必修三 2.2《用样本估计总体》复习课

合集下载

人教版高中数学必修三第二章第2节用样本的数字特征估计总体的数字特征 课件 (2)

人教版高中数学必修三第二章第2节用样本的数字特征估计总体的数字特征 课件 (2)
1)标准差较大,数据的离散程度较大;标准差较 小,数据的离散程度较小。
2)从标准差的定义和计算公式都可以得出:S 0。 当 S 0 时,意味着所有的样本数据都等于样本 平均数。
课后作业:
课本 P81 习题2.2 A组 6、7.
P79练习答案
解: 依题意计算可得
x1=900 s1≈23.8
x2=900 s2 ≈42.6
如果你是教练,你应当如何对这次射击情 况作出评价?如果这是一次选拔性考核,你应 当如何作出选择?
x甲7
x乙7
两人射击 的平均成绩是一样的. 那么两个
人的水平就没有什么差异吗?
频率 0.3
0.2
0.1 频率
4
频率
5 67 8 (甲)
9 10
0.4 0.3
0.2 0.1
4 5 6 7 8 9 10 (乙)
于,是 样本 x1,x2 数 , xn到 据 x 的 “平均 ”是 :距离
x1xx2xxnx
S
.
n
1.标准差定义:是样本数据到平均数的一种平 均距离。它用来描述样本数据的分散程度。在 实际应用中,标准差常被理解为稳定性。
假设样本数据是 x1,x2,xn, 平均数是 x
2、标准差算法及其公式为:
1)算出样本数据的平均数 。 2)算出每个样本数据与样本数据平均数的差: 3)算出(2)中 的平方。 4)算出(3)中n个平方数的平均数,即为样本方差。 5)算出(4)中平均数的算术平方根,即为样本标准差。
s1 n[x (1x)2(x2x)2 (xnx)2]
3.关于标准差的说明: 1)标准差较大,数据的离散程度较大;标准差较 小,数据的离散程度较小。
规律:标准差越大, 则a越大,数据的 离散程度越大;反 之,数据的离散程 度越小。

#高中数学必修3《2.2用样本估计总体(二)》

#高中数学必修3《2.2用样本估计总体(二)》
湖南省长沙市一中卫星远程学校
探究 1:茎叶图 思考 5:用茎叶图表示数据的分布情况是一种 好方法,你认为茎叶图有哪些优点? (1)保留了原始数据,没有损失样本信息; (2)数据可以随时记录、添加或修改.
湖南省长沙市一中卫星远程学校
探究 1:茎叶图 思考 5:用茎叶图表示数据的分布情况是一种 好方法,你认为茎叶图有哪些优点? (1)保留了原始数据,没有损失样本信息; (2)数据可以随时记录、添加或修改. 思考 6:比较茎叶图和频率分布表,茎叶图中 “茎”和“叶”的数目分别与频率分布表中哪 些数目相当?
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
湖南省长沙市一中卫星远程学校
探究 1:频率分布折线图与总体密度曲线
思考 3:当总体中的个体数很多时(如抽样调查全 国城市居民月均用水量),随着样本容量的增加, 作图时所分的组数增多,组距减少,你能想象出 相应的频率分布折线图会发生什么变化吗?
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
湖南省长沙市一中卫星远程学校
探究 1:频率分布折线图与总体密度曲线
频率 组距
总体密度曲线
O
a
b 月均用水量/t
思考 4:在上述背景下,相应的频率分布折线图越
来越接近于一条光滑曲线,统计中称这条光滑曲
的主要作用是表示样本数据的分布情况,此 外,我们还可以用茎叶图来表示样本数据的 分布情况.
湖南省长沙市一中卫星远程学校
【问题】 某赛季甲、乙两名篮球运动员每场 比赛的得分情况如下: 甲运动员得分:13,51,23,8,26,38,16, 33,14,28,39; 乙运动员得分:49,24,12,31,50,31,44, 36,15,37,25,36,39.

高二数学必修32.2 用样本估计总体 教案2

高二数学必修32.2 用样本估计总体 教案2

用样本估计总体面对数据,能正确的分析、处理数据,面对现实问题,能主动尝试用数学的思维和方法去寻求解决问题的策略,提高分析问题和解决问题的能力,提高数学素养,提高应用数学的意识,让学生在合作中学会交流.引导学生自主探究,培养学生勤于思考的习惯.用数学的思维和方法解决实际问题.以学生合作探索活动为主.多媒体,计算器.(一)师:生活中处处有数据,当一串数据呈现在我们面前时,我们用统计知识学会了分析数据和处理数据.一些同学在处理教材第122页活动2的数据时遇到这样几个问题,请分组讨论一下,然后全班交流.问题 1 一个年级有几百名学生,可是计算器一次只能计算几十个数据的平均数,怎么办?(用多媒体展示)生1:用计算机计算.生2:可以先分班计算每个班男学生的平均身高,再计算全年级男同学的平均身高.28402930283235285.164400.166294.163302.163285.162321.164356.165++++++⨯+⨯+⨯+⨯+⨯+⨯+⨯.师:前面两位同学回答很好,还有什么方法?生3:将数据分组,全年级222名男生,分成10组,先分组计算平均数,再算全年级的男生的平均身高.师:非常好,请继续.生4:可以先统计各个数据出现的次数,再作计算.生5:可以采取随机抽样的方法,用计算器产生几十个不同的随机数,相应编号的学生作为样本,先计算这几十名男生的平均身高,再估计全年级男生的平均身高.师:同学们的讨论和回答非常好,继续思考下面两个问题.(用多媒体展示)问题2 在计算20名男同学平均身高时,小华将所有数据按由小到大的顺序排列,得下表.然后,这样计算20202167416521632160415721551143⨯+⨯+⨯+⨯+⨯+⨯+⨯.小华这样计算可以吗?为什么?问题3 某校九年级共有四个班,各班的男同学人数和平均身高如表.小强47.1608.1603.1622.161+++.小强这样计算平均数可以吗?为什么?生:小华这样算可以,小强这样算不可以,因为小强没有考虑到各班男生人数不等.师:小华这样算可以简化计算.解决小强遇到的问题,一般不能采取“相加除以4”的平均化策略,那么,只有在什么情况下可以采取这种策略呢?生:如果四个班的人数相同,才可以采取这种方法.(二)1.重庆市是一座美丽的城市,为增强市民的环保意识,某校家住缙云花园小区的30名九年级学生调查了某一天各自家庭丢弃废塑料袋的情况,统计结果如根据以上数据,若缙云花园小区有500户居民,则该小区所有家庭每天丢弃的废塑料袋总数约为__________万个.2.某动物园对5个旅游景点的门票价格进行了调整,据统计,调价前后各景(1)该动物园称调整前后这5个景点门票的平均收费不变,平均日总收入持平,问动物园是怎样计算的?(2)另一方面,游客认为调整收费后动物园的平均日总收入相对调价前,实际上增加了约9.4%,问游客是怎样计算的?(3)你认为动物园和游客哪一个的说法较能反映整体实际?师:对这两个实际问题请先独立思考,再与你的同伴交流,得到实际问题的结果.(三)通过这节课的学习,你有什么体会和收获?(引导学生小结)(四)作业1.教材第123页第1题.2.举出用样本估计总体的实例.(分组活动)。

