呼吸机波形1
呼吸机波形分析
3.2.1 压力上升时间(压力上升斜率或梯度)
压力上升时间是在吸气时间内使设定的气道压力达到 目标所需的时间, 事实上是调节呼吸机吸气流速大小, 使达到目标时间缩短或延长. a,b,c分别代表三种不同 的压力上升时间, 快慢不一. 调节上升时间即是调 节呼吸机吸气流速的增加或减少, a,b,c流速高低不一, 压力上升时间快慢也不一, 吸气流速越大, 压力达标 时间越短(上图). 反之亦然.
流速 吸气
时间
图 2. VCV 吸 气 流速波形 Square=方波
流速
Decelerating= 递减波 Accelerating= 递增波 Sine=正弦波
呼气
2.1.2 AutoFlow(自动控制吸气流速波)
图3. AutoFlow吸气流速是 VCV中吸气流速的一种新的 功能, 根据当前的肺顺应性 和系统阻力及设置的潮气量 而自动控制吸气峰流速(采 用递减波形),在剩余的吸气 时间内以最低的气道压力完 成潮气量的输送, 当阻力或 顺应性发生改变时, 每次供 气时的气道压力变化幅度在 +3-3cmH2O, 不超过报警压 力高限 -5cmH2O, 并允许在 平台期内可自主呼吸, 适用 于各种VCV和PCV所衍生的各 种通气模式.
吸气负压小,持 续时间短.触发 阈小作功亦小 吸气负压大, 持续时间长作 功亦大 吸气负压大, 持续时间长, 触发阈大作 功亦大
3.3.4 在VCV中根据压力曲线调节峰流速(即调整 吸/呼比) (图30)
图30中是VCV通气时,在A处因吸气流速设置太低, 压 力上升速度缓慢, 吸气时间稍长(注意:VCV时不能直 接调整压力上升时间), 而B处因设置的吸气流速太大 以致在压力曲线出现压力过冲, 且吸气时间也稍短. 结合流速曲线适当调节峰流速即可.
呼吸机波形分析-ppt课件
Returned
flow 5L/min
Delivered flow 5L/min
Less flow returned 2L/min
Delivered flow 5L/min
3L/min No patient effort
无触发: 吸入端流速 = 呼出端流速
吸入端流速-呼出端流速> 触发灵敏度 --病人触发
呼气流速波形的临床应用
气体陷闭and auto-PEEP • (1)黄色为正常波形:呼气流速回到基线(下一次吸气之前) • (2)红色为异常波形:呼气流速未回到基线,表明存在气体陷闭和 auto-PEEP。呼气不完全、或呼气时间不足够、或呼气时气道不稳定 或陷闭,这种现象非常常见,尤其ELERATING
ACCELERATING
SINE
定容型通气的流速-时间曲线
2 流速 LPM 1 4 5 3
时间
吸气相
呼气相
图1 流速曲线(方波)-机械呼吸
定压型通气的流速-时间曲线
呼气流速波形的临床应用
气道阻塞 表现:呼气峰流速降低、呼气时间延长 常见原因:气道阻力增加(气管内黏液增加或分泌物聚集)
当压力下降至灵敏度时 呼吸机开始送气
当压力下降未达灵敏度 时,呼吸机不送气
压力 PEEP 0
Patient effort
Patient effort
触发灵敏度设置水平
流速触发
• 开放系统:吸气阀和呼气阀打开 • 呼气末,呼吸机提供一个低水平的连续气流(基础流速) 流量传感器 Base Flow 5L/min
呼吸机波形分析-
1 2 3
触发
流速-时间曲线
压力-时间曲线
触 发-辅助/控制通气(A/C)
呼吸机波形分析
我们都知道机械通气时有四个最基本的变量:容量、压力、流量、时间。
这四个变量是机械通气的核心。
所谓的波形其实就是反映这四个变量之间关系的曲线,包括容量、压力、流量这三个变量的时间曲线以及压力-容量、流量-容量和压力-流量等三个环。
其中以压力-时间曲线、流量-时间曲线和压力-容量环最为常用,在基础讲座中我们将着重讲解。
这是几种最常见的流量时间曲线。
(本图引自PB840呼吸机的波形说明,绿色表示强制通气的吸气过程,红色表示自主呼吸的吸气过程,黄色表示呼气过程)横轴代表时间,单位是秒s;纵轴代表流量,单位是升/分L/min。
曲线上任意一点的流量都是由流量传感器测得的。
呼吸机送气时,气流通过吸气端流量传感器,此时流量曲线位于横轴上方。
呼吸机送气停止,如果此时有平台时间,则流量时间曲线的这一段与横轴重合。
开始呼气时,送气阀关闭,呼气阀打开,气流通过呼气端流量传感器,此时流量曲线位于横轴下方。
呼吸机送气的容量就等于吸气曲线下的面积。
我们先来看一下上图的左半部分。
左边三个图都是强制通气时的流量曲线。
第一个就是最经典,以前也最常用的方波square(矩形波)。
方波是定容通气时可选择的流量波形之一。
我们知道,定容通气时需要设置的参数有潮气量、呼吸频率、峰流量(或吸气时间或吸呼比)、流量波形、平台时间、氧浓度、PEEP等等。
方波的特点就是呼吸机在整个吸气时间内所输送的流量均是恒定的,吸气开始后很快就达到峰值,并保持恒定直到吸气结束才降为0,故形态呈方形(临床实际的情况是由于流量从0上升到最大值多多少少会需要一点时间,因此流量曲线就象是个梯形)。
第二个是递减波(线性)。
线性递减波也是定容通气时可选择的流量波形之一。
其特点是呼吸机输送的流量在吸气时间刚开始时立即达到峰值,然后呈线性递减至0(吸气结束)。
方波和线性递减波都是定容通气时的流量曲线,在其他所有参数都相同的情况下,方波的吸气时间短(如果设定了吸气时间,则峰流量较小),但气道峰压高;而线性递减波的吸气时间稍长(如果设定了吸气时间,则峰流量较大),气道峰压较低。
(整理)呼吸机基本波形详解.
呼吸机基本波形详解流速测定流速通常在呼吸机环路(从进气口到呼气阀之间的管道)中测知,流量感应器根据设计类型不同而有些许差异,但大部分都可以测量一个较大的范围(-300—+150LPM),但会由于假呼吸运动、水气、呼吸道分泌物等而影响其准确性。
流速波有两个组成部分:吸气波和呼气波,它描述了流速大小、持续时间和机控呼吸下的流速释放方式(正压通气),或者病人自主呼吸下的流速大小,持续时间和流速需求。
我们先介绍机控呼吸的吸气波,然后是自主呼吸的,等掌握了基本原理,再来讨论呼气波形。
吸气流速波——机控呼吸图1是一个假设呼吸机给于恒定流速的一次机控呼吸的吸气流速波(方波),虚线部分是呼气波,我们会在后面介绍图1 吸气流速波——机控呼吸①呼吸机送气开始开始吸气取决于以下两点:1)到达了预设的呼吸周期时间,即“时间循环”2)病人吸气努力达到了触发辅助通气的阈值,通常是一个吸气负压或吸气流速增量,即“病人循环”。
前者常出现在控制呼吸模式,后者常出现于辅助呼吸模式②吸气峰流速在容控性呼吸机上,预设流速是很有必要的,流速设置也可以设置潮气量和吸气时间来间接得到。
假设设置了一个恒定流速的容控性呼吸机(如图一),峰流速就是设置值。
当流速不恒定,即流速波形是曲线波,流速在吸气时不同时间点上表现为不同的值。
此时中间流速或称平均流速通过下式计算:流速(LPM)=[潮气量(L)/时间(S)]X60③吸气末停止送气这个转换可能达到了预期的容量送气、流速、压力或吸气时间④吸气流速的持续时间常与吸气时间相应,容控呼吸机上,吸气时间常取决于预设的潮气量、峰流速和流速释放方式(波型:如递减波),有的也可以直接设置。
因此,吸气时间可以长于峰流速持续时间,尤其当应用吸气暂停时。
⑤整个呼吸周期时间(TCT)取决于预设的呼吸次数 TCT=60/Rate 图1的流速波型是方波,从吸气开始即达到峰值,直到吸气末都是一个恒定值,在实际应用当中,像图1那样“真正的”方波是不可能达到的,因为流速输送系统都有一个固定的延迟时间,在这段时间内,流速从0达到预设的峰流速。
