连江尚德中学届高三3月模拟检测(文科)数学试题.docx

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连江尚德中学2016届高三3月模拟检测(文科)数学试题
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合()(){}{}120,30A x x x B x x =-+<=-<<,则A
B =
(A )(),2-∞-
(B )()2,0-
(C )()0,1
(D )()1,+∞
(2) 若纯虚数z 满足i 1i z a =+,则实数a =
(A )0
(B )1-或1
(C )1-
(D )1
(3) 在数列{}n a 中,711
16,02
n n a a a +=-
=,则2a = (A )
12
(B )1 (C )2
(D )4
(4) 已知双曲线的渐近线方程为12
y x =±,且经过点()4,1,则该双曲线的标准方程为
(A )22
1312
x y -=
(B )22
1312
y x -=
(C )22
1123x y -=
(D )22
1123
y x -=
(5) 已知函数()y f x x =+是偶函数,且()21f =,则()2f -=
(A )1-
(B )1
(C )5- (D )5
(6) 已知ππ2
2
α-<<,且2
sin cos 2
αα+=,则α的值为
(A )π12
-
(B )π12
(C )5π12
-
(D )5π12
(7) 设,a b ∈R ,则“a b >”是“a a b b >的
(A )充分不必要条件 (B )必要不充分条件
(C )充要条件
(D )既不充分也不必要条件
(8) 执行如图程序框图,如果输入4a =,那么输出的n 的值为
(A )2 (B )3 (C )4 (D )5
x
y
1
54
14
O
1
12
22
4
4
(9) 函数()()sin f x x ωϕ=+的部分图像如图所示,则()f x 的对称轴为
(A )1
π,4
x k k =-+∈Z (B )1
2π,4
x k k =-+∈Z (C )1
,4
x k k =-+∈Z (D )1
2,4
x k k =-
+∈Z (10) 设抛物线28y x =的焦点为F ,P 是抛物线上一点,若直线PF 的倾斜角为120︒,则PF =
(A )
3
8 (B )3
(C )883

(D )3或8
(11) 某几何体的三视图如图所示,则下列数据中不是该几何体的棱长的是
(A )22 (B )17
(C )32 (D )33
(12) 已知函数()1
1,
1,4
ln ,
1,
x x f x x x ⎧+⎪=⎨⎪>⎩…则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是
(A )10,e ⎛⎫
⎪⎝⎭
(B )11,4e ⎡⎫⎪⎢⎣⎭
(C )10,4⎛⎫ ⎪⎝⎭
(D )1,e 4⎡⎫⎪⎢⎣⎭
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.
(13) 已知()()1,3,1,t -a =b =,若()2-⊥a b a ,则实数t = .
(14) 若实数,x y 满足约束条件220,30,3,x y x y x +-⎧⎪
-+⎨⎪⎩
………则2z x y =+的最大值为 .
(15) 一个四面体的所有棱长都为2,四个顶点在同一球面上,则该球的表面积为 . (16) 若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.
(17) (本小题满分12分)
已知等差数列{}n a 的前n 项和为n S ,且373,28a S ==. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若()21
1
1n
n n n n a b a a ++=-⋅,,求数列{}n b 的前n 项和n T .
(18) (本小题满分12分)
某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[)[)[)[)[]100,110,110,120,120,130,130,140,140,150分别加以统计,得到如图所示的频率分布直方图.
(Ⅰ)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(Ⅱ)若规定分数不小于130分的学生为“数学尖子生”,得到数据如下表:请你根据已知条件完成下列2×2列联表:
数学尖子生
非数学尖子生
合计 男生 女生 合计
100
并判断是否有90%的把握认为“数学尖子生与性别有关”? 参考数据:
2()P K k >
0.15 0.10 0.05 0.025 0.010 0.005 k
2.072
2.706
3.841
5.024
6.635
7.879
(参考公式:22
()()()()()
n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)
(19) (本小题满分12分)
如图,在直三棱柱111ABC A B C -中,底面ABC 是正三角形,点D 是
BC 的中点,1BC BB =.
