人教版七年级上册数学 平面图形的认识(一)单元测试卷(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)
1.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
【答案】(1)解:AB∥CD.理由如下:
如图1,
∵∠1与∠2互补,
∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE,
∴∠AEF+∠CFE=180°,
∴AB∥CD;
(2)证明:如图2,由(1)知,AB∥CD,
∴∠BEF+∠EFD=180°.
又∵∠BEF与∠EFD的角平分线交于点P,
∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,
∴∠EPF=90°,
即EG⊥PF.
∵GH⊥EG,
∴PF∥G H;
(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,
∴∠3=2∠2.
又∵GH⊥EG,
∴∠4=90°-∠3=90°-2∠2.
∴∠EPK=180°-∠4=90°+2∠2.
∵PQ平分∠EPK,
∴∠QPK= ∠EPK=45°+∠2.
∴∠HPQ=∠QPK-∠2=45°,
∴∠HPQ的大小不发生变化,一直是45°.
【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;
(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;
(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角
的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.
2.已知,与两角的角平分线交于点P,D是射线上一个动点,过点D的直线分别交射线,,于点E,F,C.
(1)如图1,若,,,求的度数;
(2)如图2,若,请探索与的数量关系,并证明你的结论;
(3)在点运动的过程中,请直接写出,与这三个角之间满足的数量关系:________.
【答案】(1)解:∵PA、PB是∠BAM、∠ABN的角平分线,
∴∠BAP=∠PAE= ∠BAM= ,
∠ABP=∠PBE= ∠ABN= ,
∴∠BPC=∠BAP+∠ABP= ;
(2)解:,理由如下:
∵PA、PB是∠BAM、∠ABN的角平分线,
∴设,,
∵,
∴,
∵,
∴,
又∵,
∴,
∴;
(3)
【解析】【解答】解:(3)∵PA、PB是∠BAM、∠ABN的角平分线,
∴设,,
∵,
∴,
如图,当点P在线段BD上时,
,
∴;
如图,当点P在线段BD的延长线上时,
,即,
∴,
即;
故答案为:.
【分析】(1)根据角平分线的性质结合三角形外角的性质即可求解;
(2)设,,根据角平分线的性质结合四边形内角和定理即可求解;
(3)分点P在线段BD上和点P在线段BD的延长线上两种情况讨论即可求解.
3.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,
(1)分别计算:当∠A分别为700、800时,求∠A1的度数.
(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.
(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.
(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.
其中有且只有一个是正确,请写出正确结论,并求出其值.
【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线
∴∠A1BC= ∠ABC,∠A1CD= ∠ACD
由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:
∠A1= (∠ACD-∠ABC)= ∠A;
当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°
(2)∠A=2∠A1
(3)∠A5= ∠A
(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),
化简得:∠A1+∠Q=180°
故①的结论是正确,且这个定值为180°
【解析】【解答】解:(2)由(1)可知∠A1== ∠A
即∠A=2∠A1(3)同(1)可求得:
∠A2= ∠A1= ∠A,
∠A3= ∠A2= ∠A,
…
依此类推,∠A n= ∠A;
当n=5时,∠A5= ∠A= ∠A
【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=
∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.
4.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.
(1)求∠ECF的度数;
(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;
(3)当∠AEC=∠ACF时,求∠APC的度数.
【答案】(1)解:∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°-40°=140°
∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF
∴∠ECF= ∠ACD=70°
(2)解:不变.数量关系为:∠APC=2∠AFC.
∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP
∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC
(3)解:∵AB∥CD,∴∠AEC=∠ECD
当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF
∴∠PCD=∠ACD=70°
∴∠APC=∠PCD=70°
【解析】【分析】(1)先根据平行线的性质,得出∠ACD=120°,再根据CE、CF分别平分∠ACP和∠DCP,即可得出∠ECF的度数;(2)根据平行线的性质得出∠APC=∠PCD,∠AFC=∠FCD,再根据CF平分∠PCD,即可得到∠PCD=2∠FCD进而得出∠APC=2∠AFC;(3)根据∠AEC=∠ECD,∠AEC=∠ACF,得出∠ECD=∠ACF,进而得到∠ACE=∠FCD,根据∠ECF=70°,∠ACD=140°,可求得∠APC的度数.
5.如图,已知CD∥EF,A,B分别是CD和EF上一点,BC平分∠ABE,BD平分∠ABF
(1)证明:BD⊥BC;
(2)如图,若G是BF上一点,且∠BAG=50°,作∠DAG的平分线交BD于点P,求∠APD 的度数:
(3)如图,过A作AN⊥EF于点N,作AQ∥BC交EF于Q,AP平分∠BAN交EF于P,直接写出∠PAQ=________.