呼吸机波形基础知
02
呼吸机波形解析
正常波形
正常波形特征
呼吸机波形呈规则的周期性变化 ,包括吸气峰、吸气谷、呼气峰 和呼气谷,各阶段过渡平滑。
正常波形意义
表明呼吸机工作正常,患者呼吸 功能基本正常,气流、压力等参 数处于稳定状态。
异常波形
异常波形特征
呼吸机波形出现异常变化,如波形不 规则、峰或谷异常升高或降低等。
异常波形意义
可能表明呼吸机工作异常或患者呼吸 功能出现障碍,需要进一步检查和干 预。
波形异常的原因及处理
原因1
呼吸道分泌物过多或呼吸道痉挛,导致气流 不畅。
处理1
及时清理呼吸道分泌物,保持呼吸道通畅;使 用解痉药物缓解呼吸道痉挛。
原因2
疗效评估
通过比较治疗前后呼吸机波形的变化,医生可以评估个体化治疗的效果,为后续治疗提供 依据。
患者管理
结合呼吸机波形监测和个体化治疗策略,医生可以更有效地管理患者的呼吸状况,提高机 械通气效果和患者生存率。
05
呼吸机波形监测的注意事 项
监测设备的选择与校准
监测设备的选择
选择符合国际和国内标准的呼吸机波形监测设备,确保其准 确性和可靠性。
呼吸机波形基础知
目录 CONTENT
• 呼吸机波形概述 • 呼吸机波形解析 • 呼吸机波形与疾病诊断 • 呼吸机波形与治疗策略 • 呼吸机波形监测的注意事项
01
呼吸机波形概述
呼吸机波形的定义
01
呼吸机波形是指呼吸机在提供通 气支持时,通过监测气流或压力 变化所形成的动态图形。
02
这些波形可以反映患者的呼吸力 学、气体交换和呼吸系统病理生 理变化等信息。
呼吸机波形分析入门+彩图
呼吸机波形分析⼊门+彩图引⾔近10 年来因微理器和有关软件的发展, 现代呼吸机除提供各种有关监测参数外, 同时能提供机械通⽓时压⼒、流速和容积的变化曲线以及各种呼吸环. ⽬的是根据各种不同呼吸波形曲线特征, 来指导调节呼吸机的通⽓参数, 如通⽓模式是否合适、⼈机对抗、⽓道阻塞、呼吸回路有⽆漏⽓、评估机械通⽓时效果、使⽤⽀⽓管扩张剂的疗效和呼吸机与患者在通⽓过程中各⾃所作之功等.有效的机械通⽓⽀持或通⽓治疗是在通⽓过程中的压⼒、流速和容积相互的作⽤⽽达到以下⽬的:a. 能维持动脉⾎⽓/⾎pH 的基本要求(即PaCO2 和pH 正常, PaO2 达到基本期望值如⾄少 > 50-60 mmHg)b. ⽆⽓压伤、容积伤或肺泡伤.c. 患者呼吸不同步情况减低到最少,减少镇静剂、肌松弛剂的应⽤.d. 患者呼吸肌得到适当的休息和康复.1.呼吸机⼯作过程:上图中,⽓源部份(Gas Source)是呼吸机的⼯作驱动⼒, 通过调节⾼压空⽓和氧⽓流量⼤⼩的阀门来供应混合氧⽓体. ⽓体流量经流速传感器在毫秒级时间内测定流量, 调整⽓体流量阀门(Flow Valve)的直径以控制流量。
测定在流速曲线的吸⽓流速⾯积下的积分, 计算出潮⽓量. Vt= 流速(升/秒)×Ti(流速恒定).图中控制器(Control Unit)是呼吸机⽤于控制吸⽓阀和呼⽓阀的切换,它受控于肺呼吸⼒学改变⽽引起的呼吸机动作.吸⽓控制有 :a. 时间控制: 通过预设的吸⽓时间使吸⽓终⽌, 如PCV 的设置Ti 或I:E.b. 压⼒控制: 上呼吸道达到设置压⼒时使吸⽓终⽌,现巳少⽤, 如PCV 的设置⾼压报警值.c. 流速控制: 当吸⽓流速降⾄预设的峰流速%以下(即 Esens), 吸⽓终⽌.d. 容量控制: 吸⽓达到预设潮⽓量时,吸⽓终⽌.呼⽓控制有:a. 时间控制: 通过设置时间长短引起呼⽓终⽌(控制通⽓) 代表呼⽓流速(吸⽓阀关闭, 呼⽓阀打开以便呼出⽓体), 呼⽓流速的波形均为同⼀形态.b. 病⼈触发: 呼吸机捡测到吸⽓流速到吸⽓终⽌标准时即切換呼⽓(Esens).图中⽓体流量定量阀(Dosing Flow-Valve)是控制呼吸机输送的⽓体流量, 由流量传感器监测并控制, 如此⽓体流量经Y 形管进⼊病⼈⽓道以克服⽓道粘性阻⼒,再进⼊肺泡的容积以克服肺泡弹性阻⼒. 通过打开和关闭呼⽓阀, 即控制了吸⽓相和呼⽓相. 在吸⽓时呼⽓阀是关闭的. 若压⼒,容量或吸⽓时间达到设置值, 呼⽓阀即打开, 排出呼出⽓体.呼⽓阀后的PEEP 阀是为了维持呼⽓末⽓道压⼒为正压(即0 cmH2O 以上), ⽬的是克服內源性(PEEPi);维持肺泡的张开.由于各⼚图形处理软件不⼀, 故显⽰的波形和环稍有差别,但对波形的判断並⽆影响.为便识别吸、呼⽓相,本波形分析⼀律以绿⾊代表吸⽓,以兰⾊代表呼⽓.2. 流量-时间曲线(F-T curve)流速定义:呼吸机在单位时间内在两点之间输送出⽓体的速度, 单位为cm/s 或m/s.流量:是指每单位时间内通过某⼀点的⽓体容量. 单位L/min 或L/sec ⽬前在临床上流速、流量均混⽤! 本⽂遵守习称.流量-时间曲线的横座标代表时间(sec), 纵座标代表流速(Flow= ), 流速(量)的单位通常是"升/分"(L/min 或LPM).在横座标的上部代表吸⽓(绿⾊), 吸⽓流量(呼吸机吸⽓阀打开, 呼⽓阀关闭, ⽓体输送⾄肺),曾有⼋种波形(见下图).⽬前多使⽤⽅波和递减波.横座标的下部代表呼⽓(兰⾊)(呼吸机吸⽓阀关闭, 呼⽓阀打开以便病⼈呼出⽓体). 呼⽓流量波形均为同⼀形态, 只有呼⽓流量的振幅⼤⼩和呼⽓流量回复到零时间上差异.图. 各种吸、呼⽓流量波形 A.指数递减波 B.⽅波 C.线性递增波 D.线性递减波 E. 正弦波 F.50%递减波 G.50%递增波H.调整正弦波2.1. 吸⽓流量波形(Fig.1) 恒定的吸⽓流速是指在整个吸⽓时间内呼吸机输送的⽓体流量恒定不变, 故流速波形呈⽅形,( ⽽PCV 时吸⽓流量均采⽤递减形-即流量递减), 横轴下虚线部分代表呼⽓流速(在呼⽓流量波形另⾏讨论)Fig.1 吸⽓流量恒定的曲线形态1: 代表呼吸机输送⽓体的开始:取决于 a)预设呼吸周期的时间巳达到, 呼⽓转换为吸⽓(时间切换)如控制呼吸(CMV). b)患者吸⽓努⼒达到了触发阀,呼吸机开始输送⽓体,如辅助呼吸(AMV).2: 吸⽓峰流量(PIF 或PF): 在容量控制通⽓(VCV)时PIF 是预设的, 直接决定了Ti 或I:E.在PCV 和PSV 时,PIF 的⼤⼩决定了潮⽓量⼤⼩、吸⽓时间长短和压⼒上升时间快慢.3: 代表吸⽓结束, 呼吸机停⽌输送⽓体.此时巳完成预设的潮⽓量(VCV)或压⼒巳达标(PCV),输送的流量巳完成(流速切换),或吸⽓时间已达标(时间切换).4→5:代表整个呼⽓时间:包括从呼⽓开始到下⼀次吸⽓开始前这⼀段时间.6: 1→4为吸⽓时间: 在VCV 中其长短由预设的潮⽓量,峰流速和流速波型所决定, 它尚包含了吸⽓后摒⽓时间(VCV 时摒⽓时间内⽆⽓体流量输送到肺,PCV 时⽆吸⽓后摒⽓时间).7: 代表⼀个呼吸周期的时间(TCT): TCT=60 秒/频率.2.1.1 吸⽓流量的波型(类型)(Fig.2)根据吸⽓流量的形态有⽅波, 递减波, 递增波, 和正弦波, 在定容型通⽓(VCV)中需预设频率, 潮⽓量和峰流量, 并选择不同形态的吸⽓流量波.!(见Fig.2 以⽅波作为对⽐) 正弦波是⾃主呼吸的波形,其在呼吸机上的疗效⽆从证明(指在选擇流速波形时),巳少⽤.雾化吸⼊或欲使吸⽓时间相对短时多数⽤⽅波.Fig.2 吸⽓流速波型图2 中流速以⽅波作为对⽐(以虚线表⽰), 在流速,频率和潮⽓量均不变情况下, ⽅波由于流速恒定不变,故吸⽓时间最短, 其他波形因的递减, 递增或正弦状, 因它们的流速均⾮恒定不变, 故吸⽓时间相应延长.⽅波: 是呼吸机在整个吸⽓时间内所输送的⽓体流量均按设置值恒定不变, 故吸⽓开始即达到峰流速, 且恒定不变持续到吸⽓结束才降为 0. 