析的概念与⽅法(下).上海:上海科学技术⽂献出版社,1989.[44].朱匀华,周健伟.数学分析选讲.⼴州:⼴东科技出版社,1995.[45].明清河.数学分析的思想与⽅法.济南:⼭东⼤学出版社,2004.[46].李惜雯.数学分析例题解析及难点注释(上).西安:西安交通⼤学出版社,2004.[47].李惜雯.数学分析例题解析及难点注释(下).西安:西安交通⼤学出版社,2004.[48].宋国柱编.分析中的基本定理和典型⽅法.北京:科学出版社,2004.[49].周忠群主编.数学分析⽅法选讲.重庆:西南师范⼤学出版社,1990.[50].王⼽平编.数学分析选讲.徐州:中国矿业⼤学出版社,2002.[51].林安浩,张国杰,王智青编演.数学分析(1983-1984全国⾼等院校硕⼠研究⽣⼊学试题解答).天津:天津科学技术出版社,1985.[52].皱节铣,陈强编.数学试题选解(1980-1985全国招考研究⽣).长沙:湖南科学技术出版社,1986.[53].庄亚栋,⽅洪锦,姚林编.基础数学试题选解(研究⽣⼊选考试).苏州:江苏科技术学出版社,1986.[54].蔡林,张继昌编著.研究⽣数学⼊学考试精编,第三版.杭州:浙江⼤学出版社,1999.[55].牟俊霖,李青吉主编.洞穿考研数学.北京:航空⼯业出版社,2003.[56].刘光祖,卢恩双主编.⼤学数学辅导与考研指导.北京:科学出版社,2002.[57].西安交通⼤学⼗教授考研班主编.考研数学成功指南,第三版.西安:世界图书出版公司西安公司,2004.[58].余长安主编.⼤学数学考研题型精讲与解题技巧集粹.北京:科学出版社,2005.[59].邵剑,陈维新,张继昌,何勇编著.⼤学数学考研专题复习.北京:科学出版社,2001.[60].李沛恒主编.考研数学新编考试参考书.北京:中国⼈民⼤学出版社,2004.[61].龚冬宝(保)主编.数学考研教程,第三版.西安:西北交通⼤学出版社,2004.[62].龚怀云,胡清徽,杨泽⾼,张可村.研究⽣⾼等数学⼊学考试指南.西安:西北交通⼤学出版社,1985.[63].陈⽂灯,莫先开主编.数学复习指南.北京:世界图书出版公司北京公司,2002.[64].齐民友主编.微积分学习指导.武汉:武汉⼤学出版社,2004.[65].汪林.数学分析中的问题和反例.昆明:云南科技出版社,1990.[66].汪林,戴正徳,杨富春,郑喜印.数学分析问题与研究评注.北京:科学出版社,1995.[67].陈纪修,於崇华,⾦路.数学分析(上).北京:⾼等教育出版社,2000.[68].陈纪修,於崇华,⾦路.数学分析(下).北京:⾼等教育出版社,2000[69].王晓敏,李晓奇,惠兴杰主编.数学分析学习⽅法与解题指导.沈阳:东北⼤学出版社,2005.[70].赵焕光,林长盛编著.数学分析(上).成都:四川⼤学出版社,2006.[71].赵焕光,林长盛编著.数学分析(下).成都:四川⼤学出版社,2006.[72].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(上),第⼆版.北京:⾼等教育出版社,1983.[73].陈传章,⾦福临,朱学炎,欧阳光中.数学分析(下),第⼆版.北京:⾼等教育出版社,1983.[74].⽅企勤编.数学分析(1).北京:⾼等教育出版社,1986.[75].沈燮昌编.数学分析(2).北京:⾼等教育出版社,1986.[76].廖可⼈,李正元编.数学分析(3).北京:⾼等教育出版社,1986.[77].许绍溥,姜东平,宋国柱,任福贤.数学分析教程(上).南京:南京⼤学出版社,1990.[78].宋国柱,任福贤,许绍溥,姜东平.数学分析教程(下).南京:南京⼤学出版社,1990.[79].武汉⼤学数学系编.数学分析(上).北京:⼈民教育出版社,1978.[80].武汉⼤学数学系编.数学分析(下).北京:⼈民教育出版社,1978.[81].吉林⼤学数学系编.数学分析(上).北京:⾼等教育出版社,1979.[82].吉林⼤学数学系编.数学分析(中).北京:⾼等教育出版社,1979.[83].吉林⼤学数学系编.数学分析(下).北京:⾼等教育出版社,1979.[84].常庚哲,史济怀编.数学分析教程(上).北京:⾼等教育出版社,2003.[85].常庚哲,史济怀编.数学分析教程(下).北京:⾼等教育出版社,2003.[86].复旦⼤学数学系编.数学分析(上).上海:上海科学技术出版社,1978.[87].复旦⼤学数学系编.数学分析(下).上海:上海科学技术出版社,1978.[88].邓东皋,尹⼩玲编著.数学分析简明教程(上).北京:⾼等教育出版社,1999.[89].邓东皋,尹⼩玲编著.数学分析简明教程(下).北京:⾼等教育出版社,1999.[90].欧阳光中编.数学分析(上).上海:上海科学技术出版社,1982.[91].欧阳光中编.数学分析(下).上海:上海科学技术出版社,1982.[92].周性伟.数学分析(上).天津:南开⼤学出版社,1982.[93].周性伟.数学分析(下).天津:南开⼤学出版社,1982.[94].彭⽴中,谭⼩江编著.数学分析(第1册).北京:⾼等教育出版社,2005.[95].严⼦谦,尹景学,张然编著.数学分析(第⼀册).北京:⾼等教育出版社,2004.[96].马富明,⾼⽂杰编著.数学分析(第⼆册).北京:⾼等教育出版社,2005.[97].徐森林,薛春华编著.数学分析(第⼆册).北京:清华⼤学出版社,2006.[98].王慕三,庄亚栋.数学分析(上).北京:⾼等教育出版社,1990.[99].王慕三,庄亚栋.数学分析(中).北京:⾼等教育出版社,1990.[100].王慕三,庄亚栋.数学分析(下).北京:⾼等教育出版社,1990.[101].邓东皋,尹⼩玲编撰.数学分析简明教程.北京:⾼等教育出版社,1997.[102].李成章,黄⽟明编.数学分析(上).北京:科学出版社,2004.[103].李成章,黄⽟明编.数学分析(下).北京:科学出版社,2004.[104].张筑⽣.数学分析新讲(第⼀册).北京:北京⼤学出版社,1999.[105].张筑⽣.数学分析新讲(第⼆册).北京:北京⼤学出版社,1999.[106].张筑⽣.数学分析新讲(第三册).北京:北京⼤学出版社,1999.[107].朱永庚.数学分析(上).西安:陕西师范⼤学出版社,1989.[108].朱永庚.数学分析(下).西安:陕西师范⼤学出版社,1989.[109].东北师⼤等校数学系编.数学分析(上).北京:⾼等教育出版社,1983.[110].东北师⼤等校数学系编.数学分析(下).北京:⾼等教育出版社,1983.[111].吴传⽣,张⼩柔主编.数学分析(上册)习题精解.合肥:中国科学技术⼤学出版社,2007.[112].吴传⽣,张⼩柔主编.数学分析(下册)习题精解).合肥:中国科学技术⼤学出版社,2007.[113].郑英元.数学分析习题课教程(上).北京:⾼等教育出版社,1991.[114].郑英元.数学分析习题课教程(下).北京:⾼等教育出版社,1991.[115].郑美元.数学分析中的习题课教程(上).北京:⾼等教育出版社,1991.[116].郑美元.数学分析中的习题课教程(下).北京:⾼等教育出版社,1991.[117].邵漪漪.⾼等数学选择题集.上海:上海科学技术出版社,1989.[118].孟繁铎.微积分标准化试题库.⼤连:⼤连理⼯⼤学出版社,1989.[119].李承家,胡晓敏编.数学分析导教•导学•导考.西安:西北⼯业⼤学出版社,2003. [120].贺⾃树等编.数学分析习题课选讲.重庆:重庆⼤学出版社,2007.[121].李忠⽅丽萍编.数学分析教程上,2008.[122].李忠⽅丽萍编.数学分析教程下,2008.[123].梅加强编.《数学分析》⾼等教育出版社,2011.07.[124].邹应编.数学分析.上册.⾼等教育出版社.1995.[125].邹应编.数学分析.下册.⾼等教育出版社.1995.[126].郭⼤钧等编著.数学分析(上册)(第2版),2002.[127].郭⼤钧等编著.数学分析(下册)(第2版),2002.[128].沐定夷.数学分析(上),1993.[129].沐定夷.数学分析(下),1993.[130].欧阳光中,姚允龙,周渊编著.数学分析(上册),2003.[131].欧阳光中,姚允龙,周渊编著.数学分析(下册),2003.[132].数学分析-卷I-秦曾复、朱学炎-⾼等教育出版社1991.[133].数学分析-卷Ⅱ-秦曾复、朱学炎-⾼等教育出版社1991.[134].数学分析-卷Ⅲ-秦曾复、朱学炎-⾼等教育出版社1991.[135].数学分析1-徐森林,.薛春华.清华⼤学出版社,2005.[136].数学分析2-徐森林,薛春华.清华⼤学出版社,2007.[137].数学分析3-徐森林,⾦亚东,薛春华.清华⼤学出版社,2007.[138].数学分析精选习题全解(上)-薛春华,徐森林,2009.[139].数学分析精选习题全解(下)-薛春华,徐森林,2010.[140].伍胜健.数学分析第⼆版,(第⼀册),北京⼤学数学教学系列丛书,2009.[141].伍胜健.数学分析第⼆版,(第⼆册),北京⼤学数学教学系列丛书,2009.[142].伍胜健.数学分析第⼆版,(第三册),北京⼤学数学教学系列丛书,2009.这⾥列的参考书,本论坛⼤部分都有电⼦版分享。