(Ⅰ)求证:1A C ∥平面1AB D ;
(Ⅱ)试在棱1CC 上找一点M ,使得1MB AB ⊥,并说明理由。

(20) (本小题满分12分)
已知直线:43100l x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方. (Ⅰ)求圆C 的标准方程;
(Ⅱ)过点(1,0)M 的直线与圆C 交于,A B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.
(21) (本小题满分12分)
已知函数()ln 1f x ax x x =-+(0a …)。

(Ⅰ)当1a =时,求()f x 的最小值;
(Ⅱ)若()()1,,0x f x ∈+∞>恒成立,求实数a 的取值范围.
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分. (22) (本小题满分10分)选修4-1:几何证明选讲
A 1
D C 1
B
C
B 1
A
如图,在直角ABC ∆中,AB BC ⊥,D 为BC 边上异于,B C 的一点,以AB 为直径作O ,分别交,AC AD 于点,E F .
(Ⅰ)证明:,,,C D E F 四点共圆;
(Ⅱ)若D 为BC 中点,且3,1AF FD ==,求AE 的长.
(23) (本小题满分10分)选修4-4:坐标系与参数方程
已知在直角坐标系x y O 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆锥曲线C 的极坐标方程为2212
3sin ρθ
=+,定点(0,3)A -,12,F F 是圆锥曲线C 的左、右焦点.直线l 经过点1F 且平行
于直线2AF .
(Ⅰ)求圆锥曲线C 的直角坐标方程和直线l 的参数方程; (Ⅱ)若直线l 与圆锥曲线C 交于,M N 两点,求11F M F N ⋅.
(24) (本小题满分10分)选修4-5:不等式选讲
已知函数()3f x x a x =++-(a ∈R ). (Ⅰ)当1a =时,求不等式()8f x x +…的解集;
(Ⅱ)若函数()f x 的最小值为5,求a 的值.
参考答案
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合()(){}{}120,30A x x x B x x =-+<=-<<,则A B =
(A )(),2-∞- (B )()2,0-
(C )()0,1
(D )()1,+∞
【答案】B .
【解析】因为()()2,1,3,0A B =-=-,所以A
B =()2,0-.应选B .
(2)若纯虚数z 满足i 1i z a =+,则实数a = (A )0 (B )1-或1 (C )1- (D )1
【答案】A . 【解析】因为1i
i i
a z a +=
=-为纯虚数,所以0a =.应选A . (3)在数列{}n a 中,711
16,02
n n a a a +=-=,则2a = (A )
12
(B )1
(C )2
(D )4
【答案】A . 【解析】由已知,
12n n a a +=,所以{}n a 是公比为2的等比数列,所以7251
22
a a ==.应选A . (4)已知双曲线的渐近线方程为1
2
y x =±,且经过点()4,1,则该双曲线的标准方程为
(A )22
1312x y -=
(B )22
1312y x -=
(C )22
1123x y -=
(D )22
1123
y x -=
【答案】C .
【解析】易知221312x y -=,22
1123
y x -=的渐近线方程为2y x =±,淘汰选项A 、D ;将()4,1代入选项B ,不
满足方程,淘汰选项B .应选C .
(5)已知函数()y f x x =+是偶函数,且()21f =,则()2f -= (A )1- (B )1 (C )5- (D )5
【答案】D .
【解析】因为函数()y f x x =+是偶函数,所以()()f x x f x x --=+,令2x =得,()()2222f f --=+,所以()()2245f f -=+=.应选D . (6)已知ππ
22
α-
<<,且2sin cos 2αα+=,则α的值为
(A )π12
-
(B )
π12
(C )5π12
-
(D )
5π12
【答案】A .
【解析】因为2sin cos 2αα+=,所以π22sin 42α⎛⎫+= ⎪⎝⎭,所以π1sin 42α⎛
⎫+= ⎪⎝
⎭.又因为ππ3π444α-<+<,
所以ππ46
α+
=,故α=π
12-.应选A .
(7)设,a b ∈R ,则“a b >”是“a a b b >的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件
(D )既不充分也不必要条件
【答案】C .
【解析】因为函数
()22,0,
,0x x f x x x x x ⎧==⎨-<⎩
…在
()
,-∞+∞上为增函数,所以
()()a b f a f b >⇔>a a b b ⇔>,即a b >为a a b b >的充要条件.应选C .