故形态呈⽅形递减波: 是呼吸机在整个吸⽓时间内, 起始时输送的⽓体流量⽴即达到峰流速(设置值), 然后逐渐递减⾄0 (吸⽓结束), 以压⼒为⽬标的如定压型通⽓(PCV)和压⼒⽀持(PSV=ASB)均采⽤递减波.递增波: 与递增波相反, ⽬前基本不⽤.正弦波: 是⾃主呼吸的波形. 吸⽓时吸⽓流速逐渐达到峰流速⽽吸⽓末递减⾄0,(⽐⽅波稍缓慢⽽⽐递减波稍快).呼⽓流速波除流速振幅⼤⼩和流速回⾄基线(即0 流速)的时间有所不同外,在形态上⽆差别.2.1.2 AutoFlow(⾃动变流) (见Fig.3)AutoFlow 并⾮流速的波形, ⽽是呼吸机在VCV 中⼀种功能. 呼吸机根据当前呼吸系统的顺应性和阻⼒及设置的潮⽓量, 计算出下⼀次通⽓时所需的最低⽓道峰压, ⾃动控制吸⽓流量, 由起始⽅波改变为减速波,在预设的吸⽓时间内完成潮⽓量的输送.Fig.3 AutoFlow 吸⽓流速⽰意图图3 左侧为控制呼吸,由原⽅波改变为减速波形(⾮递减波), 流速曲线下的⾯积=Vt.图右侧当阻⼒或顺应性发⽣改变时, 每次供⽓时的最⾼⽓道压⼒变化幅度在+3 - -3 cmH2O 之间, 不超过报警压⼒上限5cm H2O.在平台期内允许⾃主呼吸, 适⽤于各种VCV 所衍⽣的各种通⽓模式.2.1.3 吸⽓流量波形(F-T curve)的临床应⽤2.1.3.1 吸⽓流速曲线分析--鉴别通⽓类型(Fig.4)Fig.4 根据吸⽓流速波形型鉴别通⽓类型图4 左侧和右侧可为VCV 的强制通⽓时, 由操作者预选吸⽓流速的波形,⽅波或递减波.中图为⾃主呼吸的正弦波. 吸⽓、呼⽓峰流速⽐机械通⽓的正弦波均⼩得多.右侧图若是压⼒⽀持流速波, 形态是递减波, 但吸⽓流速可未递减⾄ 0, ⽽突然下降⾄ 0, 这是由于在吸⽓过程中吸⽓流速递减⾄呼⽓灵敏度(Esens)的阈值, 使吸⽓切换为呼⽓所致, 压⼒⽀持(PS) 只能在⾃主呼吸基础上才有作⽤. 这三种呼吸类型的呼⽓流速形态相似, 差别仅是呼⽓流速⼤⼩和持续时间长短不⼀.2.1.3.2 判断指令通⽓在吸⽓过程中有⽆⾃主呼吸(Fig.5)Fig.5 指令通⽓过程中有⾃主呼吸图5 中A 为指令通⽓吸⽓流速波, B、C 为在指令吸⽓过程中在吸⽓流速波出现切迹, 提⽰有⾃主呼吸.⼈机不同步, 在吸⽓流速前有微⼩呼⽓流速且在指令吸⽓近结束时⼜出现切迹, (⾃主呼吸)使呼⽓流速减少.2.1.3.2 评估吸⽓时间(Fig.6)Fig.6 评估吸⽓时间图6 是VCV 采⽤递减波的吸⽓时间:A:是吸⽓末流速巳降⾄0 说明吸⽓时间合适且稍长, 在VCV 中设置了”摒⽓时间”.(注意在PCV ⽆吸⽓后摒⽓时间).B:的吸⽓末流速突然降⾄0 说明吸⽓时间不⾜或是由于⾃主呼吸的呼⽓灵敏度(Esens) 巳达标(下述), 切换为呼⽓. 只有相应增加吸⽓时间才能不增加吸⽓压⼒情况下使潮⽓量增加.2.1.3.4 从吸⽓流速检查有泄漏(Fig.7)Fig.7 呼吸回路有泄漏当呼吸回路存在较⼤泄漏,(如⽓管插管⽓囊泄漏,NIV ⾯罩漏⽓,回路连接有泄漏)⽽流量触发值⼜⼩于泄漏速度,使吸⽓流速曲线基线(即0 升/分)向上移位(即图中浅绿⾊部分) 为实际泄漏速度, 使下⼀次吸⽓间隔期延长, 此时宜适当加⼤流量触发值以补偿泄漏量,在CMV 或NIV 中,因回路连接, ⾯罩或插管⽓囊漏⽓可⾒及.2.1.3.5 根据吸⽓流速调节呼⽓灵敏度(Esens)(Fig.8)Fig.8 根据吸⽓峰流速调节呼⽓灵敏度左图为⾃主呼吸时, 当吸⽓流速降⾄原峰流速10→25%或实际吸⽓流速降⾄10 升/分时, 呼⽓阀门打开呼吸机切换为呼⽓. 此时的吸⽓流速即为呼⽓灵敏度(即Esens).现代的呼吸机呼⽓灵敏度可供⽤户调节(Fig.8 右侧). 右侧图A 因回路存在泄漏或预设的Esens 过低, 以致呼吸机持续送⽓, 使吸⽓时间过长. B 适当地将Esens 调⾼及时切换为呼⽓, 但过⾼的Esens 使切换呼⽓过早, ⽆法满⾜吸⽓的需要. 故在PSV 中Esens 需和压⼒上升时间⼀起来调节, 根据F-T,和P-T 波形来调节更理想.2.1.3.6 Esens 的作⽤(Fig.9)Fig.9 Esens 的作⽤图9 为⾃主呼吸+PS, 原PS 设置15 cmH2O, Esens 为10%. 中图因呼吸频率过快、压⼒上升时间太短, ⽽Esens 设置太低, 吸⽓峰流速过⾼以致PS 过冲超过⽬标压,呼吸机持续送⽓,T I 延长,⼈机易对抗. 经将Esens 调⾼⾄30%, 减少T I,解决了压⼒过冲, 此Esens 符合病⼈实际情况.2.2 呼⽓流速波形和临床意义呼⽓流速波形其形态基本是相似的,其差别在呼⽓波形的振幅和呼⽓流速持续时间时的长短, 它取决于肺顺应性,⽓道阻⼒(由病变情况⽽定)和病⼈是主动或被动地呼⽓.(见Fig.10)1:代表呼⽓开始.2:为呼⽓峰流速:正压呼⽓峰流速⽐⾃主呼吸的稍⼤⼀点.3:代表呼⽓的结束时间(即流速回复到0),4:即1 – 3 的呼⽓时间5:包含有效呼⽓时间 4, ⾄下⼀次吸⽓流速的开始即为整个呼⽓时间,结合吸⽓时间可算出I:E.TCT:代表⼀个呼吸周期 = 吸⽓时间+呼⽓时间2.2.1 初步判断⽀⽓管情况和主动或被动呼⽓(Fig.11)图11 左侧图虚线反映⽓道阻⼒正常, 呼⽓峰流速⼤,呼⽓时间稍短, 实线反映呼⽓阻⼒增加, 呼⽓峰流速稍⼩,呼⽓时延长.右侧图虚线反映是病⼈的⾃然被动呼⽓, ⽽实线反映了是患者主动⽤⼒呼⽓, 单纯从本图较难判断它们之间差别和性质. 尚需结合压⼒-时间曲线⼀起判断即可了解其性质.2.2.2 判断有⽆内源性呼⽓末正压(Auto-PEEP/PEEPi)的存在(Fig.12)Fig.12 为三种不同的Auto-PEEP 呼⽓流速波形图12 吸⽓流速选⽤⽅波,呼⽓流速波形在下⼀个吸⽓相开始之前呼⽓流速突然回到0, 这是由于⼩⽓道在呼⽓时过早地关闭, 以致吸⼊的潮⽓量未完全呼出,使部分⽓体阻滞在肺泡内产⽣正压⽽引起Auto-PEEP( PEEPi). 注意图中的A,B 和C, 其突然降⾄0 时呼⽓流速⾼低不⼀, B 最⾼,依次为A, C. 实测Auto-PEEP 压⼒⼤⼩也与波形相符合.Auto-PEEP 在新⽣⼉, 幼婴⼉和45 岁以上正常⼈平卧位时为3.0 cmH2O. 呼⽓时间设置不适当, 反⽐通⽓, 肺部疾病(COPD)或肥胖者均可引起PEEPi.临床上医源性PEEP= 所测PEEPi × 0.8. 如此即打开过早关闭的⼩⽓道⽽⼜不增加肺容积.2.2.3 评估⽀⽓管扩张剂的疗效(Fig.13)Fig.13 呼⽓流速波形对⽀⽓扩⼤剂疗效评估图13 中⽀⽓管扩张剂治疗前后在呼⽓流速波上的变化, A: 呼出⽓的峰流速, B: 从峰流速逐渐降⾄0 的时间. 图右侧治疗后呼⽓峰流速A 增加, B 有效呼出时间缩短, 说明⽤药后⽀⽓管情况改善. 另尚可监测Auto-PEEP 有⽆改善作为佐证.3.压⼒-时间曲线3.1 VCV 的压⼒-时间曲线(P-T curve)(Fig.14)呼吸周期由吸⽓相和呼⽓相所组成. 在VCV 中吸⽓相尚有⽆流速期是⽆⽓体进⼊肺内(即吸⽓后摒⽓期-吸⽓后平台), PCV 的吸⽓相是始终为有流速期(⽆吸⽓后摒⽓). 在呼⽓时均有呼⽓流速. 在压⼒-时间曲线上吸⽓相和呼⽓相的基线压⼒为0 或0 以上(即PEEP).压⼒-时间曲线反映了⽓道压⼒(Paw)的逐步变化(Fig.14), 纵轴为⽓道压⼒,单位是cmH2O (1 cmH2O=0.981 mbar), 横轴是时间以秒(sec)为单位, 基线压⼒为0 cmH2O. 