高一必修3 2.2.2用样本的频示范课率分布估计总体的分布

高一必修3  2.2.2用样本的频示范课率分布估计总体的分布

不足:
当样本数据较多或数据位数较多时,茎叶图就 显得不太方便。
P71练习3、下面一组数据是某生产车间30名工人 某日加工零件的个数,请设计适当的茎叶图表示 这组数据,并由这图出发说明一下这个车间此日 的生产情况。 134 112 117 126 128 124 122 116 113 107 116 132 127 128 126 121 120 118 108 110 133 130 124 116 117 123 122 120 112 112
甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,并比较甲、乙成绩并得出统计 结论 甲 乙 8 4, 6, 3 3, 6, 8 3, 8, 9 1 0 1 2 3 4 5 2, 5, 1, 4, 0 5 4 6, 1, 6, 7, 9 9



统计结论:
1、乙运动员的得分基本是对称的,叶的分布 是“单峰”的,有10/13集中在茎2,3,4上, 中位数是36;甲运动员的得分除一个特殊得 分(51分)外,中位数是2பைடு நூலகம்.
2、乙运动员的平均得分大于甲运动员的平均 得分(乙运动员得分普遍大于甲运动员的得 分)。
3、乙运动员的得分比甲运动员的得分更集 中。乙运动员更稳定。
频率分布直方图如下:
频率
组距
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
0.5
1 1.5 2 2.5 3
3.5 4
作用:
能反映数据的变化趋势
二、总体密度曲线 利用样本频率分布对总体分布进行相应估计

《用样本估计总体》 讲义

《用样本估计总体》 讲义

《用样本估计总体》讲义在我们的日常生活和各种研究领域中,经常会遇到需要了解某个总体的情况,但由于总体规模过大或者其他限制,我们无法对总体中的每一个个体进行调查和分析。

这时候,用样本估计总体就成为了一种非常实用且有效的方法。

那么,什么是样本,什么又是总体呢?总体就是我们所关心的研究对象的整个集合,比如全国所有高中生的身高情况,这就是一个总体。

而样本呢,则是从总体中抽取的一部分个体,比如从某几个学校中抽取的部分高中生的身高数据。

为什么要用样本估计总体呢?首先,直接研究总体往往是不现实的,成本太高、时间太长,甚至根本无法做到。

其次,通过合理抽取的样本,我们能够以相对较小的代价和时间获取到关于总体的一些有用信息。

接下来,让我们看看如何抽取样本。

抽取样本可不是随便抓几个就行,得有一定的方法和原则,这样才能保证样本具有代表性,能够较好地反映总体的特征。

简单随机抽样是一种常见的抽样方法。

想象一下,我们把总体中的每个个体都编上号,然后通过随机数表或者其他随机的方式抽取一定数量的个体,这就是简单随机抽样。

比如要从一个班级的 50 名学生中抽取 5 名进行调查,我们可以给每个学生一个编号,然后随机抽取 5 个编号对应的学生。

分层抽样也是常用的方法之一。

如果总体中存在明显的不同层次或者类别,我们就可以按照这些层次进行分层,然后从每一层中分别抽取样本。

比如要调查一个城市居民的收入情况,我们可以按照不同的区域、职业等进行分层,然后从每个层次中抽取一定数量的居民。

系统抽样则是先将总体中的个体编号,然后按照一定的间隔抽取样本。

比如从 1000 个个体中抽取 50 个,我们可以先计算出间隔为 20,然后从第 1 个个体开始,每隔 20 个抽取一个。

抽取了合适的样本之后,我们就要通过样本的数据来估计总体的特征了。

首先是估计总体的均值。

样本均值就是样本中所有个体的平均值,我们可以用样本均值来估计总体的均值。

假设我们抽取的样本数据为 x1, x2, x3,, xn,那么样本均值x=(x1 + x2 + x3 ++ xn) / n 。

高中数学必修三《用样本估计总体》复习课优秀教学设计

高中数学必修三《用样本估计总体》复习课优秀教学设计
教具
幻灯明
热身
1、抽样方法;
2、用样本估计总体;
创设情境,
组织引导
合作探究
题型一:频率分布表与频率分布直方图的绘制
某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物), 请根据数据画出频率分布直方图。
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,86,81,83,82,64,79,86,85,49,45
学案导学
先学后教
师生合作
生生合作
学习
评价
【巩固训练】(见学案)
当堂巩固,
提升能力
小结
形成思维
课 题
11.2用样本估计总体(1)
课 型
复习课
教学目标
【知识与技能目标】
·能够绘制频率分布表和频率分布直方图;
·能运用用频率分布直方图解决简单的实际问题。
【过程与方法目标】
·通过课前阅读教材,填写知识点以及典型例题,为本节课的课堂学习做好知识与能力储备;
·通过课堂师生合作,使学生掌握用频率分布表和频率分布直方图去估计总体分布情况的方法。
·通过学生自主完成巩固训练,进一步巩固所学内容;
【情感态度与价值观目标】
·在解决实际问题的过程中,进一步体会用样本估计总体的思想,激发学生学习数学的兴趣;
·培养学生运用图形、表格等直观形式解决数学问题的能力;
重点
难点
【重点】频率分布表和频率分布直方图的绘制及用样本的频率分布估计总体分布
【难点】频率分布表和频率分布直方图的理解及应用;
题型二:频率分布直方图的应用
某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图。(图见学案)

必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)必修三2.2.用样本估计总体(教案)导语:本文为必修三2.2.用样本估计总体(教案)的教学指南,旨在引导学生了解和应用样本估计总体的方法。

通过学习本课,学生将能够理解抽样和样本的基本概念,并能够运用点估计和区间估计的方法进行总体参数的估计。

为了达到良好的教学效果,本教案采用了多样的教学方法,例如引导讨论、示例演示和小组合作等。

一、教学目标:1. 理解样本与总体的概念和关系;2. 掌握点估计的方法;3. 了解区间估计的原理和应用;4. 能够进行样本估计总体的实际问题分析。

二、教学过程:1. 导入(5分钟)引导学生思考以下问题:什么是样本?什么是总体?样本和总体之间有什么关系?为什么需要用样本来估计总体?2. 点估计的方法(15分钟)a. 讲解点估计的基本原理,即通过样本数据来估计总体参数的值。

b. 示例演示:设计一个问题,如某班级数学考试成绩的平均分。

用班级中的五位同学的成绩作为样本,通过计算样本的平均分来估计全班的平均分。

c. 引导学生讨论点估计的优点和缺点。

3. 区间估计的方法(15分钟)a. 讲解区间估计的概念和原理,即通过样本数据构造一个置信区间来估计总体参数的范围。

b. 示例演示:使用同样的例子,构造一个置信水平为95%的置信区间,来估计全班的平均分。

c. 引导学生讨论区间估计的优点和缺点。

4. 实际问题分析(25分钟)a. 设计一个实际问题,例如某个城市的人均收入。

要求学生提出估计该城市人均收入的方法和步骤,并结合点估计和区间估计的方法进行分析。

b. 小组合作:分组讨论,每个小组根据实际问题设计一个解决方案,并准备向全班汇报。

c. 汇报与讨论:每个小组轮流汇报他们的解决方案,并进行讨论。

5. 总结与延伸(10分钟)a. 概括本课内容,强调样本估计总体的方法和应用。

b. 提出延伸问题,鼓励学生进一步探索样本估计总体的其他应用领域。

三、教学反思:本节课通过引导讨论、示例演示和小组合作等多种教学方法,促使学生自主思考和应用样本估计总体的方法。

必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)