南方科技大学610数学分析2020年考研专业课初试大纲

南方科技大学610数学分析2020年考研专业课初试大纲

南方科技大学
2020年硕士研究生入学考试大纲
考试科目名称:数学分析考试科目代码:610
一、考试要求
1)要求考生熟练掌握数学分析的基本概念、基本理论和基本方法。

2)要求考生具有严格的数学论证能力、举反例能力和基本计算能力。

3)要求考生了解数学分析中的基本概念、理论、方法的实际来源和历史背景,清楚它们的几何意义和物理意义,初步具备应用数学分析解决实际问题能力。

二、考试内容
1) 极限和连续性
a.数列极限与函数极限的概念,包括数列的上、下极限和函数的左、右极限。

b.极限的性质及四则运算性质,两面夹原理。

c.区间套定理,确界存在定理,单调有界原理,Bolzano-Weierstrass定理,Heine-Borel有限覆盖定理,Cauchy收敛准则。

d.函数连续性的概念及相关的不连续点类型。

函数连续的四则运算与复合运算性质,以及无穷小量比较。

e.闭区间上连续函数的性质:有界性定理、最值定理、介值定理和一致连续性定理。

2) 一元函数微分学
a.导数和微分的概念及其相互关系,导数的几何意义和物理意义,函数可导性与连续性之间的关系。

b.函数导数与微分的运算法则,包括高阶导数的运算法则,分段函数的导数。

c.Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor公式。

d.函数的导数与单调性,极值,最值和凸凹性。

e.L’Hopital(洛必达)法则,不定式极限。

3) 一元函数积分学
a.不定积分的概念,不定积分的基本公式,换元积分法和分部积分法,有理函数、三角函数和简单无理函数的积分。

上海理工大学考研理学院考试大纲

上海理工大学考研理学院考试大纲

上海理工大学考研理学院考试大纲凯程考研集训营,为学生引路,为学员服务~上海理工大学2016考研理学院考试大纲专业课《数学分析》考研大纲和参考书目参考教材:《数学分析》(第三版),华东师范大学数学系编,高等教育出版社参考用书:《数学分析》(第三版),陈传璋等编(复旦大学数学系),高等教育出版社《数学分析》,复旦大学数学系编,复旦大学出版社课程的基本内容要求1、了解实数的概念和性质。