横轴上正压, 横轴下为负压.Fig.14 VCV 的压⼒-时间曲线⽰意图图14 为VCV,流速恒定(⽅波)时⽓道压⼒-时间曲线, ⽓道压⼒等于肺泡压和所有⽓道阻⼒的总和, 并受呼吸机和肺的阻⼒及顺应性的影响. 当呼吸机阻⼒和顺应性恒定不变时, 压⼒-时间曲线却反映了肺部情况的变化.A ⾄B 点反映了吸⽓起始时所需克服通⽓机和呼吸系统的所有阻⼒,A ⾄B 的压⼒差(△ P)等于⽓道粘性阻⼒和流速之乘积(△P=R× ),阻⼒越⾼或选择的流速越⼤, 则从 A 上升⾄B 点的压⼒也越⼤,反之亦然.B 点后呈直线状增加⾄C 点为⽓道峰压(PIP),是⽓体流量打开肺泡时的压⼒, 在C 点时通⽓机输送预设潮⽓量的⽓道峰压.A ⾄C 点的吸⽓时间(Ti)是有流速期, D ⾄E 点为吸⽓相内”吸⽓后摒⽓”为⽆流速期.与B ⾄C 点压⼒曲线的平⾏的斜率线(即A-D), 其ΔP=VtxErs(肺弹性阻⼒), Ers=1/C 即静态顺应性的倒数, Ers=V T/Cstat).C 点后压⼒快速下降⾄D 点, 其下降速度与从A 上升⾄B 点速度相等. C ⾄D 点的压⼒差主要是由⽓管插管的内径所决定, 内径越⼩C-D 压差越⼤.D ⾄E 点即平台压是肺泡扩张进⾏⽓体交换时的压⼒, 取决于顺应性和潮⽓量的⼤⼩. D-E 的压⼒若轻微下降可能是吸⼊⽓体在不同时间常数的肺泡区再分佈过程, 或整个系统(指通⽓机和呼吸系统)有泄漏. 通过静态平台压测定, 即可计算出⽓道阻⼒(R)和顺应性(C), PCV 时只能计算顺应性⽽⽆阻⼒计算.E 点开始是呼⽓开始, 依靠胸廓、肺弹性回缩⼒使肺内⽓体排出体外(被动呼⽓), 呼⽓结束⽓道压⼒回复到基线压⼒的⽔平(0 或PEEP). PEEP 是呼⽓结束维持肺泡开放避免萎陷的压⼒.3.1.1平均⽓道压(mean Paw 或 Pmean)( Fig.15)Fig.15 平均⽓道压平均⽓道压(MAP)在正压通⽓时与肺泡充盈效果和⼼脏灌注效果相关(即⽓体交换),在⼀定的时间间隔内计算N 个压⼒曲线下的区域⾯积⽽得, 直接受吸⽓时间影响. ⽓道峰压, PEEP, 吸/呼⽐和肺含⽔量均影响它的升降. 图中A-B 为吸⽓时间, B-C 为呼⽓时间, PIP= 吸⽓峰压,呼吸基线=0 或PEEP. ⼀般平均⽓道压=10-15cmH2O, 不⼤于30cmH2O.3.1.2 在VCV 中根据压⼒曲线调节峰流速(即调整吸/呼⽐) (Fig.16)VCV 通⽓时, 调节吸⽓峰流速即调正吸⽓时间(Ti)或I/E ⽐. 图16 中A 处因吸⽓流速设置太低, 吸⽓时间稍长, 故吸⽓峰压也稍低.在B 处设置的吸⽓流速较⼤, 吸⽓时间也短, 以致压⼒也稍⾼, 故在VCV 时调节峰流速既要考虑Ti, I/E ⽐和Vt, 也要考虑压⼒上限.结合流速,压⼒曲线调节峰流速即可达到预置的⽬的..2 PCV 的压⼒-时间曲线(Fig.17)Fig.17 PCV 的压⼒-时间曲线虚线为VCV, 实线为PCV 的压⼒曲线. 与VCV 压⼒-时间曲线不同, PCV 的⽓道压⼒在吸⽓开始时从基线压⼒(0 或PEEP) 增⾄预设⽔平呈平台样並保持恒定, 是受预设压⼒上升时间控制. PCV 的⽓体流量在预设吸⽓时间内均呈递减形. 在呼⽓相, 压⼒下降和VCV ⼀样回复⾄基线压⼒⽔平, 本图提⽰了在相同频率、吸⽓时间、和潮⽓量情况下PCV 的平台样压⼒⽐VCV 吸⽓末平台压稍低. 呼吸回路有泄漏时⽓道压将⽆法达到预置⽔平.3.2.1 压⼒上升时间(压⼒上升斜率或梯度)(Fig.18)以压⼒为⽬标的通⽓(如PCV, PSV), 压⼒上升时间是在吸⽓时间内使预设的⽓道压⼒达到⽬标压⼒所需的时间, 事实上是呼吸机通过调节吸⽓流速的⼤⼩, 使达到预设压⼒的时间缩短或延长.Fig.18 PCV 和PSV 压⼒上升时间与吸⽓流速的关系图18 是PCV 或PSV(ASB)压⼒上升时间在压⼒,流速曲线上的表现. a,b,c 分别代表三种不同的压⼒上升时间, 快慢不⼀. 调节上升时间即是调节呼吸机吸⽓流速的增加或减少, a,b,c 流速⾼低不⼀, 导致压⼒上升时间快慢也不⼀. 吸⽓流速越⼤, 压⼒达标时间越短(上图),相应的潮⽓量亦增加. 反之亦然. 流速图a 有短⼩的呼⽓流速波是由于达到⽬标压有压⼒过冲, 主动呼⽓阀释放压⼒过冲所致, 压⼒上升时间的名称和所⽤单位各⼚设置不⼀.如Evita 设定的是时间0.05-2.0s(4), PB-840 是流速加速%FAP50-100%, ⽽Servo-i 为占吸⽓时间的%.3.3 临床意义3.3.1 评估吸⽓触发阈和吸⽓作功⼤⼩(Fig.19)Fig.19 评估吸⽓作功⼤⼩图19 为CPAP 模式, 根据吸⽓负压⾼低和吸⽓相内负压触发⾯积(PTP=压⼒时间乘积), 可初步對患者吸⽓⽤⼒是否达到预置触发阈和作功⼤⼩作定性判断. 负压幅度越⼤,引起触发时间越长,PTP 越⼤,病⼈吸⽓作功越⼤. 图中a. 吸⽓负压⼩, 吸⽓时间短, 吸⽓相⾯积⼩, 吸⽓作功也⼩. b. c. 吸⽓负压⼤, 吸⽓时间长, 吸⽓相⾯积⼤, 吸⽓作功也⼤.是否达到触发阈在压⼒曲线上,可⾒及触发是否引起吸⽓同步.3.3.2 评估平台压(Fig.20)Fig.20 评估平台压在PCV 或PSV 时, 若压⼒曲线显⽰⽆平台样压⼒, 如图20 A 所⽰, PCV 的吸⽓时间巳消逝, 但压⼒曲线始终未出现平台样压⼒.应先排除压⼒上升时间是否设置太长, 呼吸回路有⽆漏⽓. 如为VCV 时,设置的吸⽓流速是否符合病⼈需要或未设置吸⽓后摒⽓(需同时检查流速曲线和呼出潮⽓量是否达标以查明原因). 此外有的呼吸机因吸⽓流速不稳定, 也会出现这种情况3.3.3 呼吸机持续⽓流对呼吸作功的影响 (Fig.21)Fig.21 持续⽓流对呼吸作功的影响图21 中, 呼吸机提供的持续⽓流增加时, Paw 在⾃主呼吸中基线压⼒下是降低的, 同时呼⽓压⼒增加(因呼⽓时持续⽓流使阻⼒增加). 正确使⽤持续流速使吸⽓作功最⼩, ⽽在呼⽓压⼒并⽆过份增加, 在本病例中,当持续⽓流为10-20 L/min 时, 在吸⽓作功最⼩, 呼⽓压⼒稍有增加.但持续⽓流增⾄30 L/min 则呼⽓作功明显增加. 本图是患者⾃主呼吸(CPAP=5cmH2O), 流速波形为正弦波, 图中的病⼈呼吸流速和潮⽓量均⽆变化.3.3.4 识别通⽓模式通过压⼒-时间曲线可识别通⽓模式, 如CMV/AMV, SIMV, SPONT(CPAP), BIPAP 等.3.3.4.1 ⾃主呼吸(SPONT/CPAP)的吸⽓⽤⼒和压⼒⽀持通⽓(PSV/ASB) (Fig.22)Fig.22 ⾃主呼吸和压⼒⽀持通⽓的压⼒-时间曲线图22 均为⾃主呼吸使⽤了PEEP, 在A 处曲线在基线处向下折返代表吸⽓, ⽽B 处曲线向上折返代表呼⽓, 此即是⾃主呼吸, 若基线压⼒⼤于0 的⾃主呼吸称之为CPAP.右侧图吸⽓开始时有向下折返波以后压⼒上升, 第⼀个为PCV-AMV, 第⼆个为⾃主呼吸+PSV, PS ⼀般⽆平台样波形出现(除⾮呼吸频率较慢且压⼒上升较快), 注意压⼒⽀持通⽓是必需在患者⾃主呼吸基础上才可有压⼒⽀持, ⽽⾃主呼吸的吸⽓时间并⾮恒定不变, 因此根据吸⽓时间和肺部情况同时需调节压⼒上升时间和呼⽓灵敏度.3.3.4.2 控制机械通⽓(CMV)和辅助机械通⽓(AMV)的压⼒-时间曲线, Fig.23Fig.23 CMV(左侧)和AMV(右侧)的压⼒-时间曲线图中基线压⼒未回复到0, 是由于使⽤了PEEP. 且患者触发呼吸机是使⽤了压⼒触发,左侧图在基线压⼒均⽆向下折返⼩波(A), 呼吸机完全控制患者呼吸, 为CMV 模式.