(8)执行如图程序框图,如果输入4a =,那么输出的n 的值为 (A )2 (B )3 (C )4 (D )5 【答案】B .
【解析】已知输入a 的值为4,故可列表如下:
初始值 第1次 第2次 第3次 P Q >,
终止循环,输出n 值为3.
是否满足P Q ≤
01<,满足 13<,满足 57<,满足 P 0 0041+=
1145+=
25421+=
Q
1 2113⨯+= 2317⨯+= 27115⨯+=
n
011+= 112+= 213+=
由上表可知,应选B .
(9)函数()()sin f x x ωϕ=+的部分图像如图所示,则()f x 的对称轴为 (A )1
π,4
x k k =-+∈Z (B )1
2π,4
x k k =-
+∈Z (C )1
,4
x k k =-+∈Z
(D )1
2,4
x k k =-
+∈Z x
y
1
54
14
O
【答案】C . 【解析】由图可知,
511244T =-=,故1142x =-,即1
4x =-是()f x 的一条对称轴.又因为()f x 每两
相邻的对称轴距离均为
2
T ,所以()f x 的对称轴为1
,4x k k =-+∈Z .应选C .
(10)设抛物线28y x =的焦点为F ,P 是抛物线上一点,若直线PF 的倾斜角为120︒,则PF = (A )
3
8
(B )3
(C )883

(D )3或8
【答案】C .
【解析】法一、设准线为l ,l
x 轴B =,PA l ⊥,A 为垂足,设()00,P x y .由抛物线定义得,PF PA =,
所以PAF PFA ∠=∠.因为PA x ∥轴,所以AFB PAF ∠=∠,
(1)当点P 在第一象限时,()1
180120302
AFB PFA ∠=∠=⨯︒-︒=︒.在Rt ABF ∆中,4BF =,所以
043
AB y ==
,则
016
83x =,解得023x =.所以28233
PF =+=.
(2)当点P 在第四象限时,1
120602
AFB PFA ∠=∠=⨯︒=︒.
在R t A B F ∆中,4BF =,所以043AB y ==,
则20(43)8x =,解得06x =.所以628PF =+=.应选C .
法二、设准线为l ,
l x 轴B =,PA l ⊥,A 为垂足,
设()00,P x y .过点P 作PM x ⊥轴于点M ,则60PFM ∠=︒,所以1
||2
FM PF =
,由抛物线定义得,PF PA = (1)当点P 在第一象限时,13||||||||||22BF BM MF PA PF PF =+=+=,所以38
4||,||.23PF PF ∴=∴=
(2)当点P 在第四象限时,11||||||||||22
BF BM MF PA PF PF =-=-=,所以1
4||,||8.2PF PF ∴=∴=应选
C .
(11)某几何体的三视图如图所示,则下列数据中不是该几何体的棱长的是 (A )22 (B )17 (C )32
(D )33
1
12
22
4
4
【答案】C .
4
4
33
21
2
17
22
22
【解析】由三视图可知,该几何体是高为4,底面是斜边为4的等腰直角三角形的三棱锥(如图粗线部分所示),通过计算可得32不是该几何体的棱长.应选C .
(12)已知函数()1
1,1,
4ln ,
1,x x f x x x ⎧+⎪=⎨⎪>⎩…则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是
(A )10,e ⎛⎫
⎪⎝⎭
(B )11,4e ⎡⎫⎪⎢⎣⎭
(C )10,4⎛⎫ ⎪⎝⎭
(D )1,e 4⎡⎫⎪⎢⎣⎭
【答案】B .
【解析】作出()f x 的图像如右所示,易知函数e
x
y =
与ln y x =相切,结合图像可知,当a ∈11,4e ⎡⎫
⎪⎢⎣⎭时,函数()f x 与直线y ax =有两个交点,即方程()f x ax =恰有
两个不同的实根.应选B .
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.
(13)已知()()1,3,1,t -a =b =,若()2-⊥a b a ,则实数t = . 【答案】2.
【解析】由已知,()23,32t -=--a b .因为()2-⊥a b a ,所以()2-⋅a b a ()33320t =+-=,解得2t =.应填2.
