高考数学压轴专题2020-2021备战高考《平面向量》易错题汇编及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新】数学复习题《平面向量》专题解析
一、选择题
1.已知向量(1,2)a =v ,(3,4)b =-v ,则a v 在b v
方向上的投影为
A
B

2
C .1 D
【答案】C 【解析】 【分析】
根据a v
在b v
方向上的投影定义求解. 【详解】
a v 在
b v 方向上的投影为(1,2)(3,4)381(3,4)5a b b
⋅⋅--+=
==-r
r r , 选C. 【点睛】
本题考查a v
在b v
方向上的投影定义,考查基本求解能力.
2.在ABC ∆中,已知8AB =,4BC =,6CA =,则AB BC ⋅u u u v u u u v
的值为( )
A .22
B .19
C .-19
D .-22
【答案】D 【解析】
由余弦定理可得22211
cos 216
AB BC AC B AB BC +-==⋅,又
()11cos 482216AB BC AB BC B π⎛⎫
⋅=⋅⋅-=⨯⨯-=- ⎪⎝⎭
u u u v u u u v u u u v u u u v ,故选D.
【思路点睛】本题主要考查平面向量数量积公式以、余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)
222
cos 2b c a A bc
+-=
,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o
o
o
等特殊角的三角函数值,以便在解题中直接应用.
3.已知O 是平面上一定点,满足()||cos ||cos AB AC
OP OA AB B AC C
λ=++u u u r u u u r
u u u r u u u r u u u
r u u u r ,[0λ∈,)+∞,则P 的轨迹一定通过ABC ∆的( ) A .外心 B .垂心
C .重心
D .内心
【答案】B
【解析】 【分析】
可先根据数量积为零得出BC uuu r 与()||cos ||cos AB
AC AB B AC C
λ+u u u r
u u u r
u u u
r u u u r 垂直,可得点P 在BC 的高线
上,从而得到结论.
【详解】
Q ()||cos ||cos AB AC
OP OA AB B AC C
λ=++u u u r u u u r
u u u r u u u r u u u
r u u u r , ∴()||cos ||cos AB AC
OP OA AB B AC C λ-=+u u u r u u u r
u u u r u u u r u u u
r u u u r , 即()||cos ||cos AB AC
AP AB B AC C
λ=+u u u r u u u r
u u u r u u u
r u u u r , Q
cos BA BC
B BA B
C ⋅=u u u r u u u r u u u r u u u r ,cos CA CB C CA CB
⋅=u u u r u u u r u u u r u u u r , ∴()0||cos ||cos AB AC
BC BC BC AB B AC C
⋅+=-+=u u u r u u u r
u u u r u u u r u u u r u u u
r u u u r , ∴BC uuu r 与()||cos ||cos AB AC
AB B AC C
λ+u u u r u u u r
u u u
r u u u r 垂直, 即AP BC ⊥uu u r uu u r ,
∴点P 在BC 的高线上,即P 的轨迹过ABC ∆的垂心.
故选:B . 【点睛】
本题重点考查平面向量在几何图形中的应用,熟练掌握平面向量的加减运算法则及其几何意义是解题的关键,考查逻辑思维能力和转化能力,属于常考题.
4.在ABC V 中,D 为边AC 上的点,若2133
BD BA BC =+u u u r u u u r u u u r ,AD DC λ=u u u v u u u v
,则λ=
( )
A .
13
B .
12
C .3
D .2
【答案】B 【解析】 【分析】
根据2133
BD BA BC =+u u u v u u u v u u u v ,将,AD DC u u u r u u u r 都用基底()
BA
BC u u u r u u u r ,表示,再根据AD DC λ=u u u v u u u v 求解. 【详解】
因为2133
BD BA BC =+u u u v u u u v u u u v ,
所以1122,+3333
AD BD BA BA BC DC BC BD BA BC =-=-+=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u
u r u u u r ,
因为AD DC λ=u u u v u u u v ,
所以λ= 12
, 故选:B 【点睛】
本题主要考查平面向量的基本定理和共线向量定理,还考查运算求解的能力,属于中档题.
5.如图所示,ABC ∆中,点D 是线段BC 的中点,E 是线段AD 的靠近A 的三等分点,则AC =u u u v
( )
A .43
AD BE +u u u
v u u u v
B .53
AD BE +u u u
v u u u v
C .4132A
D B
E +u u u
v u u u v
D .5132
AD BE +u u u
v u u u v
【答案】B 【解析】 【分析】
利用向量的加减运算求解即可 【详解】 据题意,
2533
AC DC DA BD AD BE ED AD BE AD AD AD BE =-=+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r

