[教育]有限差分法与有限元法对比及FLAC3D应用
有限差分法FLAC3D功能,优缺点分析
FLAC/FLAC3D系列——岩土体工程高级连续介质力学分析软件通知:FLAC3D 4.0隆重推出,了解详细情况,点击此处FLAC(Fast Lagrangian Analysis of Continua)软件是由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本, 1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存,至今已发展到V5.0版本。
FLAC3D是一个三维有限差分程序,目前已发展到V4.0版本。
并且其推出的FLAC SLOPE有了WINDOWS界面。
FLAC(Fast Lagrangian Analysis of Continua)是一个利用显式有限差分方法求解的岩土、采矿工程师进行分析和设计的二维连续介质程序,主要用来模拟土、岩、或其他材料的非线性力学行为,可以解决众多有限元程序难以模拟的复杂的工程问题,例如大变形、大应变、非线性及非稳定系统(甚至大面积屈服/失稳或完全塌方)等问题。
FLAC的基本功能和特征为:●允许介质出现大应变和大变形;●Interface 单元可以模拟连续介质中的界面,并允许界面发生滑动和开裂;●显式计算方法,能够为非稳定物理过程提供稳定解,直观反映岩土体工程中的破坏;●地下水流动与力学计算完全耦合(包括负孔隙水压,非饱和流及相界面计算);●采用结构加固单元模拟加固措施,例如衬砌、锚杆、桩基等;●材料模型库(例如:弹性模型、莫尔库仑塑性模型、任意各向异性模型、双屈服模型、粘性及应变软化模型);●预定义材料性质,用户也可增加用户自己的材料性质设定并储存到数据库中;●一系列可选择模块,包括:热力学模块、流变模块、动力学模块、二相流模块等,用户还可用C++建立自己的模型;●边坡稳定系数计算满足边坡设计的要求;●用户可用内部语言(FISH)增加自己定义的各种特性(如:新的本构模型,新变量或新命令);FLAC软件的优势:➢连续体大应变模拟➢界面单元用已代表不连续接触界面可能出现的完全不连续性质的张开和滑动,因此可以模拟断层、节理和摩擦边界等➢显式求解模式可以获得不稳定物理过程的稳定解➢材料模型:✧“空(null)”模型;✧三种弹性模型(各向同性、横观各向异性、和正交各向异性);✧七种非线性模型(Drucker-Prager、Mohr-Coulomb、应变硬化及应变软化、节理化、双线性应变硬化/软化节理化、双屈服、修正的Cam-clay模型)➢任何参数指标的连续变化或统计分布的模拟➢外接口编程语言(FISH)允许用户添加用户自定义功能➢方便的边界定义和初始条件定义方式➢可定义水位线/面进行有效应力计算➢地下水渗流计算以及完全的应力场渗流场偶合计算(含负孔隙压力、非饱和流、井)➢结构单元如隧道衬砌、桩、壳、梁锚杆、锚索、土工织物及其组合,可以模拟不同的加固手段及其与围岩(土体)的相互作用➢自选模块包括:✧热和热力学分析模块;✧流变计算模块;✧动力分析模块实现真时间历程的瞬时动力响应模拟;✧用C++编写的用户自定义本构模块开挖直立坡的喷射混凝土墙加土钉加固的模拟加(下)和不加(上)土工织物土坡的潜在破坏特征FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序,是二维的有限差分程序FLAC2D的扩展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
有限元法,有限差分法和有限体积法的区别
有限元法,有限差分法和有限体积法的区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分,有限元,有限体积等离散方法的区别介绍
有限差分,有限元,有限体积等等离散方法的区别介绍一、区域离散化所谓区域离散化,实质上就是用一组有限个离散的点来代替原来连续的空间。
实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积。
节点:需要求解的未知物理量的几何位置;控制容积:应用控制方程或守恒定律的最小几何单位。
一般把节点看成是控制容积的代表。
控制容积和子区域并不总是重合的。
在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域称为子区域。
网格是离散的基础,网格节点是离散化物理量的存储位置。
大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。
1. 有限差分法是数值解法中最经典的方法。
它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。