理解数集的概念及确界原理。

熟练掌握函数的概念、熟练掌握具有某种特性的函数:有界性、单调性、奇偶性、周期性,熟练掌握复合函数、反函数与初等函数的概念。

2、理解数列极限的概念,熟练掌握收敛数列的性质,数列极限存在的条件。

理解函数极限的概念,熟练掌握函数极限的性质,理解函数极限存在的条件。

掌握函数极限与数列极限之间的关系,函数极限的柯西准则。

掌握无穷大量与无穷小量的概念及相关性质。

理解函数连续、一致连续的概念,熟练掌握连续函数的性质以及初等函数的连续性。

3、理解导数的概念,熟练掌握求导法则,理解参变量函数的导数及高阶导数并掌握其求法。

掌握微分的概念及相关计算。

、理解Roll,Lagrange,Cauchy中值定理,熟练掌握函数单调性的判定方法。

熟练掌 4握求不定式极限的法则。

掌握Taylor公式。

理解函数极值与最值的概念,掌握函数极值的判别方法与最值的计算。

理解函数凸性与拐点的概念并掌握其判定方法。

会画函数图象。

5、理解实数集完备性的基本定理。

6、理解不定积分的概念,熟练掌握基本积分公式。

掌握换元积分和分部积分法。

掌握有理函数及可化为有理函数简单无理函数与三角函数等的不定积分。

7、理解定积分的概念,了解相关的物理与几何模型。

熟练掌握牛顿-莱布尼茨公式。

掌握可积的必要条件,可积的充要条件。

掌握定积分的性质及积分中值定理。

熟练掌握微积分学基本定理和定积分的计算。

了解泰勒公式的积分型余项。

8、掌握定积分在几何和简单物理问题中应用的基本方法,能够应用定积分计算平面面积、体积、平面弧长、功、压力、引力等。

《数学分析选讲》考研很有用的参考资料(共15章)第9章

《数学分析选讲》考研很有用的参考资料(共15章)第9章

第六章 级数理论§1 数项级数I 基本概念一 数项级数及其敛散性定义1 给定一个数列{,对它的各项依次用“+”号连结起来的表达式}n u ""++++n u u u 21 (1)称为数项级数或无穷级数,简称级数,记为,其中称为数项(1)的通项. ∑∞=1n nun u 数项级数(1)的前项之和,记为,称之为(1)的前项部分和,简称为部分和.n ∑==nk kn uS 1n 定义2 若级数(1)的部分和数列{}n S 收敛于(即S S S n n =∞→lim ),则称级数(1)收敛,并称为(1)的和,记为.若S ∑∞==1n nuS {}n S 是发散数列,则称级数(1)发散.二 收敛级数的基本性质1 收敛级数的柯西收敛准则级数(1)收敛的充要条件是:0>∀ε,0>∃N ,N n >∀,,有+∈∀Z p ε<++++++p n n n u u u "21.2 级数收敛的必要条件:若级数∑收敛,则∞=1n na0lim =∞→n n a .3 去掉、增加或改变级数的有限项并不改变级数的敛散性.4 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数亦如此),即收敛级数满足结合律.5 若级数适当加括号后发散,则原级数发散.6 在级数中,若不改变级数中各项的位置,只把符号相同的项加括号组成一新级数,则两级数具有相同的敛散性.7 线性运算性质若级数与都收敛,是常数,则收敛,且∑∞=1n nu∑∞=1n nvd c ,(∑∞=+1n n ndv cu)()∑∑∑∞=∞=∞=±=±111n n n n n n nv d u c dv cu.三 正项级数收敛性判别法1 正项级数收敛的充要条件是部分和数列∑∞=1n nu{}n S 有界.2 比较判别法 设与是两个正项级数,若存在正整数,当时,都有,则∑∞=1n nu∑∞=1n nvN N n >n n v u ≤(1)若收敛,则∑收敛;∑∞=1n nv∞=1n nu(2)若发散,则∑发散.∑∞=1n nu∞=1n nv3 比较原则的极限形式 设和是两个正项级数,且∑∞=1n n u ∑∞=1n n v l v u nnn =∞→lim,则(1)当+∞<<l 0时,和∑具有相同的敛散性;∑∞=1n nu∞=1n nv(2)当时,若∑收敛,则收敛;0=l ∞=1n nv∑∞=1n nu(3)当时,若发散,则发散.+∞=l ∑∞=1n nv∑∞=1n nu4 设∑和是两个正项级数,且∞=1n n a ∑∞=1n n b 0>∃N ,N n >∀,有nn n n b b a a 11++≤,则 (1)若收敛,则∑收敛;∑∞=1n nb∞=1n na(2)若发散,则发散.∑∞=1n na∑∞=1n nb5 比式判别法(达朗贝尔判别法) 设是正项级数,若及常数,有∑∞=1n nu00>∃N 0>q(1)当时,0N n >11<≤+q a a n n ,则级数收敛;∑∞=1n n u (2)当时,0N n >11≥+n n a a ,则发散.∑∞=1n n u 6 比式判别法极限形式 设为正项级数,且∑∞=1n n u q u u nn n =+∞→1lim,则(1)当时,收敛;1<q ∑∞=1n nu(2)当若时,∑发散;1>q +∞=q ∞=1n nu(3)当时失效.1=q 当比式极限不存在时,我们有 设为正项级数.∑∞=1n nu(1)若1lim1<=+∞→q u u n n n ,则级数收敛;(2)若1lim1>=+∞→q u u nn n ,则级数发散.7 根式判别法(柯西判别法) 设为正项级数,且存在某正整数及正常数l ,∑∞=1n nu0N (1)若对一切,成立不等式0N n >1<≤l u nn ,则级数收敛;∑∞=1n n u (2)若对一切,成立不等式0N n >1≥n n u ,则级数∑发散.∞=1n nu8 根式判别法极限形式 设为正项级数,且∑∞=1n nul u n n n =∞→lim ,则(1)当时级数收敛; 1<l (2)当时级数发散. 1>l 9 柯西积分判别法设为[上非负递减函数,那么正项级数与反常积分同时收f )∞+,1()∑∞=1n n f ()∫∞+1dx x f敛或同时发散.10 拉贝判别法 设为正项级数,且存在某正整数及常数∑∞=1n nu0N r ,(1)若对一切,成立不等式0N n >111>≥⎟⎟⎠⎞⎜⎜⎝⎛−+r u u n n n ,则级数∑收敛;∞=1n n u (2)若对一切,成立不等式0N n >111≤⎟⎟⎠⎞⎜⎜⎝⎛−+n n u u n ,则级数发散.∑∞=1n n u 注 拉贝判别法中(1)111>≥⎟⎟⎠⎞⎜⎜⎝⎛−+r u u n n n 可转化为nru u n n −≤+11,1>r 收敛; (2)r u u n n n ≤⎟⎟⎠⎞⎜⎜⎝⎛−+11可转化为nru u n n −≥+11,1≤r 发散. 11 拉贝判别法极限形式若r u u n n n n =⎟⎟⎠⎞⎜⎜⎝⎛−+∞→11lim ,则有 (1)当1>r 时,收敛;∑∞=1n nu(2)当1<r 时,发散.∑∞=1n nu四 一般项级数1 莱布尼兹判别法 若交错级数,,满足下列两个条件:()∑∞=−−111n n n u 0>n u (1)数列{单减; }n u (2),0lim =∞→n n u 则收敛.∑∞=1n nu注 若交错级数满足莱布尼兹判别法,则其余项满足()∑∞=−−111n n n u ()x R n ()1+≤n n u x R .2 绝对收敛级数及其性质 定义 对于级数,若∑∞=1n nu∑∞=1n nu收敛,则称绝对收敛;若收敛,而∑∞=1n nu∑∞=1n nu∑∞=1n nu发散,则称是条件收敛的.∑∞=1n nu显然,若绝对收敛,则一定收敛,反之不真.∑∞=1n nu∑∞=1n nu绝对收敛级数的性质: (1)重排性:若∑绝对收敛,其和为,则任意重排后所得级数亦绝对收敛,且有相同的和数.∞=1n nuS 此说明:绝对收敛级数满足交换律.对于条件收敛级数适当重排后,可得到发散级数,或收敛于任何事先指定的数(Riemann ).(2)级数的乘积 若和都绝对收敛,其和分别为∑∞=1n nu∑∞=1n nvA 和B ,则其乘积按任意方式排列所得的级数也绝对收敛,且其和为∑∞=1n n u ∑∞=⋅1n nvAB (柯西定理).乘积的排列方式通常有两种:正方形和对角线法.3 一般级数收敛判别法一般级数除应用前面正项级数方法判定其绝对收敛以外,莱布尼兹判别法和下面的狄利克雷判别法和阿贝尔判别法则是判定其可能条件收敛的主要方法.(1)狄利克雷判别法 若数列{单减收敛于零,的部分和数列有界,则级数收敛.}n a ∑∞=1n nbnn n ba ∑∞=1注 莱布尼兹判别法是狄利克雷判别法的特例,Abel 判别法亦可由狄利克雷判别法推证.(2)阿贝尔判别法:若数列{单调有界,∑收敛,则级数收敛.}n a ∞=1n nbnn n ba ∑∞=1五、常用于比较判别法的已知级数(1)几何级数∑,∞=1n nq1<q 收敛,1≥q 发散;(2)级数−p ∑∞=11n p n ,时收敛,1>p 1≤p 发散; (3)()∑∞=2ln 1n pn n ,时收敛,1>p 1≤p 发散.II 例题选解一 级数敛散性判别例1 讨论下列级数的敛散性. (1)∑∞=+111n nx,; 0>x (2)∑∞=1sinn nx,. R x ∈解(1)10<<x ,,0→n x 0111≠→+nx,发散; 1=x 时,02111≠→+nx,发散; 1>x 时,nn x x ⎟⎠⎞⎜⎝⎛<+111,∑∞=11n n x 收敛,故∑∞=+111n nx 收敛. (2)当时收敛,当时,发散. 0=x 0≠x 例2 已知∑收敛.∞=12n na(1)判定()∑∞=+−1211n n n n a 的敛散性;(2)证明:∑∞=2ln n n nn a 收敛.(武汉大学)解(1)()222221112111n a n a n a n nn+≤⎟⎠⎞⎜⎝⎛++≤+⋅−,与∑∞=12n n a ∑∞=121n n 均收敛,从而原级数收敛(绝对收敛).(2)仿(1),由五(3)知其收敛. 例3 判断下列级数的敛散性. (1)∑∞=+−1)]11ln(1[n n n ;(东北师大)(2)∑++++−)]!1!21!111([n e ";(东北师大) (3)∑∞=142sin3n n n ; (4)∑∞=⎟⎠⎞⎜⎝⎛−1cos 1n pn π,() 0>p (5)∑∞=1!n n n nn a ();e a a ≠>,0(6)()∑∞=−−+11312n n n ;(7)∑∞=−>−+111)0()2(n nna aa;(8)∑∫∞=+104411n n dxx ;(9)∑∞=⎟⎠⎞⎜⎝⎛−−−21111n n n n ; (10)()()∑∞=+2ln ln 1n n nn n ;(11)∑∞=3ln n pnn(); 0>p (12)()()∑∞=++11ln 11n pn n ();(0>p 1=p 为大连理工) (13)()∑∞=+++1!2!!2!1n n n "; (14)()∑∞=⎦⎤⎢⎣⎡−+111ln n p n n (); 0>p (15)()()∑∞=⋅−11!!2!!12n n n n ;(16)()∑∞=1ln ln 1n nn ; (17)∑∞=⎟⎠⎞⎜⎝⎛−2ln 1n nn n p (); 0>p(18)()()()∑∞=+++12111n nnx x x x "0≥x (); (19)()∑∞=+−⋅−+211ln1n pn n nn (); 0>p (20)()∑∞=⎟⎠⎞⎜⎝⎛++−110310021n nnn n ;(21)()()∑∞=−+−211n n n n ; (22)∑∞=1cos n pn nx(π<<x 0); (23)"+−−−+−−+−+2222222222; (24)()[]∑∞=−11n n n;(25)()()∑∞=2ln ln ln 1n qp n n n ;(大连理工1998) (26)∑∞=+−11n nn n;(中科院2002)(27)∑−nnnarctan )1((北京大学1999).