【答案】(1)证明:∵BC平分∠ABE,BD平分∠ABF
∴∠ABC= ∠ABE,∠ABD= ∠ABF
∴∠ABC+∠ABD= (∠ABE+∠ABF)= ×180°=90°
∴BD⊥BC
(2)解:∵CD∥EF
BD平分∠ABF
∴∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°
又AP平分∠DAG,∠BAG=50°
∴∠DAP= ∠DAG
∴∠APD=180°-∠DAP-∠ADP
=180°-∠DAG-∠ABF
=180°- (∠DAB-∠BAG)-∠ABF
=180°-∠DAB+ ×50°-∠ABF
=180°- (∠DAB+∠ABF)+25°
=180°- ×180°+25°
=115°
(3)45°
【解析】【解答】(3)解:如图,
∵AQ∥BC
∴∠1=∠4,∠2+∠3+∠4=180°,
∵BC平分∠ABE,
∴∠1=∠2=∠4,
∴∠3+∠4=90°,
又∵CD∥EF,AN⊥EF,AP平分∠BAN
∴∠PAN= (90°-∠3),∠NAQ=90°-∠4,
∴∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4)
=45°- ∠3+90°-∠4
=135°-(∠3+∠4)
=135°-90°
=45°.
【分析】(1)根据角平分线和平角的定义可得∠CBD=90°,即可得出结论;(2)根据平行线的性质以及角平分线的定义可得∠ADP=∠DBF= ∠ABF,∠DAB+∠ABF=180°,∠DAP= ∠DAG,然后根据出三角形内角和即可求出∠APD的度数;(3)根据平行线的性质以及角平分线的定义可得∠1=∠2=∠4,∠2+∠3+∠4=180°,即∠3+∠4=90°,根据垂直和平行线的性质以及角平分线的定义可得∠PAN= (90°-∠3),∠NAQ=90°-∠4,则∠PAQ=∠PAN+∠NAQ= (90°-∠3)+(90°-∠4),代入计算即可求解.
6.如图①,△ABC的角平分线BD,CE相交于点P.
(1)如果∠A=80∘,求∠BPC=.
(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示).
(3)将直线MN绕点P旋转。
(i)当直线MN与AB,AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB,
∠NPC,∠A三者之间的数量关系,并说明你的理由。
(ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中∠MPB,∠NPC,∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由。
【答案】(1)
故答案为:
(2)由 = 得∠MPB+∠NPC= −∠BPC= 1−( + ∠A)= − ∠A;故答案为:∠MPB+∠NPC= − ∠A.
(3)(i)∠MPB+∠NPC= − ∠A.
理由如下:
∵∠BPC= +12∠ A,
∴∠MPB+∠NPC= −∠BPC=180∘−( + ∠A)= −12 ∠A.
(ii)不成立,有∠MPB−∠NPC= − ∠A.
理由如下:由题图④可知∠MPB+∠BPC−∠NPC= ,
由(1)知:∠BPC= + ∠A,∴∠MPB−∠NPC= −∠BPC= −( + ∠A)= − ∠A.
【解析】【分析】(1)根据角平分线的定义得出∠PBC=∠ABC,∠PCB=∠ACB,根据三角形的内角和定理及等量代换得出
,从而得出答案;
(2)由(1)知 = ,然后根据平角的定义,由∠MPB+∠NPC=
−∠BPC 即可算出答案;
(3) (i)∠MPB+∠NPC= − ∠A ,理由如下:由(1)知∠BPC= +∠A,然后根据平角的定义由∠MPB+∠NPC= −∠BPC 即可算出答案; (ii)不成立,有∠MPB−∠NPC=
− ∠A,根据平角的定义及角的和差得出∠MPB+∠BPC−∠NPC= ,由(1)知:∠BPC= + ∠A ,从而即可由∠MPB−∠NPC= −∠BPC 得出结论。
7.已知BE平分∠ABD,DE平分∠BDC,且∠BED =∠ABE +∠EDC.
(1)如图1,求证:AB//CD;
(2)如图2,若∠ABE=3∠ABF,且∠BFD=30°时,试求的值;
(3)如图3,若H是直线CD上一动点(不与D重合),BI平分∠HBD,画出图形,并探究出∠EBI与∠BHD的数量关系.
【答案】(1)证明:∵∠BED =∠ABE +∠EDC,∠EBD+∠BED+∠BDE=180°,∴∠ABD+∠BDC=180°,∴AB∥CD
(2)解:∵BE平分∠ABD,DE平分∠BDC,∴∠ABE=∠EBD,∠EDC=∠EDB.
∵∠ABD+∠BDC=180°,∴∠BED=∠ABE+∠EDC=90°.
设∠ABF=α,则∠ABE=3α.