故选B . 【点睛】
本题考查向量加法、减法以及向量的数乘运算,是基础题
6.已知点1F ,2F 分别是椭圆22
22:1(0)x y C a b a b
+=>>的左,右焦点,过原点O 且倾斜
角为60°的直线l 与椭圆C 的一个交点为M ,且1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r
,则椭圆C
的离心率为( )
A 1
B .2
C .
12
D .
2
【答案】A 【解析】 【分析】
由1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r
两边平方,得120MF MF ⋅=u u u u r u u u u r ,在12Rt MF F V 中,求出2MF ,1MF ,
,a c 的关系,求出离心率可得选项. 【详解】
将1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r 两边平方,得120MF MF ⋅=u u u u r u u u u r ,即
12121
||2
MF MF OM F F c ⊥=
=,.
又60MOF ∠=︒,∴2MF c =,1MF =,∴2a c =+,∴1c
e a
=
=. 故选:A. 【点睛】
考查了向量的数量积,椭圆的定义,离心率的求法,关键在于得出关于,a c 的关系,属于中档题.
7.若向量(1,1)a =r ,(1,3)b =-r ,(2,)c x =r 满足(3)10a b c +⋅=r r r
,则x =( )
A .1
B .2
C .3
D .4
【答案】A 【解析】 【分析】
根据向量的坐标运算,求得(3)(2,6)a b +=r
r ,再根据向量的数量积的坐标运算,即可求
解,得到答案. 【详解】
由题意,向量(1,1)a =r
,(1,3)b =-r ,(2,)c x =r ,则向量
(3)3(1,1)(1,3)(2,6)a b +=+-=r
r ,
所以(3)(2,6)(2,)22610a b c x x +⋅=⋅=⨯+=r r r
,解得1x =,故选A.
【点睛】
本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.
8.
如图,已知1OA OB ==u u u v u u
u v ,
2OC =u u u v ,4tan 3
AOB ∠=-,45BOC ∠=︒,OC mOA nOB u u u v u u u v u u u v =+,则m
n
等于( )
A .
57
B .75
C .
37
D .
73
【答案】A 【解析】 【分析】
依题意建立直角坐标系,根据已知角,可得点B 、C 的坐标,利用向量相等建立关于m 、n 的方程,求解即可. 【详解】
以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立直角坐标系如图所示:
因为1OA OB ==u u u r u u u r ,且4tan 3AOB ∠=-,∴34cos sin 55
AOB AOB ∠=-∠=,,
∴A (1,0),B (34
55
-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴
41
3tan θ413
--=-=7,
又如图点C 在∠AOB 内,∴cos θ2,sin θ72,又2OC u u u v =C (1755,),
∵OC mOA nOB =+u u u r u u u r u u u r ,(m ,n ∈R ),∴(1755,)=(m,0)+(
3455n n -,)=(m 35
n -,
45n ) 即15= m 35n -,7455n =,解得n=74,m=54,∴57m n =, 故选A . 【点睛】
本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.
9.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u u
r u u u r 的最小值为
( ) A .1- B .3-
C .12
-
D .32
-
【答案】A 【解析】 【分析】
建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解. 【详解】
建立如图所示坐标系,
设(,)P x y ,则(0,0),(2,0),(2,2),(0,2)A B C D ,所以
(2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r

故22
3131()(2)(22)(2)(22)222222PC PB PD x x y y x y ⎛⎫⎛
⎫⋅+=--+--=--+-- ⎪ ⎪⎝⎭⎝
⎭u u u r u u u r u u u r
22
3322122x y ⎛⎫⎛
⎫=-+-- ⎪ ⎪⎝⎭⎝

所以当3
2
x y ==时,PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为1-.
故选:A .
【点睛】
本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.
10.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r
,则λμ+=
( ) A .13
- B .
13
C .12
-
D .
12
【答案】C 【解析】 【分析】
由向量的加减法运算,求得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r
,进而得出
()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r
,列式分别求出λ和μ,即可求得
λμ+.
【详解】
解:已知D 、P 分别为BC 、AD 的中点, 由向量的加减法运算, 得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r

