坐标系及直角坐标与极坐标间的互化 ppt课件
合集下载
讲坐标系第极坐标和直角坐标的互化
04
极坐标与直角坐标的互化
极坐标与直角坐标的转换公式
极坐标系中的位置由两个角度和半径确定,其中角度以极轴为0度,顺时针增加角度,而半径从极轴的 长度开始。
直角坐标系中,点的位置由x和y坐标确定,其中x轴沿水平方向,y轴沿垂直方向。
极坐标与直角坐标之间的转换公式为:x = rcos(θ),y = rsin(θ),其中(r, θ)为极坐标系中的坐标,(x, y) 为直角坐标系中的坐标。
03
直角坐标系
直角坐标系的基本概念
定义
01
直角坐标系是一个二维坐标系统,其中点被定义为一对数值,
称为坐标。
坐标轴
02
在直角坐标系中,垂直相交的两条数轴称为坐标轴。
象限
03
在直角坐标系中,将平面分为四个象限,每个象限都包括一个
坐标轴和原点。
直角坐标系中的点和弧长
点
在直角坐标系中,每个点都有一个唯一 的坐标值,可以通过水平和垂直轴上的 刻度来测量。
在极坐标系中,一条曲线可以由其上面的一系列点来定义,这些点满足某个极坐标方程。弧长可以由这些点的极 径和极角计算出来。
极坐标系中的曲线方程
极坐标系中的曲线方程
在极坐标系中,曲线的形状由极径和极角的函数关系来定义,这种函数关系就是曲线在该坐标系下的 方程。
常见的极坐标系中的曲线方程
例如,圆形、椭圆形、心形等曲线的极坐标方程都有各自的形式。
03
极坐标系和直角坐标系之间的 转换是一个非常重要的数学技 能,也是解决许多实际问题的 基础。
课程知识点概述
极坐标系与直角坐标系之间的转换公式 极坐标系与直角坐标系在实际问题中的应用
极坐标系与直角坐标系的定义和性质
如何使用转换公式进行极坐标系与直角坐标系之间的转 换
点的极坐标与直角坐标的互化课件
y=ρsin θ=4sin(-1π2)=-4sin1π2= 2- 6.
∴点的极坐标(4,-1π2)化为直角坐标为( 2+ 6, 2-
6).
1.点的极坐标与直角坐标的互化公式的三个前提条件: ①极点与直角坐标系的原点重合;②极轴与直角坐标系的 x 轴的正半轴重合;③两种坐标系的长度单位相同.
2.将点的极坐标(ρ,θ)化为点的直角坐标(x,y)时,运 用到求角 θ 的正弦值和余弦值,熟练掌握特殊角的三角函数 值,灵活运用三角恒等变换公式是关键.
下表:
点 M 直角坐标(x,y) 极坐标(ρ,θ)
互化公式
x=ρcos θ y= ρsin θ
ρ2= x2+y2 tan θ=xy(x≠0)
在一般情况下,由 tan θ 确定角时,可根据点 M 所在的
象限取最小正角.
1.联系点的极坐标与直角坐标的互化公式的纽带是什 么?
【提示】 任意角的三角函数的定义及其基本关系式是 联系点的极坐标与直角坐标的互化公式的纽带.事实上,若 ρ>0,sin θ=ρy,cos θ=ρx,所以 x=ρcos θ,y=ρsin θ,ρ2= |OM|2=x2+y2,tan θ=xy(x≠0).
① ②
①+②并化简得 ρ2=12, 由于 ρ>0,解得 ρ=2 3, 再代入①得 cos(θ-π4)=0, ∴θ-4π=π2+kπ,k∈Z, ∴θ=34π+kπ,k∈Z, 由于 0≤θ<2π,令 k=0,1 分别得 θ=34π或74π, ∴点 C 的极坐标为(2 3,34π)或(2 3,74π).
设点 C 的直角坐标为(x,y),由于△ABC 为等边三角形,
故有|BC|=|AC|=|AB|.
∴(x+ 2)2+(y+ 2)2
=(x- 2)2+(y- 2)2
极坐标和直角坐标的互化 课件
极坐标和直角坐标的互化
如图所示,平面内的一个点既可以用直角坐标表示,也可 以用极坐标表示,如果平面内的一个点的直角坐标是 M(1, 3).
那么这个点的极坐标是什么样的呢?
点的极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为___极__点__,x轴的正 半轴作为_极__轴__,并在两种坐标系中取相同的长__度__单__位___,如图 所示.
76π=- 76π=-1
3
故 A 的直角坐标为(- 3,-1). 答案: C
2.已知点A的极坐标为(2,-2),则点A在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析: ∵-π<-2<-π2,
∴-2 为第三象限角,故点 A 在第三象限.