(14)若实数,x y 满足约束条件220,30,3,x y x y x +-⎧⎪
-+⎨⎪⎩
………则2z x y =+的最大值为 .
【答案】12.
【解析】作出可行域如图所示,由图可知,当2z x y =+经过点()3,6A 时,直线纵截距最大,此时2z x y =+取得最大值23612⨯+=.应填12.
(15)一个四面体的所有棱长都为2,四个顶点在同一球面上,则该球的表面积为 .
【答案】3π.
【解析】依题意,该四面体是棱长为2的正四面体,将其放置到正方体中考虑(如图所示),其外接球与正方体的外接球相同.易得正方体的棱长为1,其体对角线长即为外接球的直径,则
2R =3,所以该球的表面积为24π3πR =.应填3π.
(16)若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是 . 【答案】
62
4
-. 【解析】由正弦定理可得22a b c +=,所以 ()
2
222
2
2
1
24cos 22a b a b a b c
C ab
ab
+-
++-==
223222262262
884
a b ab ab ab ab ab +---==
…,当且仅当32a b =时取等号,所以()min 62
cos 4C -=
.应填624
-.
三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)
已知等差数列{}n a 的前n 项和为n S ,且373,28a S ==. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若()21
1
1n
n n n n a b a a ++=-⋅
,,求数列{}n b 的前n 项和n T . 【解析】(Ⅰ)设等差数列{}n a 的公差为d ,则
317123,
76
728,2
a a d S a d =+=⎧⎪
⎨⨯=+=⎪⎩ ························································ 3分 解得11,1a d ==, ······················································································· 4分 所以()111n a n =+-⋅,即n a n =. ·································································· 6分 (Ⅱ)由(Ⅰ)知,()21
1
1n
n n n n a b a a ++=-⋅
, ()()
21
11n
n n n +=-⋅
+ ························································································ 7分
()1
111n n n ⎛⎫=-+ ⎪+⎝⎭, ·
·················································································· 9分 当n 为奇数时,
1111
11211223111n n T n n n n +⎛⎫⎛⎫⎛⎫=-+++-
-+=--=- ⎪ ⎪ ⎪
+++⎝⎭⎝⎭⎝

; ···························· 10分 当n 为偶数时,
1111
1111223111n n T n n n n ⎛⎫⎛⎫⎛⎫=-+++-
++=-+=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭
. ···························· 11分 综上,2,,1
,.
1
n n n n T n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数(或()111n n T n -=-++) ·····································
·· 12分
(18)(本小题满分12分)
某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[)[)[)[)[]100,110,110,120,120,130,130,140,140,150分别加以统计,得到如图所示的频率分布直方图.
(Ⅰ)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(Ⅱ)若规定分数不小于130分的学生为“数学尖子生”,得到数据如下表:请你根据已知条件完成下列2×2列联表:
数学尖子生
非数学尖子生
合计 男生 女生 合计
100
并判断是否有90%的把握认为“数学尖子生与性别有关”? 参考数据:
2()P K k >
0.15 0.10 0.05 0.025 0.010 0.005 k
2.072
2.706
3.841
5.024
6.635
7.879
(参考公式:2
2
()()()()()
n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)
【解析】由已知得,抽取的100名学生中,男生60名,女生40名;分数小于等于110分的学生中,男生人有60×0.05=3(人),记为A 1,A 2,A 3;女生有40×0.05=2(人),记为B 1,B 2. ·········· 2分 从中随机抽取2名学生,所有的可能结果为
{}{}{}{}{}{}{}{}{}{}12131112232122313212,,,,,,,,,,,,,,,,,,,A A A A A B A B A A A B A B A B A B B B
共有10种, ······························································································ 4分 其中,两名学生恰好为一男一女的可能结果有
{}{}{}{}{}{}111221223132,,,,,,,,,,,A B A B A B A B A B A B ,
共有6种, ······························································································· 5分 故所求的概率63
105
P =
=. ·
·········································································· 6分 (Ⅱ)由频率分布直方图可知,
在抽取的100名学生中,数学尖子生男生60×0.25=15(人),女生40×0.375=15(人) ···· 7分 据此可得2×2列联表如下:
数学尖子生
非数学尖子生
合计 男生 15 45 60 女生 15 25 40 合计
30
70
100
·············································································································· 9分 假设数学尖子生与性别无关,则
2K 的观测值2
100(15251545)25 1.796040307014
k ⨯-⨯==≈⨯⨯⨯ ····································· 11分
因为1.79<2.706,所以没有90%的把握认为“数学尖子生与性别有关”. ········· 12分
(19)(本小题满分12分)
如图,在直三棱柱111ABC A B C -中,底面ABC 是正三角形,点D 是BC 的中点,1BC BB =. (Ⅰ)求证:1A C ∥平面1AB D ;
(Ⅱ)试在棱1CC 上找一点M ,使得1MB AB ⊥,并说明理由.