解(1)由于)(1ln ln 1)1ln(1)]11ln(1[111∞→→++−=+−=+−=∑∑∑===n c n n n k n k k k S nk n k nk n ,其中c 为欧拉常数,所以级数收敛.(2)由于""++++=++++−<)!2(1)!1(1)!1!21!111(e 0n n n ))3)(2)(1(1)2)(1(111(!1"+++++++++=n n n n n n n 22)!1(2))3)(2(1)2)(1(111(!1nn n n n n n n <+=++++++++<", 由比较原则知其收敛.(3)24342sin 3→⎟⎠⎞⎜⎝⎛nnn⇒ 收敛;(4)21021~cos 12≤<⇒⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛−p n n pp ππ发散,21>p 收敛; (5)()()e a n n a n n a n n a nn n n n →⎟⎠⎞⎜⎝⎛+⋅=⋅++⋅++1!1!111e a <<⇒0收敛,发散; e a >(6)()131312<→−+n n n⇒收敛;或()()∑∑∑∞=−∞=∞=−−+=−+111113131232n n n n n n n n ,收敛;或()1131312−−≤−+n nn ,收敛;(此乃正项级数)(7)220222121211)ln 2((lim )21()(lim )21()2(lim a x a a na a n a a x x x nnn nnn =−=−=−+−+→−∞→−∞→⇒收敛; 注:利用的Maclaurin 展开式估计分子的阶. x a (8)204421110nxdxdxx a n n n =≤+=<∫∫⇒ 收敛; (9)()nn n nn n n n n n −=−−=−−−111111=n n −231⇒收敛; 或⎟⎟⎠⎞⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛+++=⎟⎠⎞⎜⎝⎛−=−−n o n n n n n n 11111111111⎟⎠⎞⎜⎝⎛+++=23231111n o n n n ⇒⎟⎠⎞⎜⎝⎛+=−−−=2323111111n o n n n n a n (∞→n )收敛;∑∞=⇒1n n a (10)()()()()nenn n n nn n nn nnnln ln 1ln 11ln ln ln ln +⋅=+=+,而()01ln ln →+⋅nn n ,从而上式极限为零,⇒收敛;(11)当10≤<p 时,nn n p 1ln ≥()发散; 3>n ⇒ 当时,1>p ()()21211ln 1ln −−+⋅=p p p nnn n n ,当充分大时, n ()1ln 21<−p n n ⇒ ()2111ln −+≤p p nn n ⇒收敛.或当时,1>p 0ln 1ln 1ln 121<−=⋅−⋅=′⎟⎠⎞⎜⎝⎛+−p p p pp x x p x xpx x x x x (),即单减.由柯西积分判别法知原级数收敛.3>x (12)()()()pn n n u 1ln 11++=单减,故可用柯西积分判别法,令()()()1ln 11++=x x x f p ,,易知当1≥x 1=p 时,发散,时亦发散,而时收敛.()∫∞+1dx x f 10<<p 1>p (13)()()()2121!2!!2!!2!1+≤⋅≤+++n n n n n n "()收敛; 3≥n ⇒(14)由泰勒公式(皮亚诺余项形式)得:()()()⎟⎠⎞⎜⎝⎛+⎥⎦⎤⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡−+p p n p n p n n o n n n 221121111ln ()⎟⎠⎞⎜⎝⎛+⋅−−=p p p nn o n n 2211211,当绝对收敛,1>p 121≤<p 条件收敛,210≤<p 发散. 注 能否利用()()p np n n n 1~11ln −⎟⎟⎠⎞⎜⎜⎝⎛−+⇒()∑∞=⎟⎟⎠⎞⎜⎜⎝⎛−+111ln n p n n 收敛?(此法仅用于正项级数).(15)()()()()⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛+−=+⋅++=⋅−+⋅++=+1112211122121!!2!!1211!!22!!121n n n n n n nn n n n n a a n n()⎟⎠⎞⎜⎝⎛+++−=+++−=11123112112312n o n n n 由拉贝判别法知其收敛.(16)+∞→n ln ,则当较大时,,n 2ln e n >()()2ln 2ln 11ln 1n en n n =<⇒收敛; (17)根式判别法失效.先估计它的阶,⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−=n n p n nn e n n p u ln 1ln ln 1,n npn n p ln ~ln 1ln −⎟⎠⎞⎜⎝⎛−(), ∞→n 从而可以估计,于是可讨论pn nu −~n p p nu n nu =的极限,为此()⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−+=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=∞→∞→∞→n n p n n p n n p n u n n np n n pn ln 1ln ln lim ln 1ln lim ln lim ⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛++−=−∞→n n p n p n n n 1ln 1ln 1ln 11lim1()[]x px x px xx ln ln 1ln 1lim0−+=→ ()0ln 1ln ln lim 220=++−=→xpx x x x x p x 故,,所以当时收敛,当1lim =∞→n pn u n p n n u −~1>p 1≤p 时发散.(18)当时级数显然收敛; 0=x 当时,,故收敛;10<<x n n x u <当时,1=x nn u ⎟⎠⎞⎜⎝⎛=21,收敛;当时,1>x ()()()112111111−−<+<+++=n n n nn x x x x x x u ",收敛.(19)()()())(12121~1112∞→⋅=++=−+n nn nn nn p p ppp, )(2~12~121ln 11ln∞→−+−⎟⎠⎞⎜⎝⎛+−+=+−n n n n n n , 所以,211121~p p n n a +−⋅−)(∞→n ,由此易得:时收敛,0>p 0≤p 时发散. 注 等价无穷小替换法仅适用于同号级数.(20)()132103100210310021<→++=⎟⎠⎞⎜⎝⎛++−n n n n n nn,绝对收敛. (21)()()()()()111111111−+−−=−−−−=−+−=n n n n n n u nnnnn n , ()()()0121112112221<−−−=−−−⋅=′⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−x x x x x x xx x () 1>x 由莱布尼兹判别法,()∑∞=−−211n nn n 收敛,而∑∞=−111n n 发散,故原级数发散. (22)当,发散,,绝对收敛,当0≤p 1>p 10≤<p 时,由狄利克雷判别法知其收敛.事实上,212sin 21sin cos 3cos 2cos cos −⎟⎠⎞⎜⎝⎛+=++++x xn nx x x x ",()π,0∈x ,有界.(23)法一:212sin24sin24cos22πππ====a ,322sin 24cos 1222ππ=⎟⎠⎞⎜⎝⎛−=−=a ,4332sin 22cos 224cos 122222πππ=−=⎟⎠⎞⎜⎝⎛+−=−−=a ,……12sin2+=n n a π,……于是原级数可表为∑∞=+=⎟⎠⎞⎜⎝⎛++++21322sin 22sin 2sin 2sin 2n n n ππππ"",收敛.法二:记21=A ,222+=A ,2223++=A ,……则,于是2→n A 121222lim 222lim 222lim lim 22111<=−+−=−+−=−+−=→→−−∞→+∞→x x x x A A a a x x n n n nn n ,收敛.(24)将级数中相邻且符号相同的项合并为一项,得一新级数()()∑∞=⎭⎬⎫⎩⎨⎧−++++−12221111111n nn n n " 注意到通项中共有项,其中前项之和和后12+n n 1+n 项之和分别夹在11+n 与n1之间, n n n n n n n n n n n n n 11111122222=<−+++<−+<+=" ()nn n n n n n n n n n n n n 11211211122222=++<++++<+<+=+" 因此()nn n n n 211111112222<−+++++<+" 由此得其单减,从而为收敛级数,而原级数的部分和总是夹在新级数某相邻的二部分和之间,所以原级数也收敛.(25)当时,则当时收敛,1=p 1>q 1≤q 时发散,此时级数的敛散性等同于无穷积分()∫∞+2ln ln ln qx x x dx的敛散性.由无穷积分立得 ()∫∞+2ln ln ln q x x x dx ()∫+∞→=A q A x x x dx2ln ln ln lim ()⎪⎪⎩⎪⎪⎨⎧<∞+>−=+∞==−+∞→+∞→1,1,ln ln 11lim 1,ln ln ln lim 212q q x q q x A qAA A 收敛, 当时发散,时收敛,事实上,1<p 1>p 当时,1<p ()()()()n n n n n n n n n q pqp ln 1ln ln ln ln 1ln ln ln ln 11>⋅=−(n 充分大) 当时,1>p ()()()()()()()2121211ln 1ln ln ln 1ln 1ln ln ln ln 1+−−+<⋅=p q p p q p n n n n n n n n n . (26)由 及发散知级数发散.∑−1n(27)由于{单调有界,}n arctan ∑−nn)1(收敛,由阿贝尔判别法知其收敛.思考题1 判别下列级数的敛散性: (1)∑∞=+−−++122)11(1n n n n n n ;(复旦大学1997) (2)∑∞=123ln n nn;(复旦大学1998) (3)∑∞=122sinn nn π;(复旦大学1999)(4)∑∞=−122sin)53(n n n n π;(复旦大学1999)(5))0()1()2ln(1>++∑∞=a n a n n n;武汉理工大学2004) (6)∑∞=−11sin 1(n n n α.(南京理工2004) 提示:(1)分子有理化,发散; (2)收敛;(3)仿上例(3),收敛;(4)当为偶数时,通项为0,去掉这些为0的项以后所得级数为交错级数,收敛,n从而原级数收敛(考察它们部分和数列之间的关系).(5)由级数收敛的必要条件知当1≤a 时发散;当由比式判别法知其收敛; 1>a (6)利用的Taylor 公式讨论. x sin 例4 讨论级数∑∞=11n pn的敛散性.分析:,柯西准则,发散;1=p 1>p ,柯西积分判别法,收敛; 1<p ,比较判别法,发散.例5 证明 (1)若级数收敛,则∑∞=12n n a ∑∞=1n nn a 收敛;(淮北煤师院2004) (2)若,则发散,而∑收敛;(南开大学2001)0lim ≠=a na n n∑∞=1n na∞=12n na(3)若是收敛的正项级数,则当∑∞=1n n a 21>p 时,级数∑∞=1n p n na 收敛(中科院2002). 