2.2 用样本估计总体教案 A第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1. 通过实例体会分布的意义和作用.2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.二、探究新知探究1:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,第 1 页为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1.计算一组数据中最大值及最小值的差,即求极差;2.决定组距及组数;3.将数据分组;4.列频率分布表;5.画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)频率分布直方图的特征:1.从频率分布直方图可以清楚的看出数据分布的总体趋势.2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.探究2:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图的不同看法进行交流……)接下来请同学们思考下面这个问题:思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见教材P67)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)(二)频率分布折线图、总体密度曲线1.频率分布折线图的定义:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.思考:1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把第 3 页这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.三、例题精析例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm 的人数占总人数的19%.cm )例2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:40.0824171593=+++++, 又因为频率=.第二小组频数样本容量所以,12150.0.08===第二小组频数样本容量第二小组频率 (2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、课堂小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、评价设计1.P81习题2.2 A组1、2.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征(板出课题).二、探究新知(一)众数、中位数、平均数探究(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供第 5 页关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t (最高的矩形的中点)(图见教材第72页)它告诉我们,该市的月均用水量为2. 25t 的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.(图略见教材73页图2.2-6)思考:2.02这个中位数的估计值,及样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)图2.2-6显示,大部分居民的月均用水量在中部(2.02t 左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)(二)标准差、方差1.标准差平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断.某地区的统计显示,该地区的中学生的平均身高为176cm ,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态.例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛? 我们知道,77x x ==乙甲,.两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?(观察P74图2.2-7)直观上看,还是有差异的.很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据.考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s 表示.样本数据1,2,,n x x x 的标准差的算法:第 7 页(1) 算出样本数据的平均数x .(2) 算出每个样本数据及样本数据平均数的差:(1,2,)i x x i n -= (3) 算出(2)中(1,2,)i x x i n -=的平方.(4) 算出(3)中n 个平方数的平均数,即为样本方差.(5) 算出(4)中平均数的算术平方根,即为样本标准差.其计算公式为:显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小.提问:标准差的取值范围是什么?标准差为0的样本数据有什么特点?从标准差的定义和计算公式都可以得出:s ≥0.当0s =时,意味着所有的样本数据都等于样本平均数.2.方差从数学的角度考虑,人们有时用标准差的平方2s (即方差)来代替标准差,作为测量样本数据分散程度的工具:在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差.三、例题精析例1 画出下列四组样本数据的直方图,说明他们的异同点.(1)5,5,5,5,5,5,5,5,5(2)4,4,4,5,5,5,6,6,6(3)3,3,4,4,5,6,6,7,7(4)2,2,2,2,5,8,8,8,8分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差.解:(图见教材P76)四组数据的平均数都是5.0,标准差分别为:0.00,0.82,1.49,2.83.他们有相同的平均数,但他们有不同的标准差,说明数据的分散程度是不一样的.例2 甲乙两人同时生产内径为25.40mm 的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm ):甲 25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.3825.42 25.39 25.43 25.39 25.40 25.44 25.40 25.4225.45 25.35 25.41 25.39乙 25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.3625.34 25.49 25.33 25.43 25.43 25.32 25.47 25.3125.32 25.32 25.32 25.48从生产的零件内径的尺寸看,谁生产的质量较高?分析:比较两个人的生产质量,只要比较他们所生产的零件内径尺寸所组成的两个总体的平均数及标准差的大小即可,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样本数据,然后比较这两个样本数据的平均数、标准差,以此作为两个总体之间的差异的估计值.解:四、课堂小结1. 用样本的数字特征估计总体的数字特征分两类:(1)用样本平均数估计总体平均数.(2)用样本标准差估计总体标准差.样本容量越大,估计就越精确.2. 平均数对数据有“取齐”的作用,代表一组数据的平均水平.3. 标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度.五、评价设计P81 习题 2.2 A组 3、4.教案 B第1课时教学内容§2.2.1 用样本的频率分布估计总体分布教学目标一、知识及技能1.通过实例体会分布的意义和作用.2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.二、过程及方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识及现实世界的联系.教学重点、难点教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.教学难点:能通过样本的频率分布估计总体的分布.教学设想一、创设情境,导入新课我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚的看到整个样本数据的频率分布情况.二、新课探知(一)频率分布的概念频率分布是指一个样本数据在各个小范围内所占比例的大小.一般用频率分布直方图反映样本的频率分布.其一般步骤为:1. 计算一组数据中最大值及最小值的差,即求极差;2. 决定组距及组数;第 9 页cm ) 3. 将数据分组;4. 列频率分布表;5. 画频率分布直方图.以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm ):(1)列出样本频率分布表;(2)一画出频率分布直方图;(3)估计身高小于134C m的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题.解:(1)样本频率分布表如下:(2)其频率分布直方图:(3134cm 的男孩出现的,所以我们估计身高小 (1趋势. (2把数据抹掉了.曲线 1.频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.2.总体密度曲线的定义:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(见教材P69)(三)茎叶图1.茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.(见教材P70例子)2.茎叶图的特征:(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录及表示.(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.例2某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.用茎叶图表示,你能通过该图说明哪个运动员的发挥更稳定吗?解:“茎”指的是中间的一列数,表示得分的十位数;“叶”指的是从茎的旁边生长出来的数,分别表示两人得分的个位数.画这组数据的茎叶图的步骤如下第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;第二步,茎是中间的一列数,按从小到大的顺序排列;第三步,将各个数据的叶按大小次序写在茎右(左)侧.甲乙8 04 6 3 1 2 53 6 8 2 5 43 8 9 3 1 6 1 6 7 94 4 91 5 0从图中可以看出,乙运动员的得分基本上是对称的,页的分布是“单峰”的,有的叶集中在茎2,3,4上,中位数为36;甲运动员的得分除一个特殊得分(51分)外,也大致对称,叶的分布也是“单峰”的,有的叶主要集中在茎1,2,3上,中位数是26.由此可以看出,乙运动员的成绩更好. 另外i,从叶在茎上的分布情况看,乙运动员的得分更集中于峰值附近,这说明乙运动员的发挥更稳定.练习:在NBA的2010赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33学生画出茎叶图(略)三、巩固练习为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(见下页图示),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.第 11 页(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高及频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.08 24171593=+++++,又因为频率=第二小组频数样本容量,所以,121500.08===第二小组频数样本容量第二小组频率.(2)由图可估计该学校高一学生的达标率约为(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.四、小结1. 总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2. 总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.五、布置作业P71练习1、2、3.第2课时教学内容§2.2.2 用样本的数字特征估计总体的数字特征教学目标一、知识及技能1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差.2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.3. 会用样本的基本数字特征估计总体的基本数字特征.4. 形成对数据处理过程进行初步评价的意识.二、过程及方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.三、情感、态度及价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识及现实世界的联系.教学重点、难点教学重点:用样本平均数和标准差估计总体的平均数及标准差.教学难点:能应用相关知识解决简单的实际问题.教学设想一、创设情境导入新课在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究——用样本的数字特征估计总体的数字特征.二、新课探究(一)众数、中位数、平均数初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息.例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见教材第72页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少.提问:请大家翻回到教材第66页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差.提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,第 13 页。