这种方法发展比较早,比较成熟,较多用于求解双曲线和抛物线型问题。
用它求解边界条件复杂、尤其是椭圆型问题不如有限元法或有限体积法方便。
2. 有限元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。
对椭圆型问题有更好的适应性。
有限元法求解的速度较有限差分法和有限体积法慢,在商用CFD软件中应用并不广泛。
目前的商用CFD软件中,FIDAP采用的是有限元法。
3. 有限体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。
其中的未知数十网格节点上的因变量。
子域法加离散,就是有限体积法的基本方法。
就离散方法而言,有限体积法可视作有限元法和有限差分法的中间产物。
有限元法与有限差分法的主要区别
有限元法与有限差分法的主要区别有限元法与有限差分法的主要区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
FLAC3D网络高手总结教程
初始条件优化
通过试算和对比分析,对初始条件进行调整和优化,以减小仿真 误差。
求解过程监控与结果
求解过程监控
01
在求解过程中,实时监控模型的计算状态,如收敛情况、计算
时间等。
结果输出与Байду номын сангаас视化
02
将仿真结果以云图、等值线、矢量图等形式进行可视化输出,
了解最新研究进展和应用案例。
利用在线资源和学习平台
03
推荐学员们利用各类在线资源和学习平台,如教程、
案例库、技术论坛等,持续学习和提升自己的技能。
THANKS
感谢观看
大变形问题处理
采用FLAC3D的大变形分析技术,对大变形问题进 行高效求解,如滑坡、泥石流等灾害过程的模拟。
非线性迭代算法优化
通过优化FLAC3D的非线性迭代算法,提高 非线性问题求解的收敛性和计算效率。
并行计算加速技术应用
01
并行计算环境搭建
介绍如何在FLAC3D中搭建并行 计算环境,包括硬件配置和软件 设置等。
结果输出异常或不符合预期原因排查
异常一
输出结果与预期不符,如何排查?
排查
首先检查模型设置和输入参数是否正确。然后,尝试使用不同的算法或调整参数进行计算,观察结果是否有变化 。此外,也可以查看详细的计算过程和日志信息,以便更深入地了解问题所在。
结果输出异常或不符合预期原因排查
异常二
结果中出现明显的数值不稳定现象,如何排查?
经验分享
在案例分析和实战演练过程中,积累了一些宝贵的经验和教训。例如,在建模过程中要 注重细节和质量控制;在选择材料参数时要结合实际情况进行综合考虑;在设置边界条 件和荷载时要确保准确性和合理性等。这些经验和教训对于提高FLAC3D建模水平和解
有限差分法与有限元法对比及FLAC3D应用
FLAC3D不像有限元软 件,它在建模过程中 就划分了网格,不需 要再重新划分网格。 一般在需要分析的区 域网格建的密一点, 这样会提高计算的精 度。 在建模过程中,在生成相邻的两个网格时,两个网格的单元数必须要相 同,要不然就会造成网格的不连续性
定义边界条件,材料特性 针对三维模型,固定x=0和x=100处x向位移,y=0和y=60处y向位移,模型底 面固定x,y,z三个方向位移。 土体的本构关系定义为mohr-coulomb模型,针对此模型需要定义的参 数分别为体积模量K,剪切模量G,摩擦角,粘聚力c,抗拉强度,剪胀角。
命令栏
分析问题过程
建立网格
初始条件 前处理 边界条件
初始应力平衡
外荷载 求解 后处理
实例分析
三维加筋土路堤处治不均匀 沉降模型 在不同地基路段的结合处, 地基刚度差异较大,经常产 生差异沉降。地基的这种差 异沉降将加剧路面结构的破 坏
土层的参数: 模型 软弱土层 硬粘土层 路堤土
ρ(kg/m^3) C(kpa) ϕ (o) E(kpa)
在FLAC3D中,有一个网格形状库,提供了12种最基本的原始网格形状。有矩形网 格(Brick)、退化矩形网格 (Degenerate Brick)、形网格(Wedge) (Pyramid)、四面体形 网格(Tetrahedron)、圆柱体形网格(Cylinder)、、金字塔形网格矩形体外环绕放射状 网格(Radial Brick)、平行六面体外环绕放射状网格(Radial Tunnel)、圆柱体外环绕放 射状网格(Radial Cylinder)、柱形壳体网格(Cylindrical Shell)、交叉圆柱体网格 (Cylinder Intersection)、交叉平行六面体网格(Tunnel Intersection)。通过这12种基本 的模型就可以组合成复杂的岩土工程的模型。 FLAC3D的生成网格用generate zone命令 FLAC3D的模型定义采用model命令,材料参数用property命令 FLAC3D的边界条件,初始条件采用fix,free,initial命令 FLAC3D的计算求解采用step,solve,set mech命令 FLAC3D的施加外荷载采用apply命令