如图,
过F作FG∥AB,则有:∠ABF+∠CDF=∠BFD,∴∠CDF=30°-α.
过E作EH∥AB,则有:∠ABE+∠CDE=∠BED,∴∠CDE=90°-3α,∴∠FDE=60°-2α,∴
.
(3)解:分两种情况讨论:
①当H在点D的左边时,如图3.
设∠HBI=∠DBI=x,∠EBH=y,则∠EBD=2x+y,∴∠ABE=∠EBD=2x+y.
∵AB∥CD,∴∠BHD=∠ABH=2x+y+y=2(x+y)=2∠EBI;
②当H在点D右边时,如图4.
设∠HBI=∠DBI=x,∠EBD=y,则∠EBI=x+y,∴∠ABH=2x+2y.
∵AB∥CD,∴∠ABH+∠BHD=180°,∴2x+2y+∠BHD=180°,∴∠BHD+2∠EBI=180°.
综上所述:∠BHD=2∠EBI或∠BHD+2∠EBI=180°
【解析】【分析】(1)由∠BED =∠ABE +∠EDC和三角形内角和定理即可得到∠ABD+∠BDC=180°,再由同旁内角互补,两直线平行即可得到结论;(2)由角平分线定义和∠ABD+∠BDC=180°,得到∠BED=∠ABE+∠EDC=90°.
设∠ABF=α,则∠ABE=3α,过F作FG∥AB,则有∠ABF+∠CDF=∠BFD,得到∠CDF=30°-α.过E作EH∥AB,同理可得:∠CDE=90°-3α,根据角的和差得到∠FDE=60°-2α,即可得到结论;(3)分两种情况讨论:①当H在点D的左边时,②当H在点D右边时.
8.将一副直角三角板按如图1摆放在直线AD上直角三角板OBC和直角三角板MON,,,,,保持三角板OBC不
动,将三角板MON绕点O以每秒的速度顺时针方向旋转t秒
(1)如图2, ________度用含t的式子表示;
(2)在旋转的过程中,是否存在t的值,使?若存在,请求出t的值;若不存在,请说明理由.
(3)直线AD的位置不变,若在三角板MON开始顺时针旋转的同时,另一个三角板OBC 也绕点O以每秒的速度顺时针旋转.
当 ________秒时,;
请直接写出在旋转过程中,与的数量关系________ 关系式中不能含 .【答案】(1)
(2)解:当MO在∠BOC内部时,即t 时,根据题意得:
90﹣8t=4(45﹣8t)
解得:t ;
当MO在∠BOC外部时,即t 时,根据题意得:
90﹣8t=4(8t﹣45)
解得:t .
综上所述:t 或t
(3)5或10;3∠NOD+4∠BOM=270°.
【解析】【解答】(1)∠NOD一开始为90°,然后每秒减少8°,因此∠NOD=90﹣8t.
故答案为90﹣8t.
( 3 )①当MO在∠BOC内部时,即t 时,根据题意得:
8t﹣2t=30
解得:t=5;
当MO在∠BOC外部时,即t 时,根据题意得:
8t﹣2t=60
解得:t=10.
故答案为5或10.
②∵∠NOD=90﹣8t,∠BOM=6t,∴3∠NOD+4∠BOM=3(90﹣8t)+4×6t=270°.
即3∠NOD+4∠BOM=270°.
【分析】(1)把旋转前∠NOD的大小减去旋转的度数就是旋转后的∠NOD的大小.(2)相对MO与CO的位置有两种情况,所以要分类讨论,然后根据∠NOD=4∠COM建立关于t 的方程即可.(3)①其实是一个追赶问题,分MO没有追上CO与MO超过CO两种情况,然后分别列方程即可.②分别用t的代数式表示∠NOD和∠BOM,然后消去t即可得出它们的关系.
9.
(1)如图,已知C为线段AB上的一点,AC=60cm,M、N分别为AB、BC的中点.
①若BC=20cm,则MN=________cm;
②若BC=acm,则MN=________cm.
(2)如图,射线OC在∠AOB的内部,∠AOC=60°,OM平分∠AOB,射线ON在∠BOC 内,且∠MON=30°,则ON平分∠BOC吗?并说明理由.
【答案】(1)30;30
(2)解:平分
理由:∵OM分别平分∠AOB,
∴∠BOM= ∠AOB
= (∠AOC+∠BOC)
=30°+ ∠BOC.
又∵∠BOM=∠MON+∠BON=30°+∠BON,
∴∠BON= ∠BOC.
∴ON平分∠BOC.
【解析】【解答】解:(1)①∵BC=20,N为BC中点,
∴BN= BC=10.
又∵M为AB中点,
∴MB= AB=40.