A 1
D C 1
B
C
B 1
A
【解析】(Ⅰ)连结1A B ,交1AB 于点O ,连结OD . ········································· 1分 在11ABB A Y 中,O 为1A B 中点.
又因为D 为BC 中点,所以1AC OD ∥. ··························································· 2分 因为1A C ⊄平面1AB D ,OD ⊂平面1AB D ,
所以1A C ∥平面1AB D . ··············································································· 4分 (Ⅱ)当M 为棱1CC 中点时,1MB AB ⊥,理由如下: ······································· 5分 因为在直三棱柱111ABC A B C -中,1BC BB =, 所以四边形11BCC B 为正方形.
因为M 为棱1CC 中点,D 是BC 的中点,易证1B BD BCM ∆≅∆, ························· 6分 所以1BB D CBM ∠=∠, 又因为11π
2
BB D BDB ∠+∠=, 所以1π
2
CBM BDB ∠+∠=
,故1BM B D ⊥. ····················································· 7分 因为ABC ∆是正三角形,D 是BC 的中点, 所以AD BC ⊥.
因为平面ABC ⊥平面11,BB C C 平面ABC
平面11,BB C C BC AD =⊂平面ABC ,
所以AD ⊥平面11,BB C C ················································································ 9分 因为BM ⊂平面11,BB C C 所以AD BM ⊥. 因为1AD
B D D =,1,AD B D ⊂平面1AB D ,
所以BM ⊥平面1AB D , ············································································· 11分 因为1AB ⊂平面1AB D ,所以1MB AB ⊥. ······················································ 12分
(20)(本小题满分12分)
已知直线:43100l x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方. (Ⅰ)求圆C 的标准方程;
(Ⅱ)过点(1,0)M 的直线与圆C 交于,A B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由. 【解析】(Ⅰ)设圆心5(,0)()2
C a a >-,

4102055
a a a +=⇒==-或(舍去)
. ························································· 2分 所以圆C 的标准方程为224x y +=. ······························································· 4分 (Ⅱ)当直线AB x ⊥轴,在x 轴正半轴上任一点,都可使x 轴平分ANB ∠; ·········· 5分 当直线AB 斜率存在时,
设直线AB 方程为(1)y k x =-,1122(,0),(,),(,),N t A x y B x y ···································· 6分 联立圆C 的方程和直线AB 的方程得,
2222224,
(1)240(1)x y k x k x k y k x ⎧+=⇒+-+-=⎨
=-⎩
, ··················································· 7分 故22121222
24,11
k k x x x x k k -+==++, ···································································· 8分 若x 轴平分ANB ∠,则12121212(1)(1)
00AN BN y y k x k x k k x t x t x t x t
--=-⇒
+=⇒+=----
221212222(4)2(1)
2(1)()2020411
k k t x x t x x t t t k k -+⇒-+++=⇒-+=⇒=++.
当点N 的坐标为(4,0)时,能使得ANM BNM ∠=∠成立. ································· 12分
(21)(本小题满分12分)
已知函数()ln 1f x ax x x =-+(0a …). (Ⅰ)当1a =时,求()f x 的最小值;
(Ⅱ)若()()1,,0x f x ∈+∞>恒成立,求实数a 的取值范围.