有限差分,有限元,有限体积等的区别介绍
有限差分,有限元,有限体积等离散方法的区别介绍1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分,有限元,有限体积等离散方法的区别介绍
有限差分,有限元,有限体积等离散方法的区别介绍1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
浅谈FLAC_3D的应用原理_优缺点及改进措施_邹力
浅谈F L A C-3D的应用原理、优缺点及改进措施邹 力,彭雄志(西南交通大学土木工程学院,四川成都610031) 【摘 要】 阐述了岩土工程数值分析程序F L A C-3D的原理与应用,将相似模型实验分析方法、有限元方法与F L A C-3D程序做比较,归纳其优缺点,初步探讨了针对该程序的一些改进措施。
【关键词】 岩土工程; 拉格朗日法; 模型; 前处理程序 【中图分类号】 T P319 【文献标识码】 A 在岩土工程领域,结构稳定性分析方法有许多种。
以边坡稳定性分析为例,最常规的是极限平衡分析法,其特点是方便快捷,很多工程单位都采用该方法来计算、设计。
但极限平衡分析法不能解决分析边坡应力和应变的问题。
传统的极限平衡法在边坡稳定性分析中的主要问题是:为使本身不静定的问题变为静定,要做一些假设。
如果这些假设与实际情况不符,则会得到不合理的结果。
与传统的极限平衡法相比,基于变形分析的边坡稳定性分析方法具有许多优势,到后来出现用有限元法分析边坡的稳定性。
有限元在解决小变形方面有其优越性,但通常的边坡破坏为大变形问题,有限元在解决大变形方面不十分方便。
因此工程界开始采用F L A C-3D来分析边坡的大变形问题。
1 F L A C-3D基理与应用 连续介质快速拉格朗日分析(F a s t L a g r a n g i a nA n a l y s i s o f C o n t i n u a,简写F L A C)是近年来逐步成熟完善起来的一种新型数值分析方法,已在岩土工程中得到越来越广泛的应用。
对于给定的单元形函数,快速拉格朗日法求解的代数方程实际上和有限元法相同,所以这种方法也具有与有限元法相同的优点。
由于不需要构造总刚度矩阵,对于大变形模式来说,每一次循环都更新坐标,将位移增量累计到坐标系中。
因此,网格与其所代表的材料都发生移动和变形。
而对于欧拉方程,材料运动及其变形都是相对于固定的网格的。
有限元法 有限差分法 有限体积法的区别
三者各有所长:有限差分法:直观,理论成熟,精度可选。
但是不规则区域处理繁琐,虽然网格生成可以使FDM应用于不规则区域,但是对区域的连续性等要求较严。
使用FDM的好处在于易于编程,易于并行。
有限元方法:适合处理复杂区域,精度可选。
缺憾在于内存和计算量巨大。
并行不如FDM和FVM直观。
不过FEM的并行是当前和将来应用的一个不错的方向。
有限容积法:适于流体计算,可以应用于不规则网格,适于并行。
但是精度基本上只能是二阶了。
FVM的优势正逐渐显现出来,FVM在应力应变,高频电磁场方面的特殊的优点正在被人重视。
比较一下:有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程)。
有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精度,还取决与对导数处理的精度,一般有限容积法总体的精度为二阶,因为积分的精度限制,当然有限容积法对于守恒型方程导出的离散方程可以保持守恒型;而后者直接由微分方程导出,不涉及积分过程,各种导数的微分借助Taylor展开,直接写出离散方程,当然不一定有守恒性,精度也和有限容积法不一样,一般有限差分法可以使精度更高一些。
当然二者有联系,有时导出的形式一样,但是概念上是不一样的。
至于有限容积法和有限元相比,有限元在复杂区域的适应性对有限容积是毫无优势可言的,至于有限容积的守恒性,物理概念明显的这些特点,有限元是没有的。
目前有限容积在精度方面与有限元法有些差距。
有限元方法比有限差分优越的方面主要在能适应不规则区域,但是这只是指的是传统意义上的有限差分,现在发展的一些有限差分已经能适应不规则区域。
对于椭圆型方程,如果区域规则,传统有限差分和有限元都能解,在求解效率,这里主要指编程负责度和收敛快慢、内存需要,肯定有限差分有优势。
有限差分,有限元,有限体积等的区别介绍
有限差分,有限元,有限体积等离散方法的区别介绍1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限元法,有限差分法和有限体积法的区别