人教A版高中数学必修3《二章统计2.2用样本估计总体阅读与思考生产过程中的质量控制图》优质课教案_4

人教A版高中数学必修3《二章统计2.2用样本估计总体阅读与思考生产过程中的质量控制图》优质课教案_4

阅读与思考:生产过程中的质量控制图》教学设计阅读与思考:生产过程中的质量控制图——正态分布[ 教材分析]本节课选自人教A 版必修3第二章“统计”第2.2节“用样本估计总体”课后的“阅读与思考”部分。

在第2.1节通过抽样收集数据之后,第2.2节给出了两种用样本估计总体的方式,一种是用样本的频率分布估计总体的分布,另一种是用样本的数字特征(如平均数、标准差等)估计总体的数字特征。

本节课是在这基础上,结合前面所学的总体密度曲线、平均数和标准差的概念,通过生产过程中的产品质量控制图引出正态分布,利用具体的生活应用介绍正态分布密度曲线的特点以及期望、标准差对整个正态分布的影响。

正态分布无论是在理论上还是应用上都是极其重要的一个分布,将正态分布的这些特点应用到质量控制中,可使学生进一步加强对标准差的认识。

由于正态分布的随机变量是连续型随机变量,这也让学生对随机变量由离散型到连续型有一个初步的认识。

从教材编排上来看,“阅读与思考”内容是对频率分布直方图、标准差认识的深化,是统计知识体系的一种承接和完善,也是后续选修2-3 中第2.4“正态分布”一课的铺垫。

[学情分析]学生在之前章节的学习中,已经掌握如何通过抽样来收集数据,能够画出所收集数据的频率分布直方图、折线图,会根据图表初步分析数据的分布规律,会计算平均数与标准差,这为本节课的探究学习打下了坚实的基础。

但学生仍存在一些知识短板和理解缺口。

其一,本节课学习的正态分布的随机变量是连续型随机变量的分布问题,学生一直以来接触的都是离散型随机变量,这在概念接受与理解上会有一定困难,可以通过信息技术辅助理解;其二,由于学生在此之前还未学习过定积分、随机事件的概率以及二项分布,只在初中接触过简单的概率定义,因而对本节课正态分布的本质理解会显得生涩;其三,正态分布的密度曲线函数较为复杂,学生对抽象且陌生的公式会存在惧怕心理,需要通过一些函数模型及实际应用帮助学生体会其参数的作用。

必修三2-2-2用样本的数字特征估计总体的数字特征

必修三2-2-2用样本的数字特征估计总体的数字特征

课前探究学习
课堂讲练互动
活页规范训练
规律方法 1.中位数的求法 (1)当数据个数为奇数时,中位数是按从小到大顺序排列 的中间那个数. (2)当数据个数为偶数时,中位数为排列的最中间的两个 数的平均数. 2.深刻理解和把握平均数、中位数、众数在反映样本数 据上的特点,并结合实际情况,灵活应用.
课前探究学习
课堂讲练互动
活页规范训练
自学导引
众数、中位数、平均数的概念 1. 次数 最多的数称为这组数据的 (1)众数:一组数据中出现_____ 众数.一组数据中的众数可能不止一个,也可能没有.众 集中趋势 .在频率分布直方图中, 数反映了该组数据的_________ 中点 就是数据的众数. 最高矩形的_____ (2)中位数:一组数据按从小到大的顺序排成一列,处于 _____ 中间 位置的数称为这组数据的中位数(或两个数据的平均 数).一组数据中的中位数是唯一的,反映了该组数据的 集中趋势.在频率分布直方图中,中位数左边和右边的直 方图的面积_____ 相等 .
课前探究学习 课堂讲练互动 活页规范训练
1 解 (1) 利 用 平 均 数 计 算 公 式 得 x = (82×27 + 48 80×21)≈81.13(分). (2)∵男同学的中位数是75, ∴至少有14人得分不超过75分.
又∵女同学的中位数是80, ∴至少有11人得分不超过80分. ∴全班至少有25人得分低于80分(含80分). (3)男同学的平均分与中位数的差别较大,说明男同学中 两极分化现象严重,得分高的和低的相差较大.
课前探究学习
课堂讲练互动
活页规范训练
(4)数据的离散程度可以通过极差、方差或标准差来描 述.极差反映了一组数据变化的最大幅度,它对一组数据 中的极端值非常敏感,方差则反映了一组数据围绕平均数 波动的大小.为了得到以样本数据的单位表示的波动幅 度,通常用标准差——样本方差的算术平方根来描述. (5)标准差的大小不会越过极差. (6)方差、标准差、极差的取值范围:[0,+∞).当标准 差、方差为0时,样本各数据全相等,表明数据没有波动 幅度,数据没有离散性. (7)因为方差与原始数据的单位不同,且平方后可能夸大 了偏差的程度,所以虽然方差和标准差在刻画样本数据的 分散程度上是一样的,但在解决实际问题时,一般采用标 准差.