2AB AD DB BD PD =+=-+u u u r u u u r u u u r u u u r u u u r , 2AC AD DC BD PD =+=+u u u r u u u r u u u r u u u r u u u r ,
又()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r Q ,
则1
221μλλμ-=⎧⎨
+=-⎩

则1
2
λμ+=-. 故选:C.
【点睛】
本题考查平面向量的加减法运算以及向量的基本定理的应用.
11.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪
-+≥⎨⎪≥⎩
,设
z OP OA =⋅u u u r u u u r
,则z 的最大值是( )
A .2
B .3
C .4
D .5
【答案】C 【解析】 【分析】
画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】
解:由不等式组202300x y x y y -≤⎧⎪
-+≥⎨⎪≥⎩
可知它的可行域如下图:
Q ()2,1A ,(), P x y
∴2z OP OA x y =⋅=+u u u r u u u r
,可图知当目标函数图象经过点()1,2B 时,z 取最大值,
即24z x y =+=.
故选:C. 【点睛】
本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.
12.已知椭圆2222:1(0)x y T a b a b +=>>3
F 且斜率为()
0k k >的直线与T 相交于A ,B 两点,若3AF FB =uu u r uu r
,则k =( )
A .2
B 3
C 2
D .1
【答案】C
【解析】 【分析】
由2
e =
可得a =
,b =,可设椭圆的方程为222
334x y c +=,
()()1122,,,A x y B x y ,并不妨设B 在x 轴上方,由3AF FB =uu u r uu r
得到12123430x x c y y +=⎧⎨+=⎩,再由
22211334x y c +=,22
222334x y c +=得到A 、B 两点的坐标,利用两点的斜率公式计算即可. 【详解】
因为c e a ===,所以2a b =,
所以a =
,b =,则椭圆方程22221x y a b
+=变为222
334x y c +=. 设()()1122,,,A x y B x y ,不妨设B 在x 轴上方,则210,0y y ><,
又3AF FB =uu u r uu r
,所以()()1122,3,c x y x c y --=-,
所以()1212
33c x x c y y ⎧-=-⎨
-=⎩,121
23430x x c
y y +=⎧⎨
+=⎩
因为A ,B 在椭圆上,所以
2
2211334
x y c +=,① 22222334
x y c +=②. 由①—9×②,得2
121212123(3)(3)3(3)(3)84
x x x x y y y y c +-++-=-,
所以
21234(3)84c x x c ⨯-=-,所以12833
x x c -=-, 所以123x c =
,2109x c =
,从而13
y =-
,2y =
所以2(,)3A c
,10()9B c
,故9102393
c k c c +=
=- 故选:C. 【点睛】
本题考查直线与椭圆的位置关系,当然本题也可以利用根与系数的关系来解决,考查学生的数学运算求解能力,是一道中档题.
13.在ABC V 中,AD AB ⊥,3,BC BD =u u u r u u u r ||1AD =u u u r ,则AC AD ⋅u u u r u u u r
的值为( )
A .1
B .2
C .3
D .4
【答案】C 【解析】 【分析】
由题意转化(3)AC AD AB BD AD ⋅=+⋅u u u r u u u r u u u r u u u r u u u r
,利用数量积的分配律即得解.
【详解】
AD AB ⊥Q ,3,BC BD =u u u r u u u r ||1AD =u u u r