有限元法,有限差分法和有限体积法的区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限元法,有限差分法,有限体积法
有限元法,有限差分法,有限体积法
有限元法、有限差分法和有限体积法是三种常用的数值计算方法,它们在工程、物理、数学等领域中都有广泛的应用。
有限元法是一种用离散化的方法来求解偏微分方程的方法。
在这种方法中,被求解的区域被分成小元素,偏微分方程被转化为一个代数方程组,通过求解方程组来得到数值解。
该方法的优点是能够适应复杂的区域和复杂的边界条件,但是需要对离散化的元素进行合适的选取和处理。
有限差分法是一种离散化的数值方法,它将求解区域划分成网格点,将偏微分方程中的导数用网格点上的函数值来代替,然后通过代数方法求解方程组。
该方法的优点是简单易学、计算速度快,但是对于复杂的区域和边界条件的处理较为困难。
有限体积法是一种将求解区域划分成小体积的方法,通过对每个小体积的平均值来代表该体积中的函数值,然后通过代数方法求解方程组。
该方法的优点是能够处理非结构化网格和复杂的边界条件,但是需要选择合适的体积大小和形状,并且计算速度较慢。
这三种方法各有优缺点,需要根据具体问题的性质和要求来选择合适的方法。
在实际应用中,还可以将它们进行组合和改进,以提高计算效率和精度。
- 1 -。
FLAC3D数值模拟讲座
有限差分法和有限元法的比较
有限差分 计算时步要取得比为稳定所需的 临界值大
每个时步的计算开销小 对于动态问题没有显著的数值阻尼 对于非线性本构方程无需迭代 不用形成矩阵,要求内存小,无带宽 的限制 由于无需形成矩阵,大位移和大应变 无需附加的机时
有限元
在用无条件稳定的格式时时步可任意 大 每个时步的计算开销大 在用无条件稳定的格式时数值阻尼和 时步有关 对于非线性本构方程需要迭代 必须存贮刚度矩阵,必须要解决随之 而来的例如带宽问题,内存要求大 为跟踪大位移和大应变需要附加的机 时
4.7 m
Metro tunnel
FLAC3D 2.00
Step 50267 Model Perspective 12:04:20 Fri Nov 10 2000 Center: X: 4.503e+000 Y: 2.500e+001 Z: -3.085e+000 Dist: 3.631e+002 Rotation: X: 20.000 Y: 0.000 Z: 20.000 Mag.: 5.96 Ang.: 22.500
AGF - Technique
Circulation of chilled fluid through subsurface pipes
Brine or Closed System and Liquid Nitrogen-Open System
Shaft closure Байду номын сангаасn frozen soil
System of Units
FLAC3D CONSTITUTIVE MODELS
Grid Generation with
FLAC3D
Primitive Shapes
FLAC3D的实例应用分析
Center:
Rotation:
X: 2.000e+000 X: 25.000
Y: 2.000e+000 Y: 0.000
Z: 2.000e+000 12 Z:540.000
Block Group 12D2ist:11.2 483 6e1+1 1 002 8 1411MA9 nagg.1 .1 :: 1 22 24 0.0 5.601 40 15
模型剖面图
314.17m
314.17m
倾向剖面
500m
600m
综放工作面煤层内垂直应力分布三维视图
沿煤层走向综放工作面中部围岩主应力场
140.8m 老顶岩层
采空区
沿煤层倾斜剖面工作面前方150m围岩主应力 场
沿煤层倾斜剖面工作面前方15m围岩主应力 场
沿煤层倾斜剖面工作面处围岩主应力场
沿煤层倾斜剖面工作面后方200m围岩主应力 场
-20
X0
Y
10
20
30
40
50
60
70
80
提
纲
一﹑FLAC3D软件简介 二﹑FLAC3D应用实例 三﹑FLAC3D软件应用 四﹑FLAC3D模拟技巧
3.1、建模与模拟过程
基本步骤 1. 根据研究目的对实际模型进行构思与概化,计算模型
所涉及的复杂程度取决于研究目的。 2. 根据工程影响区域确定计算模型的尺寸, 单元类型的
• FLAC3D适用模拟计算岩土材料力学行为,特别适合模拟大 变形和扭曲,包括材料的高度非线性(应变硬化/软化)、不可 逆剪切破坏和压密、粘弹(蠕变)、孔隙介质的应力—渗流耦
有限元法,有限差分法和有限体积法的区别
有限元法,有限差分法和有限体积法的区别有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。