高中数学人教版A版必修三课时作业习题及答案:第二章2-2 用样本估计总体

高中数学人教版A版必修三课时作业习题及答案:第二章2-2 用样本估计总体

第二章统计2.2 用样本估计总体2.2.1用样本的频率分布估计总体分布课时目标 1.理解用样本的频率分布估计总体分布的方法.2.会列频率分布表,画频率分布直方图,频率分布折线图,茎叶图.3.能够利用图形解决实际问题.1,用样本估计总体的两种情况(1)用样本的____________估计总体的分布.(2)用样本的____________估计总体的数字特征.2,数据分析的基本方法(1)借助于图形分析数据的一种基本方法是用图将它们画出来,此法可以达到两个目的,一是从数据中____________,二是利用图形________信息.(2)借助于表格分析数据的另一方法是用紧凑的________改变数据的排列方式,此法是通过改变数据的____________,为我们提供解释数据的新方式.3,频率分布直方图在频率分布直方图中,纵轴表示____________,数据落在各小组内的频率用________________来表示,各小长方形的面积的总和等于____.4,频率分布折线图和总体密度曲线(1)频率分布折线图连接频率分布直方图中各小长方形__________,就得到了频率分布折线图.(2)总体密度曲线随着样本容量的增加,作图时所分的____增加,组距减小,相应的频率分布折线图就会越来越接近于一条________,统计中称之为总体密度曲线,它反映了总体在各个范围内取值的百分比.5,茎叶图(1)适用范围:当样本数据较少时,用茎叶图表示数据的效果较好.(2)优点:它不但可以____________,而且可以__________,给数据的记录和表示都带来方便.(3)缺点:当样本数据______时,枝叶就会很长,茎叶图就显得不太方便.一、选择题1,下列说法不正确的是()A,频率分布直方图中每个小矩形的高就是该组的频率B,频率分布直方图中各个小矩形的面积之和等于1C,频率分布直方图中各个小矩形的宽一样大D,频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的2,一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] 频数12 13 24 15 16 13 7 则样本数据落在(10,40]上的频率为()A,0.13 B.0.39 C.0.52 D.0.643,100辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,则时速在[60,70)的汽车大约有()A.30辆B.40辆C,60辆D.80辆4,如图是总体密度曲线,下列说法正确的是()A,组距越大,频率分布折线图越接近于它B,样本容量越小,频率分布折线图越接近于它C,阴影部分的面积代表总体在(a,b)内取值的百分比D,阴影部分的平均高度代表总体在(a,b)内取值的百分比5,一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.则样本在区间[20,+∞)上的频率为()A,20% B.69%C,31% D.27%6,某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A,90 B.75 C.60 D.45题号 1 2 3 4 5 6答案二、填空题7,将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________. 8,在如图所示的茎叶图中,甲,乙两组数据的中位数分别是________.9.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在各组上的频率为m,该组上直方图的高为h,则|a-b|=________.三、解答题10,抽查100袋洗衣粉,测得它们的重量如下(单位:g):494498493505496492485483508 511495494483485511493505488 501491493509509512484509510 495497498504498483510503497 502511497500493509510493491 497515503515518510514509499 493499509492505489494501509 498502500508491509509499495 493509496509505499486491492 496499508485498496495496505 499505496501510496487511501496(1)列出样本的频率分布表:(2)画出频率分布直方图,频率分布折线图;(3)估计重量在[494.5,506.5]g的频率以及重量不足500 g的频率.能力提升11,在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?12,某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表.(2)作出频率分布直方图.(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.答案: 2.2.1 用样本的频率分布估计总体分布 知识梳理1,(1)频率分布 (2)数字特征 2.(1)提取信息 传递 (2)表格 构成形式 3.频率/组距 小长方形的面积 1 4.(1)上端的中点 (2)组数 光滑曲线5,(2)保留所有信息 随时记录 (3)较多作业设计1,A 2,C [样本数据落在(10,40]上的频数为13+24+15=52,故其频率为52100=0.52.] 3,B [时速在[60,70)的汽车的频率为:0,04×(70-60)=0.4,又因汽车的总辆数为100, 所以时速在[60,70)的汽车大约有0.4×100=40(辆).]4,C5,C [由题意,样本中落在[20,+∞)上的频数为5+4+2=11,∴在区间[20,+∞)上的频率为1135≈0.31.]6,A [∵样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36, ∴样本总数为360.3=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.] 7,60解析 ∵n·2+3+42+3+4+6+4+1=27, ∴n =60.8,45,46解析 由茎叶图及中位数的概念可知x 甲中=45,x 乙中=46. 9.m h解析频率组距=h ,故|a -b|=组距=频率h =m h . 10,解 (1)在样本数据中,最大值是518,最小值是483,它们相差35,若取组距为4,由于354=834,要分9组,组数合适,于是决定取组距为4 g ,分9组,使分点比数据多一位小数,且把第一组起点稍微减小一点,得分组如下:[482.5,486.5),[486.5,490.5),…,[514.5,518.5). 列出频率分布表:分组 个数累计 频数 频率 累积频率 [482.5,486.5) 正 8 0.08 0.08 [486.5,490.5) 3 0.03 0.11[490.5,494.5) 正正正 17 0.17 0.28 [494.5,498.5) 正正正正- 21 0.21 0.49 [498.5,502.5) 正正 14 0.14 0.63 [502.5,506.5) 正 9 0.09 0.72[506.5,510.5) 正正正 19 0.19 0.91 [510.5,514.5) 正- 6 0.06 0.97[514.5,518.5] 3 0.03 1.00合计 100 1.00(2)频率分布直方图与频率分布折线图如图.(3)重量在[494.5,506.5]g 的频率为:0.21+0.14+0.09=0.44.设重量不足500 g 的频率为b ,根据频率分布表,b -0.49500-498.5≈0.63-0.48502.5-498.5,故b ≈0.55.因此重量不足500 g 的频率约为0.55. 11,解 (1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.12,解 (1)(2)(3)答对下述两条中的一条即可:①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%;说明该市空气质量有待进一步改善.2.2.2用样本的数字特征估计总体的数字特征课时目标 1.会求样本的众数,中位数,平均数,标准差,方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1,众数,中位数,平均数(1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数.(2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.②当数据个数为偶数时,中位数为排列的最中间的两个数的________.(3)平均数①平均数的定义:如果有n个数x1,x2,…,x n,那么x=____________,叫做这n个数的平均数.②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数.样本平均数:________所有个体的平均数叫样本平均数.2,标准差,方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=________________________________________________________________________.(2)方差的求法:标准差的平方s2叫做方差.s2=________________________________________________________________________.一、选择题1,下列说法正确的是()A,在两组数据中,平均值较大的一组方差较大B,平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C,方差的求法是求出各个数据与平均值的差的平方后再求和D,在记录两个人射击环数的两组数据中,方差大的表示射击水平高2,已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有()A,a>b>c B.a>c>bC,c>a>b D.c>b>a3,甲,乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲,乙两同学在这次篮球比赛活动中,发挥得更稳定的是()A,甲B.乙C,甲,乙相同D.不能确定4,一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是()A.13s2B.s2C,3s2D.9s25,如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为()A,84,4.84 B.84,1.6C,85,1.6 D.85,0.46,如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B则()A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B题号 1 2 3 4 5 6答案二、填空题7,已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.8,甲,乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲10 8 9 9 9乙10 10 7 9 9如果甲,乙两人只能有1人入选,则入选的应为________.9,若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差为________.三、解答题10,甲,乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:平均数方差中位数命中9环及9环以上的次数甲乙(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11,下面是一家快餐店所有工作人员(共7人)一周的工资表:总经理大厨二厨采购员杂工服务员会计3 000元450元350元400元320元320元410元(1)计算所有人员一周的平均工资;(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12,1,平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3,极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2,2.2用样本的数字特征估计总体的数字特征知识梳理1,(1)最多 (2)中间 ①中间位置的 ②平均数 (3)①x 1+x 2+…+x n n ②总体中 样本中2,(1)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2] 作业设计1,B [A 中平均值和方差是数据的两个特征,不存在这种关系;C 中求和后还需取平均数;D 中方差越大,射击越不平稳,水平越低.]2,D [由题意a =110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,即b =16,c =18,∴c>b>a.]3,B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B .]4,D [s 20=1n [9x 21+9x 22+…+9x 2n -n(3x )2]=9·1n(x 21+x 22+…+x 2n -n x 2)=9·s 2(s 20为新数据的方差).]5,C [由题意x =15(84+84+86+84+87)=85.s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.]6,B [样本A 数据均小于或等于10,样本B 数据均大于或等于10,故x A <x B , 又样本B 波动范围较小,故s A >s B .] 7,91解析 由题意得8,甲解析 x 甲=9,2S 甲=0.4,x 乙=9,2S 乙=1.2,故甲的成绩较稳定,选甲.9,0.19 解析 这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19. 10,解 由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为: 2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x 甲=110×(5+6×2+7×4+8×2+9)=7010=7(环), x 乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s 2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s 2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2] =110×(25+9+1+0+2+8+9)=5.4. 根据以上的分析与计算填表如下:平均数 方差 中位数 命中9环及9环以上的次数甲 7 1.2 7 1乙 7 5.4 7.5 3 (2)①∵平均数相同,2S 甲<2S 乙,∴甲成绩比乙稳定. ②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11,解 (1)平均工资即为该组数据的平均数 x =17×(3 000+450+350+400+320+320+410)=17×5 250=750(元).(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x ′=16×(450+350+400+320+320+410)=16×2 250=375(元).这个平均工资能代表一般工作人员一周的收入水平.12,解 设第一组20名学生的成绩为x i (i =1,2,…,20),第二组20名学生的成绩为y i (i =1,2,…,20), 依题意有:x =120(x 1+x 2+…+x 20)=90,y =120(y 1+y 2+…+y 20)=80,故全班平均成绩为:140(x 1+x 2+…+x 20+y 1+y 2+…+y 20)=140(90×20+80×20)=85;又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 21=120(x 21+x 22+…+x 220-20x 2),s 22=120(y 21+y 22+…+y 220-20y 2) (此处,x =90,y =80),又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s 2=140(x 21+x 22+…+x 220+y 21+y 22+…+y 220-40z 2) =140(20s 21+20x 2+20s 22+20y 2-40z 2) =12(62+42+902+802-2×852)=51. s =51.所以全班同学的平均成绩为85分,标准差为51.。