分析:(1)⎟⎠⎞⎜⎝⎛+≤22121n a n a n n ; (2)01≠→=a na na n n ,发散,而∑收敛; ∑∞=1n n a ∞=12n na (3)同(1).或:由Cauchy 不等式211221111⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛≤∑∑∑===nk p nk k nk pk k a k a ; 知其部分和有界,从而收敛.例6(兰州大学2000)设是单调递减数列,试证明: 0>n u (1)若0lim ≠=∞→c u n n ,则∑∞=+−11)1(n nn u u 收敛; (2)若0lim =∞→n n u ,则∑∞=+−11)1(n nn u u 发散. 证(1)由单调有界定理知,再由极限的柯西收敛准则知:0>≥c u n 0,0>∃>∀N ε,当,有+∈∀>Z p N n ,εc u u p n n <−+,又单调递减,所以,当时,有n u +∈∀>Z p N n ,ε<−≤−++−+−+−+++++np n n p n p n n n n n u u u u u u u u u )1()1()1(1121",由级数的柯西收敛准则知其收敛.(2)由于1)1()1()1(1121−=−≥−++−+−+++−+++++pn n p n p n n p n p n n n n n u uu u u u u u u u u ",令得上式右端的极限为,由柯西准则知∞→p ∞+∑∞=+−11)1(n nn u u 发散. 例7(华东师大1997)设级数∑∞=1n nn a收敛.试就∑n a 为正项级数和一般项级数两种情形分别证明:级数n n an n+∑∞=1也收敛.证 当为正项级数时,∑na1lim=+∞→nn a n a n n n ,由比较判别法知n n an n+∑∞=1收敛.当∑∞=1n n n a 为一般项级数时,nn a n n a n n n n 1111+=+∑∑∞=∞=,由阿贝尔判别法知它是收敛的.思考题2(华东师大1998)已知为发散的一般项级数,试证明∑∞=1n n a ∑∞=+1)11(n n n a 也是发散级数.提示:用反证法.假设∑∞=+1)11(n n n a 收敛,则∑∑∞=∞=++=11)1)(11(n n n n n n n a a ,由阿贝尔判别法知收敛,矛盾.∑∞=1n na例8(北京工业大学2000)设和正项数列{}n a 单调减少,且级数发散.令n n na ∑∞=−1)1(nn a a a u ++⋅+=11111121",.,2,1"=n试问级数∑是否收敛,并说明理由.∞=1n nu证 级数收敛.这是因为:由级数发散和正项数列单调减少知,且由单调有界定理知,于是∑∞=1n nun n na ∑∞=−1)1({}n a 0lim >=∞→a a n n a a n ≥nn n n aa a a a u )11()1(111111121+=+≤++⋅+=", 由比较原则知收敛.∑∞=1n nu例9(北方交通大学1999)已知.,2,1,,01"=≤>+n a a a n n n 讨论级数"""++++na a a a a a 21211111 的敛散性.解 由单调性假设知存在极限0lim ≥=∞→a a n n ,则a a a a n n n =∞→"21lim ,由柯西根式判别法知,当时收敛,当时发散,当1>a 1<a 1=a 时,例10(中国矿大北研部)设,0>n a n n a a a S +++="21,级数.试证:∞=∑∞=1n na(1)∑∞=1n nnS a 发散;(武汉大学) (2)∑∞=12n nnS a 收敛.(东北师大) 证 (1),,于是0>n a ↑n S pn n p n pn n k kpn n k k k S S S a S a ++++=++=−=≥∑∑111. 而,故,从而当充分大时,∞=∑∞=1n n a +∞=++∞→p n p S lim p 21<+pn n S S , 211≥∑++=pn n k kk S a .由柯西收敛准则知其发散.(2)11211211122121111a S S S S a S S a a S a n nk k k n k k k k nk kk ≤−=⎟⎟⎠⎞⎜⎜⎝⎛−+=+≤∑∑∑=−=−=,部分和有界,故收敛.例11(华中科技大学) 若0lim 1=+∞→n n a ,()0lim 21=+++∞→n n n a a ,…,()0lim 21=++++++∞→p n n n n a a a ",…,试问是否一定收敛?为什么?∑∞=1n n a 解 不一定.如级数∑∞=11n n,有 )(01121110∞→→+<++++++<n n p p n n n "; 但∑∞=11n n 发散.例12(上海交大) 若 1lim 1sin 2=⎟⎟⎠⎞⎜⎜⎝⎛⋅∞→n nn n a n ,则级数是否收敛?试证之.∑∞=1n n a 解 由于11sin2→−nn n na (∞→n ),而()432sin 21sin2110−⋅−−≤=<−−nnn n n nn (n 充分大),由比较判别法知∑∞=−11sin2n nn n收敛,再由比较判别法知收敛.∑∞=1n na例13 设且单减,试证与同时敛散.0>n a ∑∞=1n na∑∞=122n nn a 证 因为对正项级数任意加括号不改变敛散性,因此由∑∞=1n na()()()""++++++++++=1587654321a a a a a a a a a∑∞==++++≤02232221222232n n n a a a a a "和∑∞=1n na()()()"""++++++++++=169854321a a a a a a a a∑∞=+=+++++≥02116842122121842n nn a a a a a a a "知两级数具有相同的敛散性.例14 若正项级数收敛,且(∑∞=1n nan n nb a n a e a e++=",2,1=n ).证明 (1)∑收敛;(华东师大)∞=1n nb(2)∑∞=1n nna b 收敛.(北京理工大学2003)证 解出得:n b ()0ln lim >−=∞→n a n n a eb n,而收敛,故当n 充分大时,∑∞=1n n a nnn a b b <,从而(2)收敛立得(1)收敛.由收敛的必要条件得)(0∞→→n a n .又因为()⎟⎟⎠⎞⎜⎜⎝⎛−++++=−n nn n n a a a a a a e n"!3!21ln ln 32()n n n a o a a =++"32!3121~, 即 0lim=∞→nn n a b ,由级数收敛得∑∞=1n n a ∑∞=1n nn a b收敛. 例15 研究级数∑∞=121n nx 的敛散性,这里是方程n x x x tan =的正根,并且按递增的顺序编号.解 解方程得:()⎟⎠⎞⎜⎝⎛+−+∈ππππn n x n 2,12,()22111−<n x n ,,收敛. 1>n 例16 设,,11=u 22=u 21−−+=n n n u u u ().问收敛吗?3≥n ∑∞=−11n nu解 由于03323233211211111<−=−=−=−+−−+−+++n n n n n n n n n n n u u u u u u u u u u u (); 3>n 所以 321111≤=+−−+n n n n u u u u (由的前若干项预测);由比式判别法知其收敛. n u 例17 设,证明级数 0>n a ()()()∑∞=+++121111n nna a a a " 收敛. 解 由于()()()()()()()()n n n a a a a a a a a a a a a a S +++++++++++++=<111111111021321321211""()()()()()()()"""++++++++−=+++++=321321212121111111111a a a a a a a a a a a a()()()()()()n n a a a a a a a ++++++++−=1111111121321"" ()()()1111121<+++−=n na a a a "即部分和有界,所以收敛.例18(上海师大)证明:级数:"+⎟⎠⎞⎜⎝⎛+++−⎟⎠⎞⎜⎝⎛+++⎟⎠⎞⎜⎝⎛+−4131211713121151211311是收敛的.解 这是交错级数,且()()⎟⎠⎞⎜⎝⎛++++−+=⎟⎠⎞⎜⎝⎛+++−=n n n n n n a n 12111212121211121""111121112112111221121+=⎟⎠⎞⎜⎝⎛++++++>⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛+++⎟⎠⎞⎜⎝⎛−++=n a n n n n n n "", ()()0ln 1211211121→++−=⎟⎠⎞⎜⎝⎛+++−=n n n c n n n a ε". 由莱布尼兹判别法知收敛.∑∞=1n na例19(合肥工大2001)已知正项级数∑na 和∑nb 都发散,问下列级数收敛性如何?(1)∑; (2)),min(nnb a ∑),max(nnb a .解(1)可能收敛,也可能发散,例如,取,则1−==n b a n n ∑),min(nn b a 发散;若取,,则n n a )1(1−+=1)1(1+−+=n n b 0),min(≡n n b a ,∑),min(nn b a 收敛.(2)一定发散,这是因为. n n n a b a ≥),max(思考题3(复旦大学1997)证明:如果任意项级数∑nu和∑nv都收敛,且成立.1,≥≤≤n v w u n n n则收敛.∑nw提示:利用柯西收敛准则.思考题4(上海交大2004)设.,2,1,1,11212"+==∫+−n dx x x n x n nn n 证明收敛.∑∞=−−11)1(n nn x 提示:12212111−+=<<+=n n n x n x n x ,应用Leibniz 判别法即可.例20(华东师大2000)设收敛,∑∞=1n na0lim =∞→n n na .证明:.∑∑∞=∞=+=−111)(n n n n na a an 证 记级数的前n 项和为,则∑∞=−−11)(n n na an n S 12113221)()(2)(++−+++=−++−+−=n n n n n na a a a a a n a a a a S "",而0])1(1[lim lim 11=+⋅+=+∞→+∞→n n n n a n n nna ,所以∑∑∞=∞=+=−111)(n n n n na a an .思考题5(合肥工大2000)设数列{}n a 单调,且级数收敛于A .证明:级数收敛,并求其和.∑∞=1n na∑∞=+−11)(n n na an 思考题6(北京工业大学2001)设数列{}n na 收敛,00=a ,级数收敛,证明:级数收敛.∑∞=−−11)(n n na an ∑∞=1n na思考题7(安徽大学2003)若级数满足:∑∞=1n na(1);0lim =∞→n n a (2)∑收敛,∞=−+1212)(n n n a a证明:收敛.∑∞=1n na思考题8(华东师大2003)若级数满足:∑∞=1n na(1);0lim =∞→n n a (2)∑收敛,∞=−−1212)(n n n a a证明:收敛.∑∞=1n na例21(吉林大学)证明级数"+−++−++−+611119141715121311发散到正无穷.证 记.,2,1,141241341"=−−−+−=n n n n a n 则nnna n 1)331(3142−=−>,而∑n1发散到正无穷,所以,+∞=∞→n n S 3lim .又因为,故.n n n S S S 31323>>+++∞=∞→n n S lim 注(1)若要证明级数发散,则只需证明+∞=∞→n n S 3lim 即可.