答案: C
3.极坐标为(3,-4)的点到极轴的距离为________. 解析: 由y=ρsin θ知y=3×sin(-4)=-3sin 4 故极坐标为(3,-4)的点到极轴的距离为-3sin 4. 答案: -3sin 4
4.完成下列点的坐标的转化. (1)将极坐标(2,0)化为直角坐标; (2)将直角坐标(-2,0)化为极坐标(ρ>0,0≤θ<2π). 解析: (1)∵ρ=2,θ=0, ∴x=2cos θ=2,y=2sin θ=0, ∴将极坐标(2,0)化为直角坐标为(2,0). (2)∵ρ= -22+02=2,tan θ=-02=0, 由于点(-2,0)在 x 轴的非正半轴上,所以 θ=π, ∴将直角坐标(-2,0)化为极坐标为(2,π).
在一般情况下,由 tan θ 确定角时,可根据点 M 所在的象
限取最小正角.
1.点 A 的极坐标是2,76π,则点 A 的直角坐标为(
如图所示,平面内的一个点既可以用直角坐标表示,也可 以用极坐标表示,如果平面内的一个点的直角坐标是 M(1, 3).
那么这个点的极坐标是什么样的呢?
点的极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为___极__点__,x轴的正 半轴作为_极__轴__,并在两种坐标系中取相同的长__度__单__位___,如图 所示.
76π=- 76π=-1
3
故 A 的直角坐标为(- 3,-1). 答案: C
2.已知点A的极坐标为(2,-2),则点A在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析: ∵-π<-2<-π2,
∴-2 为第三象限角,故点 A 在第三象限.
答案: C
3.极坐标为(3,-4)的点到极轴的距离为________. 解析: 由y=ρsin θ知y=3×sin(-4)=-3sin 4 故极坐标为(3,-4)的点到极轴的距离为-3sin 4. 答案: -3sin 4
4.完成下列点的坐标的转化. (1)将极坐标(2,0)化为直角坐标; (2)将直角坐标(-2,0)化为极坐标(ρ>0,0≤θ<2π). 解析: (1)∵ρ=2,θ=0, ∴x=2cos θ=2,y=2sin θ=0, ∴将极坐标(2,0)化为直角坐标为(2,0). (2)∵ρ= -22+02=2,tan θ=-02=0, 由于点(-2,0)在 x 轴的非正半轴上,所以 θ=π, ∴将直角坐标(-2,0)化为极坐标为(2,π).
在一般情况下,由 tan θ 确定角时,可根据点 M 所在的象
限取最小正角.
1.点 A 的极坐标是2,76π,则点 A 的直角坐标为(
最新公开课极坐标和直角坐标的互化PPT课件
33
2、独到:独具慧眼——风景
教师的教育智慧常常表现在对教材有真知灼见, 能够于平凡中见新奇,发人之所未发,见人之所未 见。他的课如同一首诗、一幅画、一段旋律、一项 发明,是独一无二的创造,学生听这样的课就像是 在独享一片风景。
首创性 独创性
独到的对立面是平庸,平庸的特征是从众。平庸者
只肯定别人肯定的,也只否认别人否认的。至于那些应
练习5 课本P15 第3题
类型四直角坐标方程与极坐标方程的互化
例4、把下列极坐标方 成程 直化 角坐标方程:
(1)2cos 3sin 10 (2) 4sin
思路:将极坐标方程化为直角坐标方程,只要将 ρcos θ,ρsin θ 和ρ2分别替换成 x,y,和x2 +y2再化简即可 , 有时要方程两边要先乘以ρ才能转化 ;
③ 地图 ④ “合同法” 19
6、绝招:教学特长中的特长
名师常常身怀绝招,绝招使其教学锦上添花, 如虎添翼,叫人赞口不绝。
教师的绝招是教师教学特长中的特长,是对某种 教学技艺的精益求精、千锤百炼,以至达到炉火纯青 的地步,是一种令人叹为观止、甚至望而生畏、无人 相匹的境界
智慧怎么来的:
① 多想出智慧
庸 师:想——我想听到开花的声音。
活泼——河里的水很活泼。
悄悄——我们听不懂小鱼的悄悄话。
丢——上街时,毛毛把爸爸丢了。
爬——牵牛花像个小弟弟,爬在树上。
淘气——风很淘气,把水逗笑了。
类型一 把点的极坐标化为直角坐标
例1.将点M的极坐标
(
5
,
2 3
)化成直角坐标.