2.2用样本估计总体(复习课)

2.2用样本估计总体(复习课)

2.3样本估计总体(复习课)【复习目标】1、正确区分普查与抽样调查,能在实际情景中指出总体、个体和样本。

2、理解加权平均数、中位数、众数的概念,能进行计算。

3、结合具体情境,能选择合适的统计量表示数据的集中程度。

【复习重难点】1、重点:抽样调查与样本的选取,加权平均数、中位数、众数的概念与计算。

2、难点:加权平均数的两个计算公式,平均数、中位数、众数的区别与联系。

【课前延伸】1、本章学习了哪些主要内容?总结一下,画出知识结构图。

2、什么是普查?什么是抽样调查?在什么情况下不能采取普查的方法?举例说明。

3、在抽样调查中,为什么要求从总体中抽取一个有代表性的、有一定容量的样本?你能举例说明用样本估计总体的思想吗?4、什么是平均数?什么是加权平均数?怎样理解权数?5、平均数、中位数和众数都是用来描述一组数据集中趋势的量,只是描述的角度不同,其中以平均数的应用最为广泛,它反映了一组数据(或样本)的平均水平。

分别说出平均数、中位数、众数的特点。

【知识总结】:1.频率分布表的制作步骤是:第一步:按确定的组距对一批数据分组,数出落在各组内数据的个数(即频数)填入表中;第二步;各小组的频数与数据总数的比值叫做这一小组的频率,算出各小组的频率,填入表中;2.画频率分布直方图的步骤:①求极差;②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.3.众数、中位数与平均数的特征(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量.(2)由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变,这是中位数、众数都不具有的性质.(3)众数考查各数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.(4)中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响.中位数可能出现在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.4.方差的特征方差和标准差描述其波动大小,也可以说方差、标准差和极差反映各个数据与其平均数的离散程度.一组数据的方差或标准差越大,说明这组数据波动越大.【应用实例】例1.对某校400名学生的体重(单位:kg)进行统计,得到如图所示的频率分布直方图,则学生体重在60kg以上的人数为 .【解析】:体重在60kg以上的频率为(0.040+ 0.010)×5=0.25,所以体重在60kg以上的学生人数为0.25 ×400=100,填100.例 2.为了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.问:(Ⅰ)第二小组的频率是多少?样本容量是多少?(Ⅱ)若次数在110以上(含110次)为达标,试估计该校全体高一学生的达标率是多少?【切入点】小长方形面积比已给,而各小长方形面积之和为1,故可求得各小长方形的面积,即频率;由第二小组频数为12,可求得样本容量.解答本题可先求得第二小组的频率,然后根据频数求得样本容量,从而求得达标率.【解析】略例3:某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(Ⅰ)问各班被抽取的学生人数各为多少人?(Ⅱ)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.【解析】:(Ⅰ)由频率分布条形图知,抽取的 学生总数为 =100人. 因为各班被抽取的学生人数成等差数列,设其公差为d , 由22+(22+d )+(22+2d )+(22+3d )=100,得4×22+6d =100,解得d =2.所以各班被抽取的学生人数分别是22人,24人,26人,28人.(Ⅱ)在抽取的学生中,任取一名学生,则分数不小于90分的概率为0.35+0.25+0.1+0.05=0.75.【备选题】在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17.在某报纸的一篇文章中,每个句子中所含的字的个数如下: 27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(Ⅰ)将这两组数据用茎叶图表示;(Ⅱ)将这两组数据进行比较分析,得到什么结论?【解析】(Ⅰ)如图所示(Ⅱ)电脑杂志上每个句子的字数集中在10~30之间,中位数为27;而报纸上每个句子的字数集中在10~40之间.中位数为27.5.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物须通俗易懂、简明.50.05。

高中数学必修3用样本估计总体(高三第一轮复习)PPT

高中数学必修3用样本估计总体(高三第一轮复习)PPT

● [规律方法] ● (1)众数体现了样本数据的最大集中点,但无法客观地反映总体特征. ● (2)中位数是样本数据居中的数. ● (3)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据越分散,
标准差、方差越小,数据越集中.