(2)在证明{收敛或发散时,有时通过求其子列的敛散性而使问题变得简单. }n S 思考题9(武汉大学1999)级数""+−−+++−+−nn 21)12(1514131211222 是否收敛?为什么?提示:考察. n S 2例22 证明:级数收敛的充分必要条件是:对于任意的正整数序列{和正整数数任意子序列{,都有∑∞=1n na}k p }k n .0)(lim 11=++++++∞→k k k k p n n n k a a a "证 必要性.设级数收敛,则由柯西收敛准则得:∑∞=1n na,0,0>∃>∀N ε当时,,都有N n >+∈∀Z p ε<++++++p n n n a a a "21,从而当时,,于是对于任意的正整数序列N k >N n k >{}k p ,有ε<++++++k k k k p n n n a a a "11,即 .0)(lim 11=++++++∞→k k k k p n n n k a a a "充分性.反证法.若发散,则,使得∑∞=1n na+∈∃>∃>∀>∃Z p N n N ,,0,00ε021ε≥++++++p n n n a a a ",特别地,分别取,,1,1111+∈∃>∃=Z p n N 使得 0211111ε≥++++++p n n n a a a ",{}+∈∃>∃>Z p N n n N 22212,,,2max ,使得 0212222ε≥++++++p n n n a a a ",如此下去,得一正整数子序列{和正整数序列}k n {}k p ,恒有011ε≥++++++k k k k p n n n a a a ",这与已知条件矛盾.二 绝对收敛与条件收敛例23 判别下列级数是条件收敛,还是绝对收敛: (1)()∑∞=+−−1111n np n n(南京师大2002,1=p 为武汉大学1995);(2)∑∞=−1sin)1(n nnx(内蒙古大学); (3))0()23()1(12>−+−∑∞=x n n n xn(复旦大学1997). 解(1)当时,不趋于0,发散; 0≤p n u 当时,原级数绝对收敛; 1>p 当时,10≤<p ()∑∞=−−1111n p n n收敛,nn 11单调有界,由阿贝尔判别发知其收敛,但 ()1111→−−+−p np n n n(∞→n );故原级数条件收敛.(2)当时绝对收敛,当0=x 0≠x 时,不妨设,则0>x 0>∃N ,当时,有N n >20π<<x ,且nxsin关于单减趋于0,由莱布尼兹判别法知其收敛. n 又因为)(1sin)1(∞→→−n nx n xn ,而∑∞=1n n x发散,故原级数条件收敛.(3)当时,数列0>x ⎭⎬⎫⎩⎨⎧−+x n n )23(12单减趋于0,由莱布尼兹判别法知其收敛.又因为 ,所以222423n n n n <−+<xx n x x nn n n 2221)23()1(41≤−+−<,从而,当21>x 时,绝对收敛,当21≤x 时,条件收敛. 思考题10(武汉大学2005)判别级数∑∞=2sin ln ln ln n n nn是否绝对收敛或条件收敛. 思考题11(南京大学2001)设1,0,1,111≥>>++=+n x k x x k x nnn .(1)证明:级数绝对收敛;∑∞=+−01)(n n n x x(2)求级数之和.∑∞=+−11)(n n n x x例24(北京大学1999,中国矿大1999,安徽大学2000,2001)设()x f 在的某邻域内有二阶连续导数,且0=x ()0lim 0=→x x f x .证明:级数∑∞=⎟⎠⎞⎜⎝⎛11n n f 绝对收敛.证 由()0lim=→xx f x 得,()00=f ()00=′f ,()x f 在0=x 某邻域内的二阶泰勒展式为()()()()()22212100x x f x x f x f f x f θθ′′=′′+′+=,10<<θ 由连续知,,有()x f ′′0>∃M ()M x f ≤′′,从而有2121nM n f ⋅≤⎟⎠⎞⎜⎝⎛ 故∑∞=⎟⎠⎞⎜⎝⎛11n n f 绝对收敛. 思考题12 证明:(1)(华南理工大学2005)设是偶函数,在)(x f 0=x 的某个领域中有连续的二阶导数, 则级数.2)0(,1)0(=′′=f f ∑∞=−1)11((n n f 绝对收敛.(2)(浙江大学2004)设函数在区间)(x f )1,1(−内具有直到三阶的连续导数,且,0)0(=f .0)(lim 0=′→x x f x 则∑∞=2)1(n n nf 绝对收敛.例25 设()单调,且级数0>n a ",2,1=n ∑∞=11n n a 收敛,讨论级数()∑∞=++−111n nn a a n"是条件收敛还是绝对收敛.解 由于且单调,故0>n a 01→na ↑⇒n a ()()()()⎪⎪⎩⎪⎪⎨⎧<++<++++⋅−=<+++⋅−++,2112121,22211221122212n n n n nn n n a a n n a a a n a na n a a a n "" 由已知条件,∑∞=12n na 收敛,故原级数绝对收敛. 例26 (哈尔滨工大2000)证明:若级数∑收敛,且级数绝对收敛,则级数收敛.∞=1n nb(∑∞=−−11n n na a)∑∞=1n nn ba 证 设n nb b b S +++="21,则1−−=n n n S S b ,于是由收敛知:,∑∞=1n nb0>∃M M S n ≤,.由收敛知:",2,1=n (∑∞=−−11n n n a a )0>∀ε,01>∃N ,1,N m n >∀,有ε<−++−+−−+−111m m n n n n a a a a a a ",又收敛,对上述{}n S 0>ε,,02>∃N 2N n >∀,,有2N m >ε<−m n S S ,取{}1,max 21+=N N N ,于是,当时,N m n >,m m n n n n b a b a b a +++++"11()()()1111−++−−++−+−=m m m n n n n n n S S a S S a S S a "[]()11121−−+++−+−+−++−+−≤n m n n m m m n n n n S S a a a M a a a a a a M "εM 3<.由柯西收敛准则知级数∑收敛.∞=1n nn ba 另证收敛⇒∑∞=1n nb0>∀ε,0>∃N ,N n >∀,,有+∈∀Z p ε<∑++=pn n k kb1.记,,则∑++==in n k ki bS 1p i ,,2,1"=ε<i S ,p i ,,2,1"=.由绝对收敛得其部分和有界,即,有(∑∞=−−11n n na a)0>∃MM a aS mn n nm ≤−=′∑=−11,",2,1=m .由阿贝尔定理得p n p p n p n p n n n n pn n k kk a S a a S a a S a a S ba ++−+−++++++=+−++−+−≤∑113222111"p n p a S M ++≤ε又M a a a a a a a p n p n p n +<−++−+=−+++01010",从而()012a M ba pn n k kk +≤∑++=ε.由柯西收敛准则知其收敛.例27(华东师大2001)证明:若级数绝对收敛,则级数也绝对收敛.∑∞=1n na∑∞=+++121)(n n na a a a"证 记,则由绝对收敛知收敛,所以{有界,即,有n n a a S ++="1∑∞=1n na∑∞=1n na}n S 0>∃M .,2,1,"=≤n M S n 于是有n n n a M a a a a ≤+++)(21",由绝对收敛知级数∑也绝对收敛.∑∞=1n na∞=+++121)(n n na a a a"思考题14(华中科技2004)设,求级数之和.)(),1(,010∞→→≥==∑=n b x n ax x n nk kn ∑−+)(1n n nx x a提示:1−−=n n n x x a .例28 证明:若对任意收敛于0的数列{}n x ,级数∑都收敛,则级数绝对收敛.∞=1n n nx a∑∞=1n n a 分析 问题等价于:若级数∑na发散,则至少存在一个收敛于0的数列{,使得级数发散,于是问题转化为:从}n x ∑n nx a∑+∞=n a 出发,构造出满足条件的数列{.联想例10中(1)的结论立明.}n x证 假设∑∞=1n n a 发散,记其前项和为,则n n S +∞=∞→n n S lim .取210=ε,,,由0>∀N N n >∃+∞=∞→n n S lim 得 210lim<=∞→mn m S S ,从而当充分大()时,有m n m >21<m n S S ,于是0221121ε=>−≥+++++=++m n m m m n n n n S S S S a S a S a ", 由柯西收敛准则知级数 ∑∞=1n n n S a 发散,取1,1≥=n S x nn ,则0lim =∞→n n x ,且发散,这与题目的条件矛盾,故命题成立.∑∞=1n n n x a 思考题15(中国人民大学2000)若正项级数发散,则存在收敛于0的正数序列,使得级数发散.∑∞=1n na{}n b ∑∞=1n n n b a 例29 研究级数∑∞=1sin n n n的收敛性.记其前n 项和为,将其分成两项 n S −++=nn n S S S , 其中分别表示前n 项和中所有正项之和与负项之和.证明:极限−+nnS S ,−+∞→nnn S S lim 存在,并求其值.证 由Dirichlet 判别法知其收敛.又因为∑∑∑∑∞=∞=∞=∞=−=≥111212cos 21121sin sin n n n n n n n n n n ,右端第一个级数发散,第二个级数收敛(利用Dirichlet 判别法),从而∑∞=1sin n n n非绝对收敛. 由于)(sin 2122)(1∞→−∞→−=−−+=∑=−+−+−n k k S S S S S S n k n n n n n n,所以,1)1(lim lim lim −=−=−+=−∞→−−−+∞→−+∞→nnn n n n n n n n n S S S S S S S S . 注 此例给出了条件收敛与绝对收敛的一个本质区别,且这个结论对一切条件收敛级数都成立.三 构造级数例30 试构造一级数,使它满足:∑∞=1n na(1)∑收敛; (2)∞=1n na ⎟⎠⎞⎜⎝⎛≠n o a n 1. 解 ∑∞=121n n ,∑∞=11n n 满足(2),将两者结合起来,构造级数如下: "+++++=∑∞=22221514131211n n a 即当n 是整数平方时,n a n 1=,否则21n a n =,显然⎟⎠⎞⎜⎝⎛≠n o a n 1,同时 +∞<≤+≤=∑∑∑∑=≤==nk n k nk nk k n k kk a S 12212112112故此级数收敛.例31 举出一个发散的交错级数,使其通项趋于零. 分析 交错级数""+−++−+−−n n a a a a a a 2124321 ()0>n a 部分和为,可见只要构造一个级数,使得,同时使和一个收敛,另一个发散即可.为此可构造级数如下:∑∑==−−=n k k nk k n a aS 121122∑∞=1n n a 0→n a ∑∞=−112k k a∑∞=12k ka()""+−−+−+−+−nn 21121514131211222. 例32(南开大学1999)已知级数收敛,问级数和是否必收敛?说明理由.∑∞=1n na∑∞=12n na∑∞=13n na解 未必收敛.如级数∑∞=−1)1(n nn收敛,但发散.令∑∞=12n na"+−−−+−−+−=∑∞=33333331331331331312212212111n n a""+−−−−+项k k k k k k k k k k k11113。