()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r
2
333AB AD BD AD AD =⋅+⋅==u u u r u u u r u u u r u u u r u u u r
故选:C 【点睛】
本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.
14.在ABC ∆中,2AB =,3AC =,3BAC π
∠=
,若23
BD BC =u u u v u u u v ,则AD BD ⋅=
u u u v u u u v
( )
A .
229
B .229
-
C .
169
D .89
-
【答案】A 【解析】 【分析】
本题主要是找到两个基底向量AB u u u v ,AC u u u v ,然后用两个基底向量表示AD u u u v ,BD u u u v
,再通过向量的运算即可得出结果. 【详解】
解:由题意,画图如下:
则:()
22223333
BD BC AC AB AB AC ==
-=-+u u u v u u u v u u u v u u u v u u u
v u u u v , 2233AD AB BD AB AB AC =+=-+u u u v u u u v u u u v u u u v u u u v u u u v 1233
AB AC =+u u u v u u u v .
∴12223333AD BD AB AC AB AC ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭
u u u v u u u v u u u v u u u v u u u v u u u v
22242999AB AC AB AC =-
⋅+⋅-⋅⋅u u u v u u u v u u u v u u u v 24249cos 999
AB AC BAC =-⋅+⋅-⋅⋅⋅∠u u u v u u u v 82423cos 993
π=-+-⋅⋅⋅ 229
=. 故选A .
【点睛】
本题主要考查基底向量的建立以及用两个基底向量表示别的向量,考查平面向量的数量积的计算.本题属基础题.
15.如图,两个全等的直角边长分别为1,3的直角三角形拼在一起,若AD AB AC λμ=+u u u r u u u r u u u r ,则λμ+等于( )
A 323-+
B 323+
C 31
D 31+
【答案】B
【解析】
【分析】 建立坐标系,求出D 点坐标,从而得出λ,μ的值.
【详解】
解:1AC =Q ,3AB =30ABC ∴∠=︒,60ACB ∠=︒,
以AB ,AC 为坐标轴建立坐标系,则13,12D ⎛+ ⎝⎭. )
3,0AB =u u u r ,()0,1AC =uu u r , ∴13,12AD ⎛=+
⎝⎭
u u u r .
Q AD AB AC λμ=+u u u r u u u r u u u r , ∴132312
λμ⎧=⎪⎪⎨⎪=+⎪⎩,∴331λμ⎧=⎪⎪⎨⎪=+⎪⎩
, 231λμ∴+=+. 故选:B .
【点睛】
本题考查了平面向量的基本定理,属于中档题.
16.设()1,a m =r ,()2,2b =r ,若()
2a mb b +⊥r r r ,则实数m 的值为( ) A .12 B .2 C .1
3- D .-3
【答案】C
【解析】
【分析】 计算()222,4a mb m m +=+r r ,根据向量垂直公式计算得到答案.
【详解】 ()222,4a mb m m +=+r r ,
∵()2a mb b +⊥r r r ,∴()
20a mb b +⋅=r r r ,即()22280m m ⋅++=,解得13m =-. 故选:C .
【点睛】
本题考查了根据向量垂直求参数,意在考查学生的计算能力.
17.平面向量a →与b →
的夹角为π3,()2,0a →=,1b →=,则2a b →→-=( ) A .3B 6 C .0 D .2
【答案】D
【分析】
根据向量的模的计算和向量的数量积的运算即可求出答案.
【详解】
()2,0a →=Q ,
||2a →
∴=
22222(2)||4||444421cos 43a b a b a b a b π→→→→∴-=-=+-⋅=+-⨯⨯⨯=r r r r , |2|2a b ∴-=r r , 故选:D
【点睛】
本题考查了向量的模的计算和向量的数量积的运算,属于中档题.
18.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,则ABC ∆的形状为( )
A .直角三角形
B .等腰三角形
C .等腰直角三角形
D .等边三角形 【答案】A
【解析】
【分析】
利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.
【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()
0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r , 所以,CB AB ⊥,即2B π∠=
,故ABC ∆为直角三角形.
故选:A.
【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.
19.已知向量OA u u u r 与OB uuu r 的夹角为θ,2OA =u u u r ,1OB =uu u r ,=u u u r u u u r OP tOA ,
()1OQ t OB =-u u u r u u u r ,PQ u u u r 在t t =0时取得最小值,则当0105
t <<时,夹角θ的取值范围为( )
A .0,3π⎛⎫ ⎪⎝⎭
B .,32ππ⎛⎫ ⎪⎝⎭
C .2,23ππ⎛⎫ ⎪⎝⎭
D .20,3π⎛
⎫ ⎪⎝⎭
【解析】
【分析】 根据向量的数量积运算和向量的线性表示可得,
()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r ,根据二次函数的最值可得出
012cos 54cos t θθ
+=
+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=u u u r u u u r ,()1PQ OQ OP t OB tOA =-=--u u u r u u u r u u u r u u u r u u u r ,
()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r , ∵PQ u u u r 在t t =0时取得最小值,所以012cos 54cos t θθ
+=+,又0105t <<,则12cos 1054cos 5
θθ+<
<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223
ππθ<<, 故选:C.
【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.
20.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )
A .10
B .16
C .
D .【答案】C
【解析】
【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.
【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,
则()()()221,33,15,5a b +=-+=-r r ,因此,2a b +==r r C.
【点睛】
本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.。

相关文档
最新文档