右侧在吸⽓开始均有向下折返的压⼒⼩波, 这是患者吸⽓努⼒达到触发阈使呼吸机进⾏了⼀次辅助通⽓, 为AMV 模式. 若使⽤了流速触发, 则不论是CMV 或AMV, 在基线压⼒可能⽆向下折返⼩波, 这需视设置的流量触发值⽽定.3.3.4.3 同步间歇指令通⽓(SIMV) Fig.24.Fig.24 SIMV 的压⼒波形⽰意图SIMV 在⼀个呼吸周期有强制通⽓期和⾃主呼吸期. 触发窗有在⾃主呼吸末端(呼吸周期末端), 也有触发窗位于强制通⽓起始端(呼吸周期起始端).若病⼈的呼吸努⼒在触发窗达到触发阈, 呼吸机即同步强制通⽓. 在隨后的⾃主呼吸的吸⽓⽤⼒即使达到触发阈也仅给于PS(需预设).若在触发窗⽆同步触发且强制呼吸频率的周期巳逝过, 则在下⼀个呼吸周期⾃动给于⼀次强制通⽓. 因触发窗缩短了有效的SIMV 时间, 即图中所⽰ΔT, 由此可避免SIMV 的频率增加. 图24 的触发窗是在呼吸周期末端!触发窗在强制通⽓期或在⾃主呼吸期末, 各⼚设计不⼀, 触发窗时限也不⼀. 图24a 是触发窗在强制通⽓期(即呼吸周期起始端)Fig.24a 同步间歇指令通⽓(SIMV)图24a 中⽅框部分是SIMV 的触发窗位于呼吸周期的起始段强制通⽓期, 在触发窗期间内⾃主呼吸达到触发阈, 呼吸机即同步输送⼀次指令(强制)通⽓(即设置的潮⽓量或吸⽓峰压), 若⽆⾃主呼吸或⾃主呼吸较弱不能触发时, 在⾃主呼吸期结束时(即⼀个呼吸周期结束)呼吸机⾃动给⼀次指令通⽓. 此后在⾃主呼吸期的剩余时间内允许患者⾃主呼吸, 即使⾃主呼吸⼒达到触发阈,呼吸机也不给指令通⽓, 但可给予⼀次 PS(需预设). 图中笫⼆、五个⽅框说明触发窗期巳消逝, 呼吸机给于⼀次强制通⽓. 第⼀、三、四、六均为在触发窗期内⾃主呼吸⼒达到触发阈, 呼吸机给予⼀次同步指令通⽓.3.3.4.4 双⽔平正压通⽓(BIPAP) Fig.25Fig.25 BIPAP 的压⼒-时间曲线BIPAP 属于PCV 所衍⽣的模式, 即在两个不同压⼒⽔平上患者进⾏⾃主呼吸⾒图25 上图. ⾼压(P high)相当于VCV 中的平台压,低压(P low)相当于PEEP, T high 相当于呼吸机的吸⽓时间(Ti), T low 相当于呼吸机的呼⽓时间(Te), 呼吸机的频率=60/Thigh+T low.下图左侧起始是PCV 吸⽓峰压呈平台状⽆⾃主呼吸. 隨后的⾼压或低压⽔平上均有⾃主呼吸+压⼒⽀持. P H 和P L 的PS 最⼤值不⼤于P high +2 cmH2O.3.3.4.5 BIPAP 和VCV 在压⼒-时间曲线上差别Fig.26VCV 可选⽤不同流速波, 在压⼒曲线上有峰压, ⽽BIPAP 采⽤递减波流速, ⽆峰压只有平台样压⼒波, 且压⼒上升呈直线状(其差别见图26). BIPAP 的⾼, 低压⼒等于VCV 的平台压和 PEEP. BIPAP 的⾼低压的差数⼤⼩即反映了潮⽓量的⼤⼩.Fig.26 VCV 与BIPAP 在压⼒曲线的差别和关系 3.3.4.6 BIPAP 衍⽣的其他形式BIPAP(Fig.27)通过调节BIPAP 四个参数如P high, P low, T high, T low 可衍⽣出多种形式BIPAP:Fig.27 BIPAP 所衍⽣的四种模式a.P high>P low 且T high<T low, 即是CMV/AMV-BIPAP(也称IPPV-BIPAP)b.P high>P low, P high 上⽆⾃主呼吸, 即IMV-BIPAPc.为真正的BIPAP:P high>P low, 且T high<T low, P high 和P low 均有⾃主呼吸d.P high=P low 时即为C PAP3.3.4.7 ⽓道压⼒释放通⽓(APRV)的通⽓波形(Fig.28)APRV 事实上也属于PCV 中的BIPAP, 主要是当T high<T low 或T low ⼩于1.0 – 0.5 秒即是IRV-BIPAP 或APRV 见Fig.28. 常⽤于ARDS 主要⽬的除在P high 期提⾼PO2 外, 通过定时的⽓道压⼒下降以便排出 CO2, 使⽤时应密切注意⽓压伤.。
《呼吸机波形》课件
通过分析患者的呼吸波形,可以初步判断是否存在通气障碍、阻塞、呼
吸运动异常等情况,为进一步诊断提供依据。
02 03
常见疾病的呼吸波形特征
如慢性阻塞性肺疾病(COPD)患者的呼吸波形可能出现波幅过低、频 率加快等情况;哮喘患者的呼吸波形可能出现双峰波形、波幅过高、频 率过慢等情况。
呼吸波形与疾病治疗
根据患者的呼吸波形特征,可以制定针对性的治疗方案,如机械通气治 疗、药物治疗等,以改善患者的通气功能和症状。
03 呼吸机波形监测技术
监测技术介绍
呼吸机波形监测技术是一种用于监测呼吸机工作状态和患者呼吸生理参数的技术。
通过实时监测呼吸机的压力、流量、容积等波形,可以了解患者的呼吸状态和呼吸 机的性能。
该技术广泛应用于临床医学、重症监护、麻醉等领域,为医生提供重要的诊断和治 疗依据。
监测技术原理
基于传感器技术
正常呼吸波形表明呼吸系统功能正常 ,无通气障碍或阻塞。
正常呼吸波形产生机制
正常呼吸波形是由呼吸肌肉的收缩和 舒张,以及胸腔和肺组织的弹性回缩 共同作用的结果。
异常呼吸波形解读
异常呼吸波形特征
异常呼吸波形可表现为波形形态异常、波幅异常、频率异 常等,如出现双峰波形、波幅过低或过高、频率过快或过 慢等。
异常呼吸波形产生机制
异常呼吸波形可能是由于呼吸道狭窄、阻塞、顺应性降低 等原因引起的通气障碍,或者是由于中枢神经系统、肌肉 等病变引起的呼吸运动异常。
异常呼吸波形临床意义
异常呼吸波形可能提示着各种呼吸系统疾病或神经系统疾 病,需要根据具体波形特征和患者情况进行综合判断。
呼吸波形与疾病诊断
01
呼吸波形在疾病诊断中的应用
失败案例分析
1 2 3
呼吸机波形分析
I -
E
Paw (cm H2O)
自主呼吸
+
顺应性改变的P-V环
顺应性改变
增高 正常 减低
Volume (mL)
Paw (cm H2O)
顺应性改变的P-V环
V
T
顺应性改变
增高 正常
减低
Volume (mL)
Paw (cm H2O)
单肺插管引起P-V环偏向横轴
反映肺过度膨胀部分 若在流速恒定的通气中,PV环的吸气肢在上部开始变成 越来越平坦,此可能是肺某些区域过度膨胀的提示。
流速
LPM
TIME
吸气相
呼气相
TCT
呼气流速曲线
呼气流速的形态一般是固定的,其振幅、持续时间、流速 形态是由肺顺应性、呼吸阻力和病人的体力等因素所决定。
流速波形在临床上的应用
(1)在定容型通气中可检测通气时呼吸流速的波形
流速
LPM
TIME
吸气相
呼气相
流速 LPM
TIME
吸气相 呼气相
方形波,递减波,递增波,正弦波(VCV)
呼气结束,压力再次回复到呼气末水平 (F=PEEP)。
2、压力—时间曲线在临床上应用 (1)区分呼吸类型 式:
通过压力—时间曲线可以鉴别出以下多种呼吸模
A
P
AW
cmH2O
TIME
压力曲线上升前(A)无反方向斜坡出现,说明该通气为 “呼吸机触发的指令通气”。
A
P
AW
cmH2O
TIME
压力曲线上升前即刻出现的压力下降,这说明由病人触发 的指令通气中病人的吸气能力大小。
压力-时间曲线(VCV流速恒定—方波)
在吸气开始时,A至B点的压力明显增加是由于从 呼吸机至肺整个系统的阻力所致,此压力即为克服 阻力的压力。
呼吸机波形分析入门
呼吸机波形分析入门引言:呼吸机波形是指通过呼吸机监护系统获得的呼吸机输出的波形图像。
波形图像是由时间作为横轴,压力、流量或体积作为纵轴所构成的图像。