【解析】(Ⅰ)()f x 的定义域为(0,)+∞, ························································ 1分 当1a =时,()ln 1f x x x x =-+,()ln f x x '=, ··················································· 2分 令'()0f x >,则1x >;令'()0f x <,则1x <,
所以()f x 在(0,1)单调递减,(1,)+∞单调递增.················································· 4分 所以min ()(1)0f x f ==. ··············································································· 5分 (Ⅱ)()ln 1f x a x a '=+-(1x >), ······························································ 6分 ①0a =时,()10f x '=-<,()f x 在(1,)+∞单调递减,()(1)0f x f <=恒成立与已知相矛盾. 7分
②当0a >时,由()0f x '>得1e a a
x ->,
所以()f x 的单调减区间是1(0,e
)a a
-,单调增区间是1(e ,)a a
-+∞. ······························· 9分
当1e 1a
a
-…,即1a …时,()f x 在(1,)+∞单调递增,()(1)0f x f >=恒成立; 当1e
1a
a
->,即01a <<时,()f x 在1(1,e
)a a
-单调递减,在1(e
,)a a
-+∞单调递增,存在1(e
)(1)0a a
f f -<=,与已
知相矛盾. ····························································································· 11分 综上,实数a 的取值范围是[1,)+∞. ···························································· 12分
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)选修4-1:几何证明选讲
如图,在直角ABC ∆中,AB BC ⊥,D 为BC 边上异于,B C 的一点,以AB 为直径作O ,分别交,AC AD
于点,E F .
(Ⅰ)证明:,,,C D E F 四点共圆;
(Ⅱ)若D 为BC 中点,且3,1AF FD ==,求AE 的长.
【解析】(Ⅰ)连结,BF EF ,则CEF ABF ∠=∠, ············ 1分 因为AB 为直径,所以90AFB ∠=︒, ····························· 2分 因为AB BC ⊥,所以ABF ADB ∠=∠, ·························· 3分 所以ADB CEF ∠=∠, ················································ 4分
F E
O
A
B C D
F
E
O
A
所以,,,C D E F 四点共圆. ··········································· 5分
(Ⅱ)由已知BD 为O 的切线,所以()21134BD DF DA =⋅=⨯+=,故2BD =, 所以22224223AB AD BD =-=-=, ······················································· 7分 因为D 为BC 中点,所以()
2
24,23427BC AC ==
+=. ································ 8分
因为,,,C D E F 四点共圆,所以AE AC AF AD ⋅=⋅, ··········································· 9分 所以3467
727
AF AD AE AC ⋅⨯===
. ······························································· 10分
(23)(本小题满分10分)选修4-4:坐标系与参数方程
已知在直角坐标系x y O 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆锥曲线C 的极坐标方程为22
12
3sin ρθ
=
+,定点(0,3)A -,12,F F 是圆锥曲线C 的左、右焦点.直线l 经过点1F 且平行于直线2AF . (Ⅰ)求圆锥曲线C 的直角坐标方程和直线l 的参数方程; (Ⅱ)若直线l 与圆锥曲线C 交于,M N 两点,求11F M F N ⋅.
【解析】(Ⅰ)圆锥曲线C 的普通方程为22
:143
x y C +=, ·
·································· 2分 其焦点为1(1,0)F -,2(1,0)F ,所以l 的斜率230
301
AF k k --==
=-, ·
······················· 3分 所以直线l 的参数方程为11,232x t y t

=-+⎪⎪
⎨⎪=⎪⎩(t 为参数). ··········································· 5分
(Ⅱ)将直线l 的参数方程11,232
x t y t

=-+⎪⎪
⎨⎪=⎪⎩(t 为参数),代入椭圆方程得:
254120t t --=, ······················································································· 7分 所以,1212
5
t t =-
, ····················································································· 8分 所以,11121212
5
F M F N t t t t ⋅=⋅==. ························································· 10分
(24)(本小题满分10分)选修4-5:不等式选讲 已知函数()3f x x a x =++-(a ∈R ). (Ⅰ)当1a =时,求不等式()8f x x +…的解集; (Ⅱ)若函数()f x 的最小值为5,求a 的值.
【解析】(Ⅰ)当1a =时,不等式()8f x x +…,即138x x x ++-+…
,等价于。

相关文档
最新文档