练习1将点的极坐标化为直角坐标。
A(4, )
3
D(1,)
B(3, )
2、独到:独具慧眼——风景
教师的教育智慧常常表现在对教材有真知灼见, 能够于平凡中见新奇,发人之所未发,见人之所未 见。他的课如同一首诗、一幅画、一段旋律、一项 发明,是独一无二的创造,学生听这样的课就像是 在独享一片风景。
首创性 独创性
独到的对立面是平庸,平庸的特征是从众。平庸者
只肯定别人肯定的,也只否认别人否认的。至于那些应
练习5 课本P15 第3题
类型四直角坐标方程与极坐标方程的互化
例4、把下列极坐标方 成程 直化 角坐标方程:
(1)2cos 3sin 10 (2) 4sin
思路:将极坐标方程化为直角坐标方程,只要将 ρcos θ,ρsin θ 和ρ2分别替换成 x,y,和x2 +y2再化简即可 , 有时要方程两边要先乘以ρ才能转化 ;
③ 地图 ④ “合同法” 19
6、绝招:教学特长中的特长
名师常常身怀绝招,绝招使其教学锦上添花, 如虎添翼,叫人赞口不绝。
教师的绝招是教师教学特长中的特长,是对某种 教学技艺的精益求精、千锤百炼,以至达到炉火纯青 的地步,是一种令人叹为观止、甚至望而生畏、无人 相匹的境界
智慧怎么来的:
① 多想出智慧
庸 师:想——我想听到开花的声音。
活泼——河里的水很活泼。
悄悄——我们听不懂小鱼的悄悄话。
丢——上街时,毛毛把爸爸丢了。
爬——牵牛花像个小弟弟,爬在树上。
淘气——风很淘气,把水逗笑了。
类型一 把点的极坐标化为直角坐标
例1.将点M的极坐标
(
5
,
2 3
)化成直角坐标.
练习1将点的极坐标化为直角坐标。
A(4, )
3
D(1,)
B(3, )
点的极坐标与直角坐标的互化ppt课件
则
y
x cos
y
sin
2 x2 y2
tan
y x
(x
0)
ρ
θ
x
y
x
公式与结论
极坐标与直角坐标的互化公式。
公式与结论
极坐标与直角坐标的互化公式。
x cos
y
sin
2 x2 y2
tan
y x
(x
0)
通常情况下,将点的直角坐标, 化为极
坐标时,取 0, 0,
互化公式的三个前提条件:
24
2
半径为 5 的圆。 2
(2)极坐标方程 sin 2 cos所表示的
曲线是
解:将极坐标方程化为直角坐标方程即可判断
曲线的形状,因为给定的不恒等于零,用同
乘方程的两边得 2= sin 2 cos
化成直角坐标方程为x2 y2 y 2x
即(x 1)2 ( y 1 )2 5 这是以点(1, 1 )为圆心,
曲线是
(2)极坐标方程 sin 2 cos所表示的
曲线是
解:将极坐标方程化为直角坐标方程即可判断
曲线的形状,因为给定的不恒等于零,用同
乘方程的两边得 2= sin 2 cos
化成直角坐标方程为x2 y2 y 2x
即(x 1)2 ( y 1 )2 5 这是以点(1, 1 )为圆心,
tan y 1 3 ,
ቤተ መጻሕፍቲ ባይዱ
x 3 3
因为点M在第三象限, 所以
7 .
6
问题解析
(2) 将点M的直角坐标 ( 3,1) 化成极坐标.
解: (2) x2 y2 ( 3)2 (1)2 2
tan y 1 3 ,
x 3 3
极坐标和直角坐标的互化优秀教学课件
例1 把下列点的极坐标化成直角坐标:
A 2, 3
4
B 4,14
3
C 5, D 3,
6
分析
x 5 cos 5 3
6
2
y 5sin 5
6
2
( , (2k 1) ) (,)
cos( (2k 1) ) cos sin( (2k 1) ) sin
思路:利用x=ρcosθ, y=ρsinθ计算
笛卡尔法国著名哲学家、 物理学家、数学家、神 学家。他对现代数学的 发展做出了重要的贡献, 因将几何坐标体系公式 化而被认为是解析几何
之父。
r=a(1-sinθ)
平面内的一个点既可以用直角坐
标表示,也可以用极坐标表示
? y
x M x, y
?
M ,
y
o
x
Oo
xx
平面直角坐标系
平面极坐标系
2.2点的极坐标与直角坐标的互化
互化前提:把直角坐标系的原点作为极点,
x轴的正半轴作为极轴,并在两种坐标系
中取相同的长度单位。 0, 0,2
y
M x, y
M ,
y
o
x
x
思考1 平面内的一个点的直角坐标是A(1, 1),则该
点极坐标为____2_, 4_
思考2 平面内的一个点的极坐标B(2, )则该点直
角坐标为____3_,1_
3
3
则 AB ____,SAOB _____.
1.极坐标与直角坐标互化的前提
2.点M的直角坐标 (x, y)与极坐标 (ρ,θ)的互化关系
x cos y sin
坐标思想 数形结合
转化与化归
在极坐标系中,已知点A(2, ), B(3, 2 ),
相关主题