[跟踪训练]

3.(2012·山东高考)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,
样本的数字特征 [典题导入]
(1)(2012·江西高考)样本(x1,x2,…,xn)的平均数为-x ,
样本(y1,y2,…,ym)的平均数为-y (-x ≠-y ).若样本(x1,x2,…, xn,y1,y2,…,ym)的平均数-z =α-x +(1-α)-y ,其中 0<α<12,则
n,m 的大小关系为
(2)(0.003 6+0.006 0+0.004 4)×50×100=70.
答案 (1)0.004 4 (2)70
茎叶图的应用
● [典题导入]

(2012·陕西高考)从甲、乙两个城市分别随机抽取16台
自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图
所示).设甲、乙两组数据的平均数分别为x甲、x乙,中位数分别 为m甲、m乙,则
● [跟踪训练]
● 1.(2013·湖北高考)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至 350度之间,频率分布直方图如图所示.
(1)直方图中x的值为________;
(2)在这些用户中,用电量落在区间[100,250)内的 户数为________.
解析 (1)根据频率和为1,得(0.002 4+0.003 6+ 0.006 0+x+0.002 4+0.001 2)×50=1,解得x= 0.004 4;

人教A版高中数学必修三复习课用样本估计总体

人教A版高中数学必修三复习课用样本估计总体
人教A版高中数学必修三复习课用样本 估计总 体
人教A版高中数学必修三复习课用样本 估计总 体
3、某中学举行电脑知识竞赛,现将高一参赛学生的 成绩进行整理后分成五组绘制成如图所示的频率分布 直方图,已知图中从左到右的第一、二、三、四、五 小组的频率分别是0.30,0.40,0.15,0.10,0.05.
2、在如图所示的茎叶图中,甲、乙两组数据的 人教A版高中数学必修三复习课用样本估计总体 中位数分别是___4_5______,_____4_6____.
解析:甲组数据为:28,31,39,42,45,55,57,58,66, 中位数为45. 乙组数据为:29,34,35,42,46,48,53,55,67, 中位数为46.
人教A版高中数学必修三复习课用样本 估计总 体
由平均数公式计算:
0.3×55+0.4×65+0.15×75+0.1×85+0.05×95=67
所以平均数为67.
人教A版高中数学必修三复习课用样本 估计总 体
人教A版高中数学必修三复习课用样本 估计总 体
七、标准差、方差
s = (x1 - x )2 + (x2 - x )2 + L + (xn - x )2 n
下表(单位:环): 甲 10 8 9 9 9 乙 10 10 7 9 9
如果甲、乙两人中只有1人入选,则入选 的最佳人选应是__________. 答案:甲
人教A版高中数学必修三复习课用样本 估计总 体
八、方差的运算性质: 人教A版高中数学必修三复习课用样本估计总体
如果数据 x1, x2 , , xn 的平均数为 x ,
求:高一参赛学生的成绩的众数、中位数、平均数.
人教A版高中数学必修三复习课用样本 估计总 体

高中数学人教必修三课件:2.2.1用样本的频率分布估计总体分布

高中数学人教必修三课件:2.2.1用样本的频率分布估计总体分布
(1)样本容量越大,这种估计越精确。
(2)当样本容量无限增大(无限大时即 认为到达总体时),作图时所分的组数增 加,组距无限缩小,那么频率散布折线图 就会无限接近于一条光滑曲线—总体密度 曲线。
总体密度曲线
频率 组距
月均用 水量/t
ab
图中阴影部分的面积,表示总体在某个区间 (a, b) 内取值的百分比(频率)。
通过抽样,我们获得了100位居民某年的月平均用水量(单位:t) ,如下表:
请同学们阅读教材66页到67页,了解并掌握如何用频率 散布表和频率散布直方图对样本数据进行统计分析?
画频率散布直方图的操作步骤
(一表一图的制作方法)
1.求极差.即数据中最大值与最小值的差 2.决定组距与组数 :组数=极差/组距 3.将数据分组.通常对组内数值所在区间,取左闭右 开区间 , 最后一组取闭区间
总体密度曲线反应了总体在各个范围 内取值的百分比,精确地反应了总体的散 布规律。是研究总体散布的工具。
频率 组距
月均用 水量/t
ab
图中阴影部分的面积,表示总体在某个区间 (a, b) 内取值的百分比(频率)。
练习
有一个容量为50的样本数据的分组的频数如下:
[12.5, 15.5) 3
[24.5, 27.5) 10
4.列出频率散布表.计算频数和频率, 列出频率散布表
5.画出频率散布直方图(纵轴表示频率/组距)
100位居民月平均用水量的频率散布表
100位居民月平均用水量的频率散布直方图
频率/组距
0.50 0.40 0.30 0.20 0.10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
月平均用水量/t
2.2.1 用样本的频率散布估计总体散布

2019年人教版A数学必修三第2章 阶段复习课 用样本估计总体的方法

2019年人教版A数学必修三第2章 阶段复习课 用样本估计总体的方法

第二课 用样本估计总体的方法[核心速填]1.用样本估计总体用样本频率分布估计总体频率分布时,通常要对给定的一组数据作频率分布表与频率分布直方图.当样本只有两组数据且样本容量比较小时,用茎叶图刻画数据比较方便.2.样本的数字特征样本的数字特征可分为两大类:一类是反映样本数据集中趋势的,包括众数、中位数和平均数;另一类是反映样本波动大小的,包括方差及标准差.3.求回归方程的步骤:(1)先把数据制成表,从表中计算出x ,y,∑i =1nx 2i ,∑i =1nx i y i ; (2)计算回归系数a ^,b ^.公式为⎩⎪⎨⎪⎧b ^=∑i =1nx i y i -n x y∑i =1nx 2i-n x2,a ^=y -b ^ x .(3)写出回归方程y ^=b ^x +a ^.[体系构建][题型探究]的10 000名考生中用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如图2-1),则这10 000名考生的数学成绩在[140,150]内的约有________人.【导学号:49672228】图2-1[思路探究]根据频率分布直方图求出样本中数学成绩在[140,150]内的频率,可估计总体中成绩在[140,150]内的人数.800[由样本的频率分布直方图知数学成绩在[140,150]内的频率是相应小矩形的面积,即0.008×10=0.08,因此这10 000名考生中数学成绩在[140,150]内的约有10 000×0.08=800(人).]1.已知总体数据均在[10,70]内,从中抽取一个容量为20的样本,分组后对应组的频数如下表所示:A.0.5B.0.25C.0.6 D.0.7D[由频率分布表可知样本数据在区间[10,50)内的频数等于[10,20),[20,30),[30,40),[40,50)四个分组的频数之和,即2+3+4+5=14,频率为14 20=0.7.由样本的频率分布估计总体分布的思想可知,总体数据在区间[10,50)内的频率约为0.7.]的环数如下表:【导学号:49672229】赛后甲、乙两名运动员都说自己是胜者,如果你是裁判,你将给出怎样的评判?[思路探究]规则不同,评判结果有所不同.[解]为了分析的方便,先计算两人的统计指标如下表所示.规则1:平均环数和方差相结合,平均环数高者胜.若平均环数相等,则再看方差,方差小者胜,则甲胜.规则2:平均环数与中位数相结合,平均环数高者胜.若平均环数相等,则再看中位数,中位数大者胜,则乙胜.规则3:平均环数与命中10环次数相结合,平均环数高者胜.若平均环数相等,则再看命中10环次数,命中10环次数多者胜,则乙胜.以上规则都是以平均环数为第一标准,如果比赛规则是看命中7环以上或10环的次数,那么就不需要先看平均环数了.2.如图2-2是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是()图2-2A.x=9B.y=8C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差B[甲的成绩极差为31,所以最高成绩为39.x=9;由乙平均值是24,得y =24×5-(12+25+26+31)-20=6;由茎叶图知乙成绩的中位数为26,对比甲、乙成绩分布发现,乙成绩较集中,其方差较小. ]【导学号:49672230】(2)指出x与y是否线性相关;(3)若x与y线性相关,请根据上表提供的数据,用最小二乘法求出y关于x^=b^x+a^;的回归方程y(4)据此估计2025年该城市人口总数.(参数数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)[解](1)数据的散点图如图:(2)由散点图可知,样本点基本上分布在一条直线附近,故x 与y 呈线性相关. (3)由表知:x =15×(0+1+2+3+4)=2,y =15×(5+7+8+11+19)=10.∴b^=∑i =15x i y i -5x y∑i =15x 2i -5x 2=3.2,a ^=y -b^ x =3.6, ∴回归方程为y^=3.2x +3.6.(4)当x =5时,y ^=19.6(十万)=196万.故2025年该城市人口总数约为196万.3.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y 关于t 的回归方程y =b t +a ;(2)用所求回归方程预测该地区2018年(t =6)的人民币储蓄存款. [解] (1)列表计算如下:这里n =5,t =1n ∑i =1n t i =155=3,y =1n ∑i =1n y i =365=7.2.∑i =1nt 2i -n t 2=55-5×32=10, ∑i =1nt i y i -n t y =120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y -b^ t =7.2-1.2×3=3.6, 故所求回归方程为y^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2018年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).。