通过对呼吸机波形进行分析可以了解患者的呼吸状况、通气情况以及呼吸机的设置是否合理等。
本文将介绍呼吸机波形的基本分析方法,以帮助初学者快速入门。
一、呼吸机波形的采集和显示常见的呼吸机波形包括压力波形、流量波形和体积波形。
压力波形显示了呼吸机输出的气道压力变化情况,流量波形显示了气体进出肺部的速度变化情况,体积波形显示了肺部的体积变化情况。
在呼吸机波形中,一般以吸气期为正,呼气期为负。
二、呼吸机波形的常见特征1.呼吸频率:通过计算波形上吸气峰值或呼气峰值的数量,可以得到呼吸频率。
常用的方法是计算每分钟的呼吸次数。
2.吸气时间和呼气时间:从吸气峰值到呼气峰值的时间间隔为一个完整的吸呼气周期。
通过计算吸气时间和呼气时间的长短,可以了解患者的通气情况。
3.吸气峰值压力和呼气峰值压力:波形中的压力峰值反映了肺的通气效果,通常情况下,吸气峰值压力应该较呼气峰值压力高。
4.呼气末正压(PEEP):波形中的底线或基线表示了呼气末正压。
PEEP是在呼气末保持气道压力的一种方式,能保持肺泡的开放性,增加氧合和通气效果。
5. 吸气延迟时间(inspiratory delay):吸气波形图中延迟时间指的是吸气流量波形开始上升直到达到吸气峰值的时间。
延迟时间过长可能表明存在气道阻力或机械问题。
三、呼吸机波形的分析方法1.波形形状:通过观察波形的形状可以判断患者的通气状态,如是否存在阻塞或排空障碍等。
正常的吸气波形应该是上升快、下降缓慢的斜坡状。
2.吸气和呼气峰值压力:通过分析吸气和呼气峰值压力的变化,可以判断患者的通气状态。
吸气峰值压力过高可能表明气道阻塞或气道峰压过高,呼气峰值压力过低可能表明肺容积不足。
3.吸气延迟时间:延迟时间过长可能表明存在气管插管位置不当、气道阻力增加或呼吸机设置不当等问题。
呼吸机机械通气波形分析和环LOOP
五、流速-容量环
呼 气 吸 气
❖用来评估气道阻力(吸痰时机及支气管扩张剂治疗反应) ❖呼吸管道内水或分泌物过多时,流量-容量环表现为锯齿状
流速-容量环 (恒定流速)
流
吸气
速
呼气
•呼气流速突然终止提示存在内源性PEEP •呼气肢凹向横轴提示呼气流速受限 •呼气峰流速降低提示气道阻塞
顺应性改变时的压力-容量环(容量控制通气)
肺顺应性发生改变可引起压力-容量环吸气支斜率发生变化
阻力改变时的压力-容量环
流速恒定,如气道阻力改变,则压力-容量环吸气支斜率不会发生 改变,而位置会有平行移位
压力-容量环反映肺泡过度扩张
相当于P-V曲线的上拐点位置
压力-容量环( ASB/PSV)
❖压力-容量环高度的变化可反映病人主动吸气的努力程度 ❖若设定的压力支持水平所输送VT低于病人需要时,病人会主动吸气
中等度气管痉挛的P-V环
容 量
2
1
压力
1. 治疗前气管痉挛 2. 治疗后P-V环偏向纵轴
考核支气管扩张剂疗效
流速
正常
治疗前
流速
流速 治疗后
呼气
VT
VT
VT
吸气
呼气峰流速降低,呼气曲线凹陷,提示小气道有阻塞或治疗后效果不佳
气管插管扭曲
FLOW
1
V
2
VT
1 2
P
1. 正常情况 2. 气管插管扭曲引起低流速、低容积环
呼气峰流速(PEF)
容量
•F-V环呈开环状提示回路出现泄漏 •自主呼吸时曲线出现锯齿状改变提示回路中分泌物过多 •应用支气管扩张剂后呼气峰流速增高,呼气肢更线性化
呼吸机波形分析最新
Assessing Auto-PEEP Maneuver 评估自动PEEP操作
•图17示一个成功的确定自动呼气末正压(Auto -PEEP)或内源性呼气末正压 (PEEPi)呼气暂停操作。呼气暂停允许肺内压与回路内的压力平衡,该压力测值 即为总PEEP。然后PEEP TOT减去设置的PEEP,其差值即为Auto-PEEP。
吸气流速的图形因流速波形设置或设置呼吸类型而异。容量控制通气呼吸机输送 的气流方式: 方波图形:设置峰流速,吸气相流速保持不变。方波可以导致较高的峰压。 递减波:呼吸初始输送设置的峰流速,随后流速呈线性下降直至设定的容量输送 结束。递减波形能产生较低的峰压但能显著增加吸气时间。 正弦波形:吸气流速逐步增加并逐渐回到零点。这种输送流量的方法可以使病人 舒适。 减速波:吸气初始流速最高,但是在吸气过程中因肺的阻抗特性呈指数递减。减 速波产生于压力通气模式,如压力控制或压力支持。
气道压力释放通气
APRV模式的特征为长吸气时间(TIMEH)(A)和短的“释放”时间(TIMEL)(B)。 注意所有的自主呼吸都发生在PEEPH。
精品课件
Assessing Plateau Pressure 评估平台压
图10示压力控制或压力支持通气,不能获得平台压(A)说明存在泄漏或不能满足 病人的流速需求。
Auto-PEEP导致的吸气努力失败
如果病人因为吸气时间太长导致auto-PEEP,要求呼气时间也较长,常常导 致不能触发呼吸。 如图22所示病人存在吸气努力但不能触发呼吸。这种情况发生于当病人没 能完成呼气就发生了吸气努力时(A)。 为了触发呼吸,病人必须克服auto-PEEP和设置的触发限值才能触发呼吸机 。当有明显的auto-PEEP时,病人吸气努力弱常不能触发呼吸。
呼吸机异常波形
提纲
1 机械通气波形概述 2 常见异常机械通气波形 3 上机操作培训
机械通气波形概述
呼吸机波形分类
标量图(Scalars): 压力、容积或流速随时间变化的图形,x 轴为时间轴。
120
V
LPM
SE
6
环形图(Loops): 反应压力-容积或流速-容积之间关系的图 形 (P/V or F/V),不存在时间变量。
V
T F V
手法通气
V
通气阻力
正常
降低
呼吸机或管路 or 插管气囊
P
两种明显异常的P-V环
病人自主呼吸(在纵轴左侧负压 启动),其吸气流速大于呼吸机设 置的流速,提示有人机对抗, 说明患者吸气有力,多见于麻 醉结束或镇静剂巳无
在肌松剂效果巳消失或麻醉结 束时可见及吸气肢在上升过程 中有短暂气道压力下降,而潮 气量仍增加呈S型,这是患者横 膈活动有自主呼吸所致。
T
Pressure Control Pressure Support
PRVC
Volume Support
SIMV (PRVC)
SIMV (Press. Control)
压力-容积(PV)环
Inspiration Expiration VT
LITERS
Y轴表示容积 X轴表示压力
吸气支走形向上 呼气支走形向下
F
T
missed effort
missed effort
吸气不同步-上升时间
pressure spike
Paw (cm H2O)
too fast
Time
too slow
如果上升时间过短,可见压力波形上见一突起部,称为压力“波峰” ——需要减慢呼吸机送气阀的开放,增加上升时间
呼吸波形曲线意义
• 波形图:呼吸机选择测定的各参数值组合的图形 表述。通过曲线,可以观察病人呼吸能力的变化 趋势。
• 有效的机械通气支持治疗是通气过程中的压力、 流速和容积相互的作用,从而达到以下目的:
(1) 能维持动脉血气/血pH的基本要求(即PaCO2和 pH正常, PaO2达到基本期望值);
(2) 无气压伤、容积伤或肺泡伤; (3)患者呼吸不同步情况减低到最少,减少镇静剂、
大小(压力=A-B)
VCV中根据压力曲线调节峰速(即调整吸/呼比)
VCV通气时, 在A处因吸气流速设置太低, 压力上升速度缓慢, 吸气时间长. 吸/呼比相应发生改变! B处因设置的吸气流速太大,压力上升快且易出现压力过冲, 吸气时间短. 结合流速曲线适当调节峰流速即可.