∴MN=MB-BN=40-10=30.
故答案为30;
②当BC=a时,AB=60+a,
BN= a,MB= AB=30+ a,
∴MN=MB-BN=30.
故答案为30;
【分析】(1)①由已知得到AB=80,根据线段中点求出MB和BN的值,计算MB-BN即可得结果;②分别用a表示出BN、MB,根据MN=MB-BN计算即可;(2)根据OM分别平分∠AOB,用∠BOC表示出∠BOM,再用∠BON表示出∠BOM,两个式子进行比较即可得出结论.
10.
(1)(问题背景)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D
(2)(简单应用)
如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数(可直接使用问题(1)中的结论)
(3)(问题探究)
如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C =18°,则∠P的度数为________
(4)(拓展延伸)
在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为________(用x、y表示∠P)
(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论________.
【答案】(1)解:如图1,
∠A+∠B+∠AOB=∠C+∠D+∠COD=180°
∵∠AOB=∠COD
∴∠A+∠B=∠C+∠D
(2)解:∵AP、CP分别平分∠BAD、∠BCD
∴∠BAP=∠PAD,∠BCP=∠PCD,
由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②
①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC
∴∠P= (∠ABC+∠ADC)
∴∠ABC=28°,∠ADC=20°
∴∠P= (28°+20°)
∴∠P=24°
故答案为:24°
(3)24°
(4)∠P= x+ y
(5)∠P=
【解析】【解答】解:(3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC 的外角∠ADE,
∴∠1=∠2,∠3=∠4
由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2②
①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2
∴30°+18°=2∠P
∴∠P=24°
故答案为:24°
( 4 )由(1)的结论得:∠CAB+∠C=∠P+ ∠CDB①,∠CAB+∠P=∠B+ ∠CDB②
①×3,得∠CAB+3∠C=3∠P+ ∠CDB③
②-③,得∠P-3x=y-3∠P
∴∠P= x+ y
故答案为:∠P= x+ y
( 5 )如图5所示,延长AB交DP于点F
由(1)的结论得:∠A+2∠1=∠C+180°-2∠3
∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P
∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3
解得:∠P=
故答案为:∠P=
【分析】(1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D(2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②,将两个式子相加,已知AP、CP分别平分∠BAD、∠BCD,可得∠BAP=∠PAD,∠BCP=∠PCD,可证
得∠P= (∠ABC+∠ADC),即可求出∠P度数.(3)已知直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P的度数.(4)由(1)的结论
得:∠CAB+∠C=∠P+ ∠CDB,∠CAB+∠P=∠B+ ∠CDB,第一个式子乘以3,得到的式子减去第二个式子即可得出用x、y表示∠P(5)延长AB交DP于点F,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系.
11.如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.
(1)求证:∠ABE+∠C﹣∠E=180°.
(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.
(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.
【答案】(1)证明:如图1,过点E作
∴
∵
∴
∴
∴;
(2)解:∵BF、EG分别平分、
∴
设
∵
∴
∴
由(1)知,
即
∴;
(3)解:∵CN、BF分别平分、
∴
设
由(1)知:
即
如图3,过M作
则
∴
∴
∴ .
【解析】【分析】(1)过点E作,由平行线的性质得出
,进而得出答案;(2)设
,由平行线的性质得出
,由(1)知
,即可得出答案;(3)设
,由(1)知,过M 作,由平行线的性质得出,求出
,即可得出答案.
12.如图1,,点,分别在,上,射线绕点顺时针旋转至便立即逆时针回转,射线绕点顺时针旋转至便立即逆时针回转.射线转动的速度是每秒度,射线转动的速度是每秒度.
(1)直接写出的大小为________;
(2)射线、转动后对应的射线分别为、,射线交直线于点,若射线比射线先转动秒,设射线转动的时间为秒,求为多少时,直线直线?
(3)如图2,若射线、同时转动秒,转动的两条射线交于点,作,点在上,请探究与的数量关系.
【答案】(1)60°
(2)解:设灯转动t秒,直线直线,
①当时,如图,
,
,
,
,
,
,
解得;
②当时,如图,
,,
,
,,
解得,
综上所述,当秒或秒时直线;
(3)解:和关系不会变化,
理由:设射线AM转动时间为m秒,
作,,,
,,
,
,,
,
而,
,
,
,
,
即,
和关系不变.
【解析】【解答】解:(1)∵
,
∴,
∴(两直线平行,内错角相等)
故结果为:;
【分析】(1)根据得到,再根据直线平行的性质即可得到答案;(2)设灯转动t秒,直线直线,分情况讨论重合前平行、重合后平行即可得到答案;(3)根据补角的性质表示出,再根据三角形内角和即可表示出,即可得到答案;。