高二数学必修三第二章重点:用样本估计总体(Word版)

高二数学必修三第二章重点:用样本估计总体(Word版)

高二数学必修三第二章重点:用样本估计总体(2021最新版)作者:______编写日期:2021年__月__日2、反映数据“大多数水平”(集中趋势)的量——众数众数:即样本数据中频数(或频率)的数据。

特点:①可以不存在或不止一个;②不受极端数据的影响,求法简单;③可靠性差,如0,0,2,3,5这组数据中,众数是0,它很难真实反映这组数据的“平均水平”(集中趋势);④众数在难以定义“平均数”或“中位数”时常用,故一般可用于统计非数字型数据,如“牛,羊,马,鱼,牛”这组数据中,众数是“牛”;⑤众数在销售统计中常用3、反映数据“中间水平”(集中趋势)的量——中位数中位数:把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。

特点:①中位数把样本数据分为两部分,一部分大于中位数,另一部分小于中位数;②中位数不受少数几个极端值的影响;③由于当样本数据为偶数个时,中位数等于中间两个数据的平均值,因此有时中位数未必在样本数据中.【同步练习题】1、某“中学生暑假环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下:(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区2000户家庭一周内需要环保方便袋约()A.2000只B.14000只C.21000只D.98000只2、在2008年的世界无烟日(5月31日),小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是()A.调查的方式是普查B.本地区只有85个成年人不吸烟C.样本是15个吸烟的成年人D.本地区约有15℅的成年人吸烟3、为了解一批节能灯的使用寿命,宜采用的方式进行调查.(填:“全面调查”或“抽样调查”)4、为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有名学生“不知道”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.一个容量为20的样本数据,分组后,组距不 频数如下:[10,20),2; [20,30),3; [30,40),4; [40,50),5; [50,60),4; [60,70),2;则样本在 区间(8,50)上的频率为( D ). A.5% B.25% C.50% D.70% 4.一个容量为n的样本分成若干组,已知某组的频 数和频率分别是80和0.125,则n的值为( D ) A.800 B.1250 C.1000 D.640
11.对甲、乙两台机床生产的零件进行抽样 测量,其平均数、方差计算结果如下: 2 机床甲: x甲=10,S甲 =0.02; 机床乙: 乙 =10, =0.06, x S 由此可知:_____(填甲或乙)机床性能好. 甲
2 乙
12.已知两组数据x1,x2,…, xn不y1,y2,…, yn, 它们的平均数分别是 x 和 y ,则新的一组数据 2x1-3y1+1,2x2-3y2+1,…, 2xn-3yn+1 的平均数是:( B ) A、x 3 y 2 B、x 3 y 1 2
C、x 9 y 4
D、x 9 y 1 4
13.设有n个样本 x1 , x2 , , xn ,其标准差是S x , 另有n个样本 y1 , y2 , , yn ,且 yk 3 xk 5 ( k = 1, 2, … , n ),其标准差为 S y , 则下列关系 正确的是 ( B ) A. S y 3 S x 5 B. S y 3 S x C. S y D. S y
7.200辆汽车通过某一 段公路时的时速频率 分布直方图如图所示, 则时速在[50,60)的汽 60 车大约有___辆
频率
0.4 0.3 0.2 0.1 0
40 50 60 70 80 时速
8.在用样本估计总体分布的过程中,下列说 法正确的是( C ) A.总体容量越大,估计越精确 B.总体容量越小,估计越精确 C.样本容量越大,估计越精确 D.样本容量越小,估计越精确
2.2用样本估计总体
复习课
邻水县九龙中学
1.简单随机抽样中,某个个体被抽到的可能性是 (D ) A.不第n次抽样有关,第一次抽到的可能性小 B.不第n次抽样无关,每次都是等可能的,但各次 抽取时可能性丌一样 C.不第n次抽样有关,最后一次抽中的可能性大 D.不第n次抽样无关,每次抽到的可能性相同 2.某工厂生产A、B、C三种丌同型号的产品,产 品数量之比依次为2:3:5.现用分层抽样方法抽 出一个容量为n的样本,样本中A型号产品有16 件,则此样本的容量为(B ) A.40 B.80 C.160 D.320
x 1 (0.06 0.04) 0.9
高考真题
A.0.9, 35 B.0.9, 45
0.36 0.34
频率/组距
0.1 C. , 35
D. , 0.1
0.18
45
0.06 0.04 0.02 0 13 14 15 16 17 18 19 秒
【答案】 A【分析】:从频率分布直方图上可以看出
y 50 (0.36 0.34) 35
5.观察新生婴儿的体重,其频率分布直方图 如图所示,则新生婴儿体重在[2700,3000) 0.3 的频率为____ 频率/组距
0.001
0
2400 2700 3000 3300 3600 3900
体重
6.在抽查某产品尺寸过程中,将其尺寸分成若 干组,[a,b)是其中一组,已知该组的频率为m, 该组Байду номын сангаас的直方图的高为h,则|a-b|等于( C ) A.mh B.h/m C.m/h D.m+h
9.数据x1,x2,…,x8平均数为6,标准差为2,则数据 2x1-6,2x2-6,…,2x8-6的平均数为___,方差为___. 6 16 10.某学生在一次考试中,语文、数学、英语三 门学科的平均成绩是80分,物理、化学两门学 科的平均成绩为85分,则该学生这五门学科的 82 平均成绩是_____分.
3Sx
3Sx 5
(山东文理8)某班50名学生在一次百米测试中,成 绩全部介于13秒不19秒之间,将测试结果按如下 方式分成六组:每一组,成绩大于等于13秒且小于 14秒;第二组,成绩大于等于14秒且小于15秒;…, 第六组,成绩大于等于18秒且小于等于19秒.右图 是按上述分组方法得到的频率分布直方图. 设成 绩小于17秒的学生人数占全班人数的百分比为 x ,成绩大于等于15秒且小于17秒的学生人数为 y, 则从频率分布直方x和y分别是( A)
相关文档
最新文档