容积-时间曲线
容积-时间曲线的分析
A:吸入潮气量(上升肢),B:呼出潮气量(下降肢);I-Time:吸气时间(吸气开始到呼 气开始), E-Time:呼气时间(从呼气开始到下一个吸气开始)。 VCV时, 吸气期的有流速相是容积持续增加, 而在平台期为无流速相期,无气体进 入肺内, 吸入气体在肺内重新分布(即吸气后屏气), 故容积保持恒定。 PCV时整个吸气期均为有流速相期, 潮气量大小决定于吸入气峰压和吸气时间这两 个因素。
评估吸气触发所做功
• 低于基础压力的下降值(A)及下降所延续 的时间显示病人触发呼吸机时吸气能力的 大小。
A
评价整个呼吸时相
A
B
C D
A-B是吸气时间,B-C是呼气时间。下一个吸气相(D)开始前 压力仍没有恢复到基线压力,说明该呼气时间可能不足
调节峰流速
A B
在定容通气时,压力上升的速度(曲线斜率)受峰流速影响, A位置压力上升的“滞后”,说明设定流速不足,而B位置呼吸动力学参数
呼吸机的模式及波形分析
A 1 L/min B 2 L/min C 3 L/min D 4L/min
E 7 L/min F 8 L/min G 10 L/min
如何设定呼吸机条件
流速触发 克服漏气(设置超过漏气的触发灵敏度)
每分钟漏气量=(VT吸气- VT呼气)*RR 每分钟漏气量=(500- 380)*12=1440ml
设置参数:Ps,PEEP,Sens 切换方式:流速切换,不同呼吸机
切换值不同,有的可变动
PSV的压力与流速波形
减速气流,流速切换
不同呼吸机PSV吸呼切换时间
呼吸机
切换时间
❖ Adult Star
吸气峰值流速的25%
❖ Bear 1000
吸气峰值流速的30%
❖ Bird 8400
吸气峰值流速的25%
优点:减速气流,人机对抗少,调节支持程度 局限性: 潮气量,触发灵敏度设置
双水平气道正压通气(BIPAP)
原理:气道压力Phigh与Plow之间周 期性转换,自主呼吸可在双 压力水平上进行
设置参数: Phigh, Plow ,Thigh, RR,Sens,PS
切换方式:时间与患者共同决定 气流模式:减速气流
指令通气 ❖ 在触发窗外,患者可进行自主呼吸
❖ 还允许对自主呼吸进行一定水平的压力支持(SIMV+PSV)
同步间歇指令通气(SIMV)
➢ 基本设置参数:Vt、RR、吸气时间 (其他参数:PEEP、触发灵敏度)
❖ 触发窗(不同呼吸机触发窗设置不同)
自主呼吸触发
SIMV波形
触发窗外自主呼吸 呼吸机指令通气
触发灵敏度 3L/min
漏气
1.5L/min
容量控制通气
❖ 呼吸机按预设的频率、按预设的潮气量送气 ❖ 流速恒定
呼吸机基本波形
吸气时间
指吸气开始到吸气峰压出 现的时间,反映呼吸机的 响应速度。
吸气流速
表示吸气过程中气体的流 速,反映患者的通气需求。
呼气相波形分析
呼气峰压
表示呼吸机提供的最大呼气压力, 用于对抗内源性PEEP(呼气末正
压)。
呼气时间
指呼气开始到呼气峰压出现的时间, 反映患者的呼气能力。
呼出潮气量
表示一次呼吸所呼出的气体量,反 映患者的通气效率。
03
呼吸机波形与患者病情
波形与患者呼吸状况
正常波形
当患者呼吸正常时,呼吸机波形 呈现规则的周期性波动,峰谷分 明,峰值正常。
异常波形
当患者呼吸出现异常,如呼吸暂 停、通气不足等,呼吸机波形可 能出现不规则、峰值异常或无峰 值的波形。
波形与患者病情变化
病情恶化
如果患者病情恶化,如出现呼吸衰竭 、心力衰竭等情况,呼吸机波形可能 出现异常,如波形不规则、峰值下降 或消失等。
同步间歇指令通气模式
压力支持模式
适用于具有一定自主呼吸能力的患者,呼 吸机会在设定的时间间隔内给予指令性通 气,同时允许患者自主呼吸。
适用于需要一定压力支持的患者,呼吸机 会在患者吸气时提供一定的压力支持,帮 助患者克服气道阻力。
根据波形评估呼吸治疗效果
血气分析
定期监测患者的血气分析指标, 如pH值、PaO2、PaCO2等,以 评估呼吸治疗效果和调整呼吸机
波形与呼吸力学
不同类型的呼吸波形会对患者的呼吸力学产生影响,如压力支持、容量控制等 模式。选择合适的波形可以降低患者的呼吸做功,提高舒适度。
波形与患者心理状态
波形与心理感受
呼吸波形不仅影响患者的生理感受,还可能影响其心理状态。例如,不稳定的波 形可能导致患者焦虑和恐慌,而平稳的波形则可能带来安全感。
呼吸波形及环图分析(1).
I
I
E
Paw (cm H2O)
Spontaneous
I: Inspiration E: Expiration
Abnormal
Time-Based Waveforms
1、Flow-Time Curve 2、Volume-Time Curve 3、Pressure-Time Curve
Abnormal
原理
压力—容量曲线(PV环)容量与压力的关系,反 映了顺应性(C=Δ V/Δ P),在图23中,横轴代表压力, 正压代表机械正压通气,负压代表自发呼吸力。纵轴代表潮 气量
VT
LITERS
B
A
P
AW cmH2O
强制通气的P-V环
Pressure-Volume Loop
E
Vol (ml)
E
I
Controlled Assisted
5、SIMV+PS+PEEP
flow-time 和 volume-time
curves基本相似于SIMV+PS
模式
Pressure-time curves 的
基线抬高。提示附加了 PEEP
Time-Based Waveforms意义
流速-时间曲线
压力-时间曲线
1.鉴别呼吸类型 2.判断是否存在auto-PEEP 3.衡量病人对支气管扩张药物的反应 4.评估PCV通气时吸气时间 5.检查流速触发时回路泄漏速度
Curves中设定基线水平来自观察:基线水平5 cm H2O 、
以及病人的触发triggering
2、Assisted-Mode (Volume-targeted ventilation)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流速波形——可选择波型
越来越多的新一代容控型呼吸机具备了一些其他可选 择的波型,包括递增波、递减波和正弦波,在预设同 一个峰流速下,不同的波形会导致吸气时间改变,而 曲线包围的面积即潮气量是不变的。
吸气流速波——自主呼吸
自主呼吸流速波形的特点通常取决于病人呼吸需求的特点。 就是说,波形大小、持续时间与病人的呼吸需求相对应。此 时由于没有预设值,系统响应时间对波形的影响非常小,通 常波形类似于正弦波。
呼气流速波——被动及主动呼气
而在下图可以发现,如果病人在呼气时动用呼吸肌, 会增加呼气峰流速,缩短呼气时间。观察呼气流速波 可帮助确认病人的呼吸需求 。
压力测定
ห้องสมุดไป่ตู้
呼吸机上,测定压力的部位通常在环路病人端Y形管 处,也有在环路吸气支和呼气支内部测知。尽管从环 路内部测得的压力与气道压不尽相同,但往往以此作 为参照,了解气道压的情况。压力感应器通常可以测 知最高150cmH2O的压力,但会因环路内积水、分泌 物堵塞等影响准确性。 自主呼吸和机控呼吸的压力波形是不同的,但他们的 组成结构是一样的。压力波形对评估呼吸周期结构 (呼气相向吸气相转换点)、时间系数及病人与呼吸 机的相互作用都有帮助 。
恒流速波形——受环路回缩力的影响
在早期低驱动压高内部顺应性的呼吸机,气流输送受 到环路回缩力的影响很大,新一代呼吸机设计了低内 部顺应性和高驱动压力,使环路回缩力对送气的影响 减少了。在一个较高的吸气峰压下,峰流速逐步减小, 会导致吸气时间的延长。如下图,实线是受环路回缩 力影响后的波形,虚线是“真正的”方波,两者包围 的面积相同,即潮气量相同。
呼气流速波
① 呼气开始 ② 呼气峰流速 呼气峰流速在机控呼吸和自主呼吸时是不尽相同的,因为通常机 控呼吸潮气量比自主呼吸的大,所以在正压通气下,机控呼吸的呼气峰流速比 自主呼吸的要高。 ③ 呼气结束 在这个点上与下一个机控吸气相连接,这对于评定吸呼比(I:E)有 重要意义,而且此时有产生气道陷闭的可能。 ④ 呼气流速的持续时间 与有效呼气时间不同 。 ⑤ 有效呼气时间 即整个呼吸周期时间减去实际的吸气时间 。 ⑥ TCT 整个呼吸周期时间 。