考研《数学分析》(学术学位)考试大纲

考研《数学分析》(学术学位)考试大纲
6、级数理论
(1)数项级数
掌握级数、正项级数、交错级数的概念和收敛判别法,明确级数和数列的关系。
(2)函数列与函数项级数
掌握函数列与函数项级数一致收敛的概念、判别法、性质, 和函数的连续性,级数的逐项可导、逐项可积性。
(3)幂级数
掌握幂级数收敛半径、收敛区间的求法,熟练掌握函数的泰勒级数展开法,注意利用逐项求导和逐项积分的展开方法。
(3)函数极限
熟悉各种极限定义,可用 语言证明函数极限的存在性,熟悉函数极限的性质和存在条件,明确无穷小量和无穷大量阶的比较,会求给定函数的极限。
(4)实数集和实数完备性
掌握实数集上下确界概念。熟悉实数完备性的几个基本定理,掌握其证明和应用。
(5)函数的连续性
熟悉函数连续的定义,函数间断点的分类,掌握连续函数的性质。掌握一致连续的概念,能够证明和函数连续性有关的命题。
2、《数学分析》(第一版)欧阳光中、姚允龙、周渊编著 复旦大学出版社 2003 或之后版本
会用定积分求平面图形的面积、已知截面面积的立体体积、曲线的弧长、曲率。熟悉微元法。
4、多元函数及其微分学
(1)多元函数的极限与连续
掌握重极限与累次极限的定义、联系与区别,能熟练讨论极限的存在性,会求极限值。
(2)偏导、微分和方向导数
掌握偏导、微分和方向导数的概念、求法,特别是复合函数高阶偏导的求法,隐函数偏导的求法。熟悉可微性条件、几何意义与应用。能熟练讨论多元函数连续、可微、偏导连续之间的关系,能举出具有其中几种性质而不具有其余性质的多元函数例子。
(4)傅里叶级数
熟悉傅里叶级数的收敛定理,掌握函数展开成傅里叶级数的条件与方法。
二、考试要求(包括考试时间、总分、考试方式、题型、分总分:150分

杭州师范大学2022年《722数学分析》考研专业课考试大纲

杭州师范大学2022年《722数学分析》考研专业课考试大纲
第十八章、含参变量的广义积分
第十九章、积分(二重、三重积分,第一类曲线、曲面积分)的定义和性质
第二十章、重积分的计算及应用(广义重积分不考)
第二十一章、曲线积分和曲面积分的计算
第二十二章、各种积分间的关系和场论初步(场论初步不考)
试卷内容结构
1、极限、各种积分、导数等(计算题)
2、函数的连续性、广义积分的敛散性、级数的敛散性等(讨论题)
评分标准和要求
按解答步骤计分
备注
一级学科硕士点召集人签名:(学院盖章)学院分管院长签名:
2022年硕士研究生入学考试科目《数学分析》考试大纲
参考书
数学分析(复旦大学陈传璋、金福临、朱学炎、欧阳光中等编,第三版)
考试内容
第一章、变量与函数(本章不考)
第二章、极限与连续
第三章、关于实数的基本定理
第四章、导数与微分
第五章、微分中值定理及其应用(方程的近似解不考)
第六章、不定积分
第七章、定积分(椭圆积分不考)
第八章、定积分的应用和近似计算(定积分的近似计算不考)
第九章、数项级数(无穷乘积不考)
第十章、广义积分
第十一章、函数项级数、幂级数
第十二章、富里埃级数和富里埃变换
第十三章、多元函数的极限与连续
第十四章、偏导数和全微分
第十五章、极值ቤተ መጻሕፍቲ ባይዱ条件极值
第十六章、隐函数存在定理、函数相关性(本章不考)
第十七章、含参变量的积分
3、其他(证明题)
4、其他(解答题)
5、其他(综合题)
试卷难易结构
较容易题占80分(53%)左右
稍难一点的题占40分(27%)左右
较难一点的题占30分(20%)左右
试卷题型结构

601数学分析考研大纲

601数学分析考研大纲
7.含参变量的积分和广义积分
理解含参变量的积分及由含参变量积分所确定的函数的性质(连续性,可微性,可积性),了解含参变量广义积分的定义,掌握一致收敛的定义,一致收敛积分的判别法(魏尔斯特拉斯判别法),及一致收敛积分的性质(连续性定理,积分顺序交换定理,积分号下求导定理),了解欧拉积分。
积分的定义及性质,掌握不定积分的基本公式与运算法则,会计算不定积分(“凑”微分法、换元积分法、分部积分法、有理函数积分法),会求简单的有理函数的积分,掌握其他类型的积分法。掌握定积分存在的充分必要条件(第一充要条件、第二充要条件),了解可积函数类,掌握定积分的计算――基本公式(牛顿-莱布尼兹公式)、换元公式、分部积分公式,会利用定积分来求和式的极限。了解椭圆积分(第一类、第二类、第三类)。掌握定积分的应用和近似计算,会计算平面图形的面积,曲线的弧长,体积,旋转曲面的面积,质心,平均值,功。知道广义积分分为无限区间上的广义积分和无界函数的积分两种,了解无穷限广义积分和无界函数广义积分的概念,会利用定义来求这两类广义积分。了解无穷限广义积分和级数之间的关系,掌握这两类积分收敛的判别法(比较判别发、柯希判别法及其极限形式),会证明广义积分的敛散性,了解什么是柯西主值,会求广义积分的柯西主值。
5.多元函数的极限论
掌握平面点集上的有关定义(邻域,点列的极限,开集,闭集,区域,内点,外点、聚点),了解平面点集的几个基本定理(矩形套定理、致密性定理、有限覆盖定理、收敛原理),理解多元函数的概念(二元函数),理解二元函数极限和连续性的定义,了解有界闭区域上连续函数的性质(有界性定理、一致连续性定理、最大值最小值定理、零点存在定理),掌握二重极限和二次极限的定义,并会求二元函数的二重极限和二次极限,了解二重极限和二次极限之间的关系。
掌握二重积分、三重积分、第一类曲线积分、第一类曲面积分、第二类曲线积分、第二类曲面积分的概念及其积分的性质。掌握二重积分与三重积分的计算及应用(化二重积分为二次积分,用极坐标计算二重积分,二重积分的一般变量替换,化三重积分为三次积分,三重积分的变量替换)。了解积分在物理上的应用(质心,矩,引力)。了解广义重积分的定义。掌握第一、二类曲线积分和第一、二类曲面积分的计算,会计算曲面的面积,会化第一类曲面积分为二重积分。了解两类曲线积分之间和两类曲面积分之间的联系,掌握各种积分间的联系(格林公式、高斯公式、斯托克司公式),会利用这些公式计算曲线的积分。会使用平面曲线积分与路径无关的条件,了解场及向量场的散度与旋度的概念。会用重积分、曲线积分及曲面积分求一些几何量与物理量(如体积、曲面面积、弧长、质量、重心、转动惯量、引力、功等)。