压力波形——机控呼吸
① 最大膨胀压 或称吸气峰压。它取决于病人及环 路的顺应性、阻力,并和潮气量、吸气流速相关 ② 吸气时间 ③ 正压持续时间
肺膨胀压——吸气暂停
“膨胀压”指达到一个固定潮气量时的压力。膨胀压分两个部分—— 流速抵抗压和肺扩张压。下图表示了机控呼吸中的一次吸气暂停。 (吸气流速结束后,肺保持膨胀的动作)
自主触发的辅助通气
是否是自主触发的辅助通气,可以从压力波形中看出。非自主 触发的机控呼吸的吸气开始是由时间循环触发的,压力从基线 开始上升。而自主触发的辅助通气,先有压力的下降,到达了 预设的触发灵敏度随之呼吸机送气,压力升高。下图是一次由 病人触发的辅助通气。注意压力持续下降至预设的触发灵敏度 以下一段时间后,辅助通气才开始,压力上升,这一段时间即 为响应时间。
自动顺应性补偿
自动顺应性补偿:在容控模式下,新一代呼吸机可以自动补偿两次呼吸间由 于螺纹管扩张所导致的容量损失。通常在自检中,呼吸机会测得环路的顺应 性,由此来计算这一部分容量损失,然后自动调节峰流速或吸气时间以补充 相应的损失量。下图描述了启用该功能后容量、压力、流速的变化。
在启用自动顺应性补偿时,呼吸机会送一个比预设潮气量大的容量,而有效潮 气量则基本不变,但是要注意这个较大的容量要在有效呼气时间内排完。充分 的呼气时间可以避免不必要的内源性PEEP。
平均压
除了膨胀压和呼气压,平均气道压是另一个重要的测量数据。平均气 道压描述了气道平时的平均压力和正压通气对肺泡稳固性及心脏充盈 的影响。平均压受峰压和PEEP的影响,并与I:E有关。在两种呼吸状 况同时存在的情况下也可以测的。 平均压不能清楚地在压力波形上反映出来。它通常由连续间隔很短时 间测知的一系列压力所得,即将这些间隔测得的压力的总和,除以相 应的数量。 (P1+P2+P3+…+PN)/N
① 气道峰压 受到流速和容量变化影响后,近口端气道的最大压力。 ② 气道平台压 肺泡膨胀时(没有气流进出的情况下)的压力。肺泡 是最低一级的呼吸道单位,最大肺泡压是一个平台压,而不是峰压。
压力波形——受阻力、流速、顺应性影
响(固定潮气量)
在一个固定的潮气量下,压力波形会随着流速大小、 输送方式(方波、正弦波等)、气道阻力、肺顺应性 的不同而相应改变。下图显示在同一潮气量下,气道 阻力增大;流速增大;肺顺应性下降时峰压和平台压 的不同改变。
呼气压基线抬高
测定的“呼气压”其实是呼气是呼吸机环路内的压力,前图分 别描述了自主呼吸和机控呼吸的压力波形。压力从0开始上升直 至恢复到0基线,但如果应用了呼气末正压,压力曲线开始和结 束都会在预设的PEEP值上。也就是说,PEEP抬高了基线。
呼气压力抬高
抬高呼气压基线可以通过调整PEEP或呼气阀实现,也可以由缩短呼气 时间,使呼气不完全来达到,但是这样会引起内源性PEEP的产生,并 会使呼气末压力逐渐增高。下图是一个实例。要注意的是,大多数呼 气压是在呼吸机环路内测定的,因而小气道塌陷引起的呼气末肺泡正 压(内源性PEEP),在这种测量方法下是不能探知的。
① ② ③ ④
吸气开始 吸气流速大小 吸气结束 吸气流速持续时间(吸气时间)
呼气流速波
呼气,不论是机控或是自主呼吸,都是一个 被动的过程。呼气流速波的大小、持续时间、 形状取决于顺应性,顺应性包括病人顺应性 和呼吸机环路顺应性。呼吸机环路顺应性受 到环路长度、材质、型号(内径)的影响, 并且,气流通过呼气阀时的阻力(容量测算 系统)也是重要因素。病人肺顺应性改变或 呼气时动用呼吸肌,都会对波形产生影响。 下图是一个机控吸气动作(虚线)后的呼气 流速波形。在呼吸机测算中呼气流速在0基线 以下。
吸气流速波——机控呼吸
① 呼吸机送气开始 开始吸气取决于以下两点:1)到达了预设的呼吸周期时间,即“时间循 环” 2)病人吸气努力达到了触发辅助通气的阈值,通常是一个吸气负压或吸气流速增 量,那就是“病人循环”。前者常出现在控制呼吸模式,后者常出现于辅助呼吸模式 。 ② 吸气峰流速 在容控性呼吸机上,预设流速是很有必要的,流速设置也可以设置潮气量和 吸气时间来间接得到。假设设置了一个恒定流速的容控性呼吸机,峰流速就是设置值。当 流速不恒定,,即流速波形是曲线波,流速在吸气时不同时间点上表现为不同的值。此时 中间流速或称平均流速通过下式计算:流速(LPM)=潮气量(L)/时间(S)*60 。 ③ 吸气末停止送气 这个转换可能达到了预期的容量送气、流速、压力或吸气时间 。 ④ 吸气流速的持续时间 常与吸气时间相应,容控呼吸机上,吸气时间常取决于预设的潮气 量、峰流速和流速释放方式(波型),有的也可以直接设置。因此,吸气时间可以长于峰 流速持续时间,尤其当应用吸气暂停时。 ⑤ 整个呼吸周期时间(TCT) 取决于预设的呼吸次数 TCT=60/Rate 。
恒流速波形——延迟时间效应
上图的流速波型是方波,从吸气开始即达到峰值,直 到吸气末都是一个恒定值,在实际应用当中,像上图 那样“真正的”方波是不可能达到的,因为流速输送 系统都有一个固定的延迟时间,在这段时间内,流速 从0达到预设的峰流速。同样,在吸气末流速从峰值 降至0也需要一段时间。延迟时间效应会在吸气开始 和吸气末使波形出现轻微的倾斜 。
机控呼吸中——病人努力不够
若触发灵敏度设置过大或病人呼吸极浅,只能看到压力下降而不能触 发辅助通气,如下图。相反的,灵敏度设置过小则易受外界因素影响。
①和②都是病人的一次浅呼吸,但未达到预设的触发灵敏度,所以没 有进行辅助通气,这种情况下,病人的吸气努力会a)从储气罐或持续 气流中供气;b)按一定流速供给,以保持基线压平稳(漏气补偿);c) 不供气 ③达到了一个机控呼吸的时间循环,呼吸机不管病人动作,予 以一次强制通气,此时易出现对抗动作。
呼气流速波——气道阻塞
病人呼气阻力对呼气流速波的细小影响会得到修正,而呼气流速波 的明显变化常体现了病人顺应性的改变、气道阻力明显变化或是病 人烦躁动作。例如呼气阻力增大(分泌物堆积甚至气道阻塞)会降 低呼气峰流速并延长呼气时间 。
了解呼气时间是否延长十分重要。 ① 阻塞后,呼气时间超过正常,峰流速下降 。 ② 呼气不完全,可能引起内源性PEEP。
压力波形——自主呼吸
① 吸气时压力下降 压力下降的幅度取决于病人吸气的峰流速 大小,感应器触发灵敏度、以及气流传送系统的反应时间。 (ASSIST、SIMV中自主触发的呼吸) ② 呼气时压力升高 升高的幅度与呼气时的气流阻力有关,包 括病人阻力和环路阻力。压力大小随着呼气峰流速的变化而相 应变化。呼气时动用呼吸肌,呼气峰流速会增大,因此当病人 烦躁或用力呼气时,压力会急剧增高。此外,持续高流量送气 也会导致呼气压力增高。
压力测定——PCV、PSV
在PCV和PSV模式中,压力是预设的,是一个独立可变量,而 流速和潮气量是根据压力的预设值和病人状况而变化的非独立 可变量。相对的,在容控呼吸中,流速和潮气量是独立可变量, 可以预设,而压力是非独立可变量。
上图中,PCV和PSV的压力波形相似,PSV吸气由病人触发, PCV既可以有病人触发也可以由时间循环触发。而从吸气向呼 气转换,PSV由流速决定,PCV由预设的吸气时间决定。但在 压力波形中不易区分。
呼吸机波形
流速、压力和容量波形的基本原理
邵逸夫医院呼吸治疗科 丁杰
流速测定
流速通常在呼吸机环路(从进气口到呼气阀之间的管 道)中测知,流量感应器根据设计类型不同而有些许 差异,但大部分都可以测量一个较大的范围(-300— +150LPM),但会由于假呼吸运动、水气、呼吸道 分泌物等而影响其准确性。 流速波有两个组成部分:吸气波和呼气波,他描述了 流速大小、持续时间和机控呼吸下的流速释放方式 (正压通气下),或者病人自主呼吸下的流速大小, 持续时间和流速需求。