辽宁师范大学601数学分析2020年考研专业课初试大纲

辽宁师范大学601数学分析2020年考研专业课初试大纲

601《数学分析》考试大纲(学术型)
注意:本大纲为参考性考试大纲,是考生需要掌握的基本内容。

第一章实数集与函数
一.考核知识点
1.实数集的性质
2.确界定义和确界原理
3.函数的概念及表示法,基本初等函数的性质及其图形,初等函数
二.考核要求
(一) 实数集的性质
1.熟练掌握:(1)实数及其性质;(2)绝对值与不等式。

2.深刻理解:(1)实数有序性,大小关系的传递性,稠密性,阿基米德性,实数集对四则运算的封闭性以及实数集与数轴上的点的一一对应关系;(2)绝对值的定义及性质。

3.简单应用:(1)会比较实数的大小,能在数轴上表示不等式的解;(2)会利用绝对值的性质证明简单的不等式。

4.综合应用:会利用实数的性质和绝对值的性质证明有关的不等式,会解简单的不等式。

(二)确界定义和确界原理
1.熟练掌握:(1)区间与邻域;(2)有界集、无界集与确界原理。

2.深刻理解:(1)区间与邻域的定义及表示法;(2)确界的定义及确界原理。

3.简单应用:会用区间表示不等式的解,会证明数集的的有界性,会求数集的上、下确界。

8。

中国人民大学601-数学分析考研参考书目、考研真题、复试分数线新

中国人民大学601-数学分析考研参考书目、考研真题、复试分数线新

中国人民大学601-数学分析考研参考书目、考研真题、复试分数线601-数学分析课程介绍数学分析是数学专业和部分工科专业的必修课程之一,基本内容是以实数理论为基础微积分,但是与微积分有很大的差别。

微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。

后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。

早期的微积分,已经被数学家和天文学家用来解决了大量的实际问题,但是由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展,有很多数学家对这个理论持怀疑态度,柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)完善了作为理论基础的极限理论,摆脱了“要多小有多小”、“无限趋向”等对模糊性的极限描述,使用精密的数学语言来描述极限的定义,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。

数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。

实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。

正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。

中国人民大学考研复试分数线学术学位:学科门类政治、外语、专一(数学)、专二、总分01哲学50509090330↓02经济学5555909036003法学50↓50↓909035004教育学5050180330↓05文学5555909035006历史学5050180335↑07理学4545909030008工学4545909030009医学5050180↑30012管理学50↓50↓9090350↓13艺术学45459090330专业学位:专业学位政治、外语、专一、专二、总分备注02经济类专业学位(金融、应用统计、税务、国际商务、保险、资产评估)50509090340035101法律(非法学)50509090340↓035102法律(法学)505090903300352社会工作505090903300453汉语国际教育50509090315↓0552新闻与传播55559090355↓0651文物与博物馆4545180↑3200852软件工程454580803000951农村与区域发展505090903001251工商管理100↓50170↓未通过提前面试同教育部A类分数线通过提前面试1252公共管理115↑50180↑1253会计12060225↑全日制120↑50205↑非全日制1255图书情报12055↓195↓1351艺术40↓40↓9090325↑注:1、各学院可根据生源情况上调复试基本要求。

大连理工大学602数学分析2020年考研专业课初试大纲

大连理工大学602数学分析2020年考研专业课初试大纲

大连理工大学2020年硕士研究生入学考试大纲科目代码:602 科目名称:数学分析试题类型主要包括填空题,选择题,判断题,计算题,解答题,证明题和综合题等,具体考试大纲如下:一、数列极限1、数列极限的概念,ε-N语言。

2、数列极限的性质和运算法则。

3、数列极限的存在性、求极限的一些方法。

4、基本列的定义,Cauchy原理及其应用。

5、无穷大和无穷小的概念以及无穷大与无穷小的联系。

6、数集的上、下确界,数列的上、下极限。

7、实数的六个等价定理。

8、Stolz定理。

二、函数极限与连续1、集合的势,可数集与不可数集。

2、函数极限定义,ε—δ语言,函数极限的其他形式。

3、函数极限的性质,函数极限与数列极限的关系。

4、无穷小与无穷大的级的概念,o与O的运算规则。

5、函数在一点连续的定义及其性质,初等函数的连续性,间断点分类。

6、一致连续的定义,连续与一致连续的区别、一致连续的判别。

7、有界闭区间上连续函数的各种性质及其应用。

8、函数上、下极限的概念与性质。

三、函数的导数及其应用1、导数的定义,导数的几何意义,导数及高阶导数的运算规则,导数和高阶导数的计算。

2、微分的定义及其运算规则,一阶微分形式的不变性。

3、微分学的中值定理(包括Fermat定理, Rolle中值定理,Lagrange中值定理,Cauchy中值定理,Darboux定理 )及其应用。

4、函数的单调性,函数的极值和最值,函数的凹凸性等及利用导数研究函数。

5、L’Hospital法则及应用。

6、Taylor定理、各种余项的Taylor展开(包括Lagrange余项、Cauchy余项、积分余项的Taylor展式等)以及函数的Maclaurin展式,Taylor展开的应用。

7、函数作图。

四、不定积分1、原函数的定义及不定积分的运算规则,基本公式。

大连理工大学602 数学分析2021年考研专业课初试大纲

大连理工大学602 数学分析2021年考研专业课初试大纲

大连理工大学2021年硕士研究生入学考试大纲科目代码:602 科目名称:数学分析数学分析课程是数学各专业最重要的基础课之一,考试题目主要考查考生基本概念、基本定义、基本公式和基本计算方法的掌握程度,以及考生综合型的计算能力、分析问题和解决问题的能力。

具体复习大纲如下:一、数列极限1、数列极限的概念,ε-N语言。

2、数列极限的性质和运算法则。

3、数列极限的存在性、求极限的一些方法。

4、单调有界原理及其应用5、基本列的定义,Cauchy原理及其应用。

6、无穷大和无穷小的概念以及无穷大与无穷小的联系。

7、数集的上、下确界,数列的上、下极限。

8、实数的六个等价定理。

9、Stolz定理。

二、函数极限与连续1、集合的势,可数集与不可数集。

2、函数极限定义,ε—δ语言,函数极限的其他形式。

3、函数极限的性质,函数极限与数列极限的关系。

4、无穷小与无穷大的级的概念,o与O的运算规则。

5、函数在一点连续的定义及其性质,初等函数的连续性,间断点分类。

6、一致连续的定义,连续与一致连续的区别、一致连续的判别。

7、有界闭区间上连续函数的各种性质及其应用。

8、函数上、下极限的概念与性质。

三、函数的导数及其应用1、导数的定义,导数的几何意义,导数及高阶导数的运算规则,导数和高阶导数的计算。

2、微分的定义及其运算规则,一阶微分形式的不变性。

3、微分学的中值定理(包括Fermat定理, Rolle中值定理,Lagrange中值定理,Cauchy中值定理,Darboux定理 )及其应用。

4、函数的单调性,函数的极值和最值,函数的凹凸性等,以及利用导数研究函数。

5、L’Hospital法则及应用。

6、Taylor定理、各种余项的Taylor展开(包括积分余项的Taylor展式)以及函数的Maclaurin展式,Taylor展开的应用。

7、函数作图。

四、不定积分1、原函数的定义及不定积分的运算规则,基本公式。

2、不定积分的换元法与分部积分法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13、掌握函数展开为傅立叶级数的充分条件,能够熟练地将以2 或2l为周期的函数展开为傅立叶级数。

14、掌握含参变量积分的概念、性质及判别法。

15、理解平面点集与多元函数的概念,了解二元函数的几何意义。

掌握二元函数极限与连续的概念以及有界闭区域上连续函数的性质。

16、理解可微性、全微分和偏导数的概念,熟练掌握多元函数可微的条件、几何意义及其应用。

熟练掌握多元复合函数的求导法则及全微分的求法。

掌握高阶偏导数的概念及求法,了解多元函数中值定理和泰勒公式。

理解多元函数极值的概念;掌握多元函数极值的求法。

17、理解隐函数的概念,隐函数存在的条件。

掌握隐函数定理和求导方法。

了解隐函数组的概念及隐函数组定理。

掌握几何应用。

理解条件极值的概念,掌握Lagrange乘数法。

18、理解两类曲线积分的概念,熟练掌握两类曲线积分的性质及计算方法。

19、掌握重积分的概念、性质及计算(重点为二重与三重积分),掌握Green公式,曲线积分与路径无关的条件。

20、掌握两类曲面积分的概念、性质及计算方法,熟练掌握Gauss公式与Stokes 公式。

注:1、教材(华师大版)中带“*”及小字部分,是不考的内容;
2、欧拉积分不